Overflow Networks: Approximations and Implications to Call-Center Outsourcing

Size: px
Start display at page:

Download "Overflow Networks: Approximations and Implications to Call-Center Outsourcing"

Transcription

1 Overflow Networks: Approximations and Implications to Call-Center Outsourcing Itai Gurvich (Northwestern University) Joint work with Ohad Perry (CWI)

2 Call Centers with Overflow λ 1 λ 2 Source of complexity: dependence

3 Motivating Example 1 C O s (N O ) = capacity cost function for station O. W(t) = virtual waiting time at time t. (Similarly, W I (t) and W O (t)) W(t) = W I (t)1{x I (t) < N I + K I } + W O (t)1{x I (t) = N I + K I } min NO Cs O (N O ) s.t. E [f (W O (t))1{x I (t) = N I + K I }] α K λ θ θ λ 1 N O Z +, NI NO µ I µ O

4 Motivating Example 2 λ λ 1 λ 2 min i E[ T 0 C i(q π i (s))ds] s.t. π Π.

5 Motivating Example 2 λ λ 1 λ 2 min i E[ T 0 C i(q π i (s))ds] s.t. π Π. Optimal policy may benefit from state information on in-house

6 Related Literature Blocking and overflow: Exact characterization: Van Doorn ( 83); Approximations: Whitt ( 83), Koole et. al ( 00, 05); Heavy Traffic: Hunt and Kurtz ( 94), Koçaga and Ward ( 10), Pang et. al ( 07), Whitt ( 04); Outsourcing and optimization: Gans and Zhou ( 07); Chevalier et. al. ( 03, 04); Technical: Whitt ( 91), Bassamboo et. al ( 05), Perry and Whitt ( 10a); Glynn and Whitt ( 93), Perry and Whitt ( 10b);

7 Basic Model A(t) - number of arrivals to station I by time t: A(t) is a Poisson process with rate λ. A O (t) - number of overflowed calls by time t. K λ θ θ A I (t) = A(t) A O (t) - arrivals entering station I. X I (t), X O (t) - total number in respective system at t. NI NO K I - threshold in station I (K I 0). µ I µ O In isolation: station O is an GI/M/N + M queue.

8 Main Results A sequence of overflow networks in a many-server heavy-traffic regime 1 Functional Central Limit Theorem (FCLT) for Overflow Process 2 Pointwise Stationarity and Asymptotic Independence

9 Asymptotic (Heavy Traffic) Analysis We consider a sequence of networks indexed by arrival rate λ, with λ. Main Assumption: 1 Non-negligible overflow: K λ θ θ µ I NI λ + θki λ ν := lim λ λ < 1 NI NO µ I µ O 1 ν interpreted as rough estimate for the (steady-state) blocking probability

10 Asymptotic (Heavy Traffic) Analysis We consider a sequence of networks indexed by arrival rate λ, with λ. Main Assumption: 1 Non-negligible overflow: K λ θ θ µ I NI λ + θki λ ν := lim λ λ < 1 2 Sufficient capacity in station O: NI NO N λ O = λ µ IN λ I θ I K λ I µ O + o(λ) µ I µ O 1 ν interpreted as rough estimate for the (steady-state) blocking probability

11 First Result D λ I (t) = N λ I K λ I X λ I (t), D λ I (t) := Dλ I (t) λ, Â λ O(t) := Aλ O (t) (λ µ INI λ θki λ )t, X O(t) λ := Xλ O (t) λ µ INλ I θkλ I µ λ O λ

12 First Result D λ I (t) = N λ I K λ I X λ I (t), D λ I (t) := Dλ I (t) λ, Â λ O(t) := Aλ O (t) (λ µ INI λ θki λ )t, X O(t) λ := Xλ O (t) λ µ INλ I θkλ I µ λ O λ Theorem If D λ I (0) 0, then ( D λ I, Âλ O ) (0, σb), u.o.c., where B is a standard Brownian motion and σ 2 = 1 + ν.

13 First Result D λ I (t) = N λ I K λ I X λ I (t), D λ I (t) := Dλ I (t) λ, Â λ O(t) := Aλ O (t) (λ µ INI λ θki λ )t, X O(t) λ := Xλ O (t) λ µ INλ I θkλ I µ λ O λ Theorem If D λ I (0) 0, then ( D λ I, Âλ O ) (0, σb), u.o.c., where B is a standard Brownian motion and σ 2 = 1 + ν. Recall: ν := lim λ µ I N λ I + θk λ I λ

14 Outline of the proof: D λ I 0 D λ I (t) := Nλ I + KI λ XI λ(t) When close to threshold: rate µ I NI λ + θki λ, rate = λ. Slowing D λ I (t) down gives an M/M/1 with arrival rate = µ IN λ I + θk λ I λ ν < 1 and service rate = λ λ = 1 Let Q b (t) be M/M/1 with arrival rate ν and service rate 1. Then, {D λ I (t) : t [0, T)} {Q b(t) : t [0, λt)}. From extreme-value theory for M/M/1: sup t T D λ I (t) = O(log(λT))

15 Outline of the proof:  λ O σb A λ O(t) = t 0 1{D λ I (s) = 0}dA λ (s) D λ I completes O(λ) cycles over any time interval [s, t] Functional limits for the cumulative processes t 0 1{D λ I (s) = 0}ds (1 ν)t ( t ) λ 1{D λ I (s) = 0}ds (1 ν)t σb(t) 0 Functional limit for  λ O follows from that for t 0 1{Dλ I (s) = 0}ds

16 Outline of the proof:  λ O σb A λ O(t) = t 0 1{D λ I (s) = 0}dA λ (s) D λ I completes O(λ) cycles over any time interval [s, t] Functional limits for the cumulative processes t 0 1{D λ I (s) = 0}ds (1 ν)t ( t ) λ 1{D λ I (s) = 0}ds (1 ν)t σb(t) 0 Functional limit for  λ O follows from that for t 0 1{Dλ I (s) = 0}ds An Averaging Principle (AP):  λ O is driven by a process that moves at a different time scale

17 Implications Approximating (complicated) overflow process with a simple process: A λ O (t) (λ µ IN λ I θk λ I )t + λσb(t), with the approximation being asymptotically exact. A λ O (t) is close to a renewal process with mean inter-arrival time (λ µ I N λ I θ I K λ I ) 1 and squared coefficient of variation (SCV) λσ 2 λ µ I N λ I θk λ I σ2 (1 ν) 1.

18 Implications Approximating (complicated) overflow process with a simple process: A λ O (t) (λ µ IN λ I θk λ I )t + λσb(t), with the approximation being asymptotically exact. A λ O (t) is close to a renewal process with mean inter-arrival time (λ µ I N λ I θ I K λ I ) 1 and squared coefficient of variation (SCV) λσ 2 λ µ I N λ I θk λ I σ2 (1 ν) 1. Simpler than the original overflow renewal process.

19 Implications Cont. In isolation, station O is a GI/M/N + M queue. Using overflow convergence and known results for GI/M/N + M, ( D λ I, X O) λ (0, X O ) Asymptotic independence in a trivialized sense

20 Implications Cont. In isolation, station O is a GI/M/N + M queue. Using overflow convergence and known results for GI/M/N + M, ( D λ I, X O) λ (0, X O ) Asymptotic independence in a trivialized sense What does this limit imply for joint distributions?... not much... E[W λ (t)] = E[W λ I (t)1{x λ I (t) < N λ I + K λ I }] + E[W λ O(t)1{X λ I (t) = N λ I + K λ I }].

21 Independence of the Limits Independence of limits does not carry over to the pre-limits. Example: 1/ λ, w.p. 1/2 1, if Y λ > 0 Y λ := X λ := 0, w.p. 1/2 0, otherwise 1 w.p. 1/2 (Y λ, X λ ) (0, X), where X = 0 w.p. 1/2 Trivially, the limits 0 and X are independent. However, 1/2 = P{X λ > 0, Y λ > 0} P{X λ > 0}P{Y λ > 0} = 1/4, for all λ, no matter how large.

22 Asymptotic Independence Natural scale of station I = constant Natural scale of station O = λ Theorem (asymptotic independence) D λ I is asymptotically independent of X O λ, i.e, for all t > 0, { } { } } P D λ I (t) x, X O(t) λ y = P D λ I (t) x P { X O(t) λ y + o(1)

23 Asymptotic Independence Natural scale of station I = constant Natural scale of station O = λ Theorem (asymptotic independence) D λ I is asymptotically independent of X O λ, i.e, for all t > 0, { } { } } P D λ I (t) x, X O(t) λ y = P D λ I (t) x P { X O(t) λ y + o(1) Note that X λ O is scaled, but Dλ I is not (requires refined analysis).

24 Main Idea of the Proof Showing asymptotic independence of the sequence in n via asymptotic independence of the process in t

25 Main Idea of the Proof Showing asymptotic independence of the sequence in n via asymptotic independence of the process in t (*) Recall that {D λ I (s) : t s t + ɛ} {Q b(s) : t s t + λɛ} for λ large, with Q b denoting a M/M/1.

26 Main Idea of the Proof Showing asymptotic independence of the sequence in n via asymptotic independence of the process in t (*) Recall that {D λ I (s) : t s t + ɛ} {Q b(s) : t s t + λɛ} for λ large, with Q b denoting a M/M/1. (**) Q b (t + λɛ) Q b ( ) as λ for all ɛ > 0.

27 Main Idea of the Proof Showing asymptotic independence of the sequence in n via asymptotic independence of the process in t (*) Recall that {D λ I (s) : t s t + ɛ} {Q b(s) : t s t + λɛ} for λ large, with Q b denoting a M/M/1. (**) Q b (t + λɛ) Q b ( ) as λ for all ɛ > 0. Steady state Q b ( ) is independent of Q b (t).

28 Main Idea of the Proof Showing asymptotic independence of the sequence in n via asymptotic independence of the process in t (*) Recall that {D λ I (s) : t s t + ɛ} {Q b(s) : t s t + λɛ} for λ large, with Q b denoting a M/M/1. (**) Q b (t + λɛ) Q b ( ) as λ for all ɛ > 0. Steady state Q b ( ) is independent of Q b (t). X λ O has a continuous limit hence hardly changes within ɛ, X λ O(t + ɛ) X λ O(t).

29 Pointwise Stationarity The following pointwise stationarity follows from (*) and (**): Theorem (pointwise stationarity) D λ I (t) Q b( ) in R as λ.

30 Pointwise Stationarity The following pointwise stationarity follows from (*) and (**): Theorem (pointwise stationarity) D λ I (t) Q b( ) in R as λ. Pointwise stationarity and asymptotic independence allow us to obtain performance metrics by treating Station I as a stationary M/M/N/K + M queue Station O as a GI/M/N + M queue (that is independent of station I) P{D λ I (t) d, XO(t) λ q} = P{D λ I ( ) d}p{xo(t) λ q} Overflow approximation simplifies analysis of station O

31 Waiting Times and Asymptotic ASTA w λ k, wλ I,k, wλ O,k - waiting time of kth arrival to respective station. f is a continuous and bounded function or of the form f (x) := 1{x > τ}. Theorem (asymptotic finite-horizon ASTA) For all t > 0, lim E 1 λ A λ (t) A λ (t) k=1 f (w λ k ) = ν 1 t t 0 [ ] E f (Ŵ I (s)) ds+(1 ν) 1 t t 0 [ ] E f (Ŵ O (s))ds. where Ŵ O is the diffusion limit of the virtual waiting-time process in the GI/M/N + M queue and Ŵ I K I.

32 Generalizing to multiple classes λ λ 1 λ 2 min i E[ T 0 C i(q π i (s))ds] s.t. π Π. Theorem: Benefit from in-house state information is marginal.

33 Summary Motivated by an outsourcing problem, we considered an overflow system: from M/M/N I /K I + M to G/M/N O + M. Under a resource pooling condition our heavy traffic analysis: provides a simple approximation for the overflow renewal process, which is asymptotically correct. proves that in-house is asymptotically independent of outsourcer. Proofs build on a separation of time scales and a resulting AP and pointwise stationarity. Results are applied to waiting times and virtual waiting times. Generalized to more complicated systems (if queues are C-tight).

34 Questions?

MODELING WEBCHAT SERVICE CENTER WITH MANY LPS SERVERS

MODELING WEBCHAT SERVICE CENTER WITH MANY LPS SERVERS MODELING WEBCHAT SERVICE CENTER WITH MANY LPS SERVERS Jiheng Zhang Oct 26, 211 Model and Motivation Server Pool with multiple LPS servers LPS Server K Arrival Buffer. Model and Motivation Server Pool with

More information

Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing

Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing Submitted to Management Science manuscript MS-251-27 Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing Rishi Talreja, Ward Whitt Department of

More information

Beyond heavy-traffic regimes: Universal bounds and controls for the single-server (M/GI/1+GI) queue

Beyond heavy-traffic regimes: Universal bounds and controls for the single-server (M/GI/1+GI) queue 1 / 33 Beyond heavy-traffic regimes: Universal bounds and controls for the single-server (M/GI/1+GI) queue Itai Gurvich Northwestern University Junfei Huang Chinese University of Hong Kong Stochastic Networks

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

Designing a Telephone Call Center with Impatient Customers

Designing a Telephone Call Center with Impatient Customers Designing a Telephone Call Center with Impatient Customers with Ofer Garnett Marty Reiman Sergey Zeltyn Appendix: Strong Approximations of M/M/ + Source: ErlangA QEDandSTROG FIAL.tex M/M/ + M System Poisson

More information

E-Companion to Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments

E-Companion to Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments E-Companion to Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments Jun Luo Antai College of Economics and Management Shanghai Jiao Tong University

More information

Author's personal copy

Author's personal copy Queueing Syst (215) 81:341 378 DOI 1.17/s11134-15-9462-x Stabilizing performance in a single-server queue with time-varying arrival rate Ward Whitt 1 Received: 5 July 214 / Revised: 7 May 215 / Published

More information

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1 Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1 Mor Armony 2 Avishai Mandelbaum 3 June 25, 2008 Abstract Motivated by call centers,

More information

Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits. IEOR 4615: Service Engineering Professor Whitt February 19, 2015

Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits. IEOR 4615: Service Engineering Professor Whitt February 19, 2015 Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits IEOR 4615: Service Engineering Professor Whitt February 19, 2015 Outline Deterministic Fluid Models Directly From Data: Cumulative

More information

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers OPERATIONS RESEARCH Vol. 59, No. 1, January February 2011, pp. 50 65 issn 0030-364X eissn 1526-5463 11 5901 0050 informs doi 10.1287/opre.1100.0878 2011 INFORMS Routing and Staffing in Large-Scale Service

More information

Managing Service Systems with an Offline Waiting Option and Customer Abandonment: Companion Note

Managing Service Systems with an Offline Waiting Option and Customer Abandonment: Companion Note Managing Service Systems with an Offline Waiting Option and Customer Abandonment: Companion Note Vasiliki Kostami Amy R. Ward September 25, 28 The Amusement Park Ride Setting An amusement park ride departs

More information

Dynamic Control of Parallel-Server Systems

Dynamic Control of Parallel-Server Systems Dynamic Control of Parallel-Server Systems Jim Dai Georgia Institute of Technology Tolga Tezcan University of Illinois at Urbana-Champaign May 13, 2009 Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality

More information

A Fluid Approximation for Service Systems Responding to Unexpected Overloads

A Fluid Approximation for Service Systems Responding to Unexpected Overloads OPERATIONS RESEARCH Vol. 59, No. 5, September October 2011, pp. 1159 1170 issn 0030-364X eissn 1526-5463 11 5905 1159 http://dx.doi.org/10.1287/opre.1110.0985 2011 INFORMS A Fluid Approximation for Service

More information

On the Resource/Performance Tradeoff in Large Scale Queueing Systems

On the Resource/Performance Tradeoff in Large Scale Queueing Systems On the Resource/Performance Tradeoff in Large Scale Queueing Systems David Gamarnik MIT Joint work with Patrick Eschenfeldt, John Tsitsiklis and Martin Zubeldia (MIT) High level comments High level comments

More information

Economy of Scale in Multiserver Service Systems: A Retrospective. Ward Whitt. IEOR Department. Columbia University

Economy of Scale in Multiserver Service Systems: A Retrospective. Ward Whitt. IEOR Department. Columbia University Economy of Scale in Multiserver Service Systems: A Retrospective Ward Whitt IEOR Department Columbia University Ancient Relics A. K. Erlang (1924) On the rational determination of the number of circuits.

More information

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers Mor Armony Amy R. Ward 2 October 6, 2 Abstract In a call center, arriving customers must be routed to available

More information

A Diffusion Approximation for the G/GI/n/m Queue

A Diffusion Approximation for the G/GI/n/m Queue OPERATIONS RESEARCH Vol. 52, No. 6, November December 2004, pp. 922 941 issn 0030-364X eissn 1526-5463 04 5206 0922 informs doi 10.1287/opre.1040.0136 2004 INFORMS A Diffusion Approximation for the G/GI/n/m

More information

TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS

TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS TOWARDS BETTER MULTI-CLASS PARAMETRIC-DECOMPOSITION APPROXIMATIONS FOR OPEN QUEUEING NETWORKS by Ward Whitt AT&T Bell Laboratories Murray Hill, NJ 07974-0636 March 31, 199 Revision: November 9, 199 ABSTRACT

More information

Cross-Selling in a Call Center with a Heterogeneous Customer Population. Technical Appendix

Cross-Selling in a Call Center with a Heterogeneous Customer Population. Technical Appendix Cross-Selling in a Call Center with a Heterogeneous Customer opulation Technical Appendix Itay Gurvich Mor Armony Costis Maglaras This technical appendix is dedicated to the completion of the proof of

More information

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974

LIMITS FOR QUEUES AS THE WAITING ROOM GROWS. Bell Communications Research AT&T Bell Laboratories Red Bank, NJ Murray Hill, NJ 07974 LIMITS FOR QUEUES AS THE WAITING ROOM GROWS by Daniel P. Heyman Ward Whitt Bell Communications Research AT&T Bell Laboratories Red Bank, NJ 07701 Murray Hill, NJ 07974 May 11, 1988 ABSTRACT We study the

More information

Stochastic-Process Limits

Stochastic-Process Limits Ward Whitt Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues With 68 Illustrations Springer Contents Preface vii 1 Experiencing Statistical Regularity

More information

Load Balancing in Distributed Service System: A Survey

Load Balancing in Distributed Service System: A Survey Load Balancing in Distributed Service System: A Survey Xingyu Zhou The Ohio State University zhou.2055@osu.edu November 21, 2016 Xingyu Zhou (OSU) Load Balancing November 21, 2016 1 / 29 Introduction and

More information

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers OPERATIONS RESEARCH Vol. 6, No., January February 23, pp. 228 243 ISSN 3-364X (print) ISSN 526-5463 (online) http://dx.doi.org/.287/opre.2.29 23 INFORMS Blind Fair Routing in Large-Scale Service Systems

More information

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Mohammadreza Aghajani joint work with Kavita Ramanan Brown University March 2014 Mohammadreza Aghajanijoint work Asymptotic with

More information

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MARKOV ADDITIVE ARRIVAL PROCESSES AND ITS APPLICATIONS TO QUEUEING SYSTEMS

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MARKOV ADDITIVE ARRIVAL PROCESSES AND ITS APPLICATIONS TO QUEUEING SYSTEMS A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MARKOV ADDITIVE ARRIVAL PROCESSES AND ITS APPLICATIONS TO QUEUEING SYSTEMS HONGYUAN LU, GUODONG PANG, AND MICHEL MANDJES Abstract. We prove a functional central limit

More information

A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL

A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL by Rodney B. Wallace IBM and The George Washington University rodney.wallace@us.ibm.com Ward Whitt Columbia University

More information

A Fluid Approximation for Service Systems Responding to Unexpected Overloads

A Fluid Approximation for Service Systems Responding to Unexpected Overloads Submitted to Operations Research manuscript 28-9-55.R2, Longer Online Version 6/28/1 A Fluid Approximation for Service Systems Responding to Unexpected Overloads Ohad Perry Centrum Wiskunde & Informatica

More information

A Robust Queueing Network Analyzer Based on Indices of Dispersion

A Robust Queueing Network Analyzer Based on Indices of Dispersion A Robust Queueing Network Analyzer Based on Indices of Dispersion Wei You (joint work with Ward Whitt) Columbia University INFORMS 2018, Phoenix November 6, 2018 1/20 Motivation Many complex service systems

More information

Modeling Service Networks with Time-Varying Demand

Modeling Service Networks with Time-Varying Demand Modeling Service with Time-Varying Demand - Performance Approximations and Staffing Controls (with Beixiang He, Liam Huang, Korhan Aras, Ward Whitt) Department of Industrial and Systems Engineering NC

More information

Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals

Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals OPERATIONS RESEARCH Vol. 6, No. 6, November December 212, pp. 1551 1564 ISSN 3-364X (print) ISSN 1526-5463 (online) http://dx.doi.org/1.1287/opre.112.114 212 INFORMS Stabilizing Customer Abandonment in

More information

Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions

Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions Jim Dai Joint work with Anton Braverman and Jiekun Feng Cornell University Workshop on Congestion Games Institute

More information

Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance

Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance In this technical appendix we provide proofs for the various results stated in the manuscript

More information

Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance

Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance Technical Appendix for: When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance In this technical appendix we provide proofs for the various results stated in the manuscript

More information

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime

A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime A Diffusion Approximation for Stationary Distribution of Many-Server Queueing System In Halfin-Whitt Regime Mohammadreza Aghajani joint work with Kavita Ramanan Brown University APS Conference, Istanbul,

More information

Design, staffing and control of large service systems: The case of a single customer class and multiple server types. April 2, 2004 DRAFT.

Design, staffing and control of large service systems: The case of a single customer class and multiple server types. April 2, 2004 DRAFT. Design, staffing and control of large service systems: The case of a single customer class and multiple server types. Mor Armony 1 Avishai Mandelbaum 2 April 2, 2004 DRAFT Abstract Motivated by modern

More information

This paper investigates the impact of dependence among successive service times on the transient and

This paper investigates the impact of dependence among successive service times on the transient and MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 14, No. 2, Spring 212, pp. 262 278 ISSN 1523-4614 (print) ISSN 1526-5498 (online) http://dx.doi.org/1.1287/msom.111.363 212 INFORMS The Impact of Dependent

More information

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Submitted to imanufacturing & Service Operations Management manuscript MSOM-11-370.R3 Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement (Authors names blinded

More information

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Wyean Chan DIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, CANADA,

More information

A Review of Basic FCLT s

A Review of Basic FCLT s A Review of Basic FCLT s Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University, New York, NY, 10027; ww2040@columbia.edu September 10, 2016 Abstract We briefly review

More information

Appendix. A. Simulation study on the effect of aggregate data

Appendix. A. Simulation study on the effect of aggregate data 36 Article submitted to Operations Research; manuscript no. Appendix A. Simulation study on the effect of aggregate data One of the main limitations of our data are that they are aggregate at the annual

More information

Stochastic Networks and Parameter Uncertainty

Stochastic Networks and Parameter Uncertainty Stochastic Networks and Parameter Uncertainty Assaf Zeevi Graduate School of Business Columbia University Stochastic Processing Networks Conference, August 2009 based on joint work with Mike Harrison Achal

More information

Service Level Agreements in Call Centers: Perils and Prescriptions

Service Level Agreements in Call Centers: Perils and Prescriptions Service Level Agreements in Call Centers: Perils and Prescriptions Joseph M. Milner Joseph L. Rotman School of Management University of Toronto Tava Lennon Olsen John M. Olin School of Business Washington

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Classical Queueing Models.

Classical Queueing Models. Sergey Zeltyn January 2005 STAT 99. Service Engineering. The Wharton School. University of Pennsylvania. Based on: Classical Queueing Models. Mandelbaum A. Service Engineering course, Technion. http://iew3.technion.ac.il/serveng2005w

More information

State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems. J. G. Dai. Tolga Tezcan

State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems. J. G. Dai. Tolga Tezcan State Space Collapse in Many-Server Diffusion imits of Parallel Server Systems J. G. Dai H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia

More information

Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals

Stabilizing Customer Abandonment in Many-Server Queues with Time-Varying Arrivals Submitted to Operations Research manuscript OPRE-29-6-259; OPRE-211-12-597.R1 Stabilizing Customer Abandonment in Many-Server Queues with -Varying Arrivals Yunan Liu Department of Industrial Engineering,

More information

Markovian N-Server Queues (Birth & Death Models)

Markovian N-Server Queues (Birth & Death Models) Markovian -Server Queues (Birth & Death Moels) - Busy Perio Arrivals Poisson (λ) ; Services exp(µ) (E(S) = /µ) Servers statistically ientical, serving FCFS. Offere loa R = λ E(S) = λ/µ Erlangs Q(t) = number

More information

Queues with Many Servers and Impatient Customers

Queues with Many Servers and Impatient Customers MATHEMATICS OF OPERATIOS RESEARCH Vol. 37, o. 1, February 212, pp. 41 65 ISS 364-765X (print) ISS 1526-5471 (online) http://dx.doi.org/1.1287/moor.111.53 212 IFORMS Queues with Many Servers and Impatient

More information

A Note on the Event Horizon for a Processor Sharing Queue

A Note on the Event Horizon for a Processor Sharing Queue A Note on the Event Horizon for a Processor Sharing Queue Robert C. Hampshire Heinz School of Public Policy and Management Carnegie Mellon University hamp@andrew.cmu.edu William A. Massey Department of

More information

Stochastic relations of random variables and processes

Stochastic relations of random variables and processes Stochastic relations of random variables and processes Lasse Leskelä Helsinki University of Technology 7th World Congress in Probability and Statistics Singapore, 18 July 2008 Fundamental problem of applied

More information

Convexity Properties of Loss and Overflow Functions

Convexity Properties of Loss and Overflow Functions Convexity Properties of Loss and Overflow Functions Krishnan Kumaran?, Michel Mandjes y, and Alexander Stolyar? email: kumaran@lucent.com, michel@cwi.nl, stolyar@lucent.com? Bell Labs/Lucent Technologies,

More information

Service-Level Differentiation in Many-Server Service Systems Via Queue-Ratio Routing

Service-Level Differentiation in Many-Server Service Systems Via Queue-Ratio Routing Submitted to Operations Research manuscript (Please, provide the mansucript number!) Service-Level Differentiation in Many-Server Service Systems Via Queue-Ratio Routing Itay Gurvich Kellogg School of

More information

Design and evaluation of overloaded service systems with skill based routing, under FCFS policies

Design and evaluation of overloaded service systems with skill based routing, under FCFS policies Design and evaluation of overloaded service systems with skill based routing, under FCFS policies Ivo Adan Marko Boon Gideon Weiss April 2, 2013 Abstract We study an overloaded service system with servers

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 22 12/9/213 Skorokhod Mapping Theorem. Reflected Brownian Motion Content. 1. G/G/1 queueing system 2. One dimensional reflection mapping

More information

Motivated by models of tenant assignment in public housing, we study approximating deterministic fluid

Motivated by models of tenant assignment in public housing, we study approximating deterministic fluid MANAGEMENT SCIENCE Vol. 54, No. 8, August 2008, pp. 1513 1527 issn 0025-1909 eissn 1526-5501 08 5408 1513 informs doi 10.1287/mnsc.1080.0868 2008 INFORMS Fluid Models for Overloaded Multiclass Many-Server

More information

A DIFFUSION APPROXIMATION FOR THE G/GI/n/m QUEUE

A DIFFUSION APPROXIMATION FOR THE G/GI/n/m QUEUE A DIFFUSION APPROXIMATION FOR THE G/GI/n/m QUEUE by Ward Whitt Department of Industrial Engineering and Operations Research Columbia University, New York, NY 10027 July 5, 2002 Revision: June 27, 2003

More information

Positive Harris Recurrence and Diffusion Scale Analysis of a Push Pull Queueing Network. Haifa Statistics Seminar May 5, 2008

Positive Harris Recurrence and Diffusion Scale Analysis of a Push Pull Queueing Network. Haifa Statistics Seminar May 5, 2008 Positive Harris Recurrence and Diffusion Scale Analysis of a Push Pull Queueing Network Yoni Nazarathy Gideon Weiss Haifa Statistics Seminar May 5, 2008 1 Outline 1 Preview of Results 2 Introduction Queueing

More information

Erlang-C = M/M/N. agents. queue ACD. arrivals. busy ACD. queue. abandonment BACK FRONT. lost calls. arrivals. lost calls

Erlang-C = M/M/N. agents. queue ACD. arrivals. busy ACD. queue. abandonment BACK FRONT. lost calls. arrivals. lost calls Erlang-C = M/M/N agents arrivals ACD queue Erlang-A lost calls FRONT BACK arrivals busy ACD queue abandonment lost calls Erlang-C = M/M/N agents arrivals ACD queue Rough Performance Analysis

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

Many-Server Loss Models with Non-Poisson Time-Varying Arrivals

Many-Server Loss Models with Non-Poisson Time-Varying Arrivals Many-Server Loss Models with Non-Poisson Time-Varying Arrivals Ward Whitt, Jingtong Zhao Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027 Received

More information

Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process

Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process Analysis of an M/G/1 queue with customer impatience and an adaptive arrival process O.J. Boxma 1, O. Kella 2, D. Perry 3, and B.J. Prabhu 1,4 1 EURANDOM and Department of Mathematics & Computer Science,

More information

Solution: The process is a compound Poisson Process with E[N (t)] = λt/p by Wald's equation.

Solution: The process is a compound Poisson Process with E[N (t)] = λt/p by Wald's equation. Solutions Stochastic Processes and Simulation II, May 18, 217 Problem 1: Poisson Processes Let {N(t), t } be a homogeneous Poisson Process on (, ) with rate λ. Let {S i, i = 1, 2, } be the points of the

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Designing load balancing and admission control policies: lessons from NDS regime

Designing load balancing and admission control policies: lessons from NDS regime Designing load balancing and admission control policies: lessons from NDS regime VARUN GUPTA University of Chicago Based on works with : Neil Walton, Jiheng Zhang ρ K θ is a useful regime to study the

More information

Making Delay Announcements

Making Delay Announcements Making Delay Announcements Performance Impact and Predicting Queueing Delays Ward Whitt With Mor Armony, Rouba Ibrahim and Nahum Shimkin March 7, 2012 Last Class 1 The Overloaded G/GI/s + GI Fluid Queue

More information

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads Operations Research Letters 37 (2009) 312 316 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Instability of FIFO in a simple queueing

More information

Stein s Method for Steady-State Approximations: A Toolbox of Techniques

Stein s Method for Steady-State Approximations: A Toolbox of Techniques Stein s Method for Steady-State Approximations: A Toolbox of Techniques Anton Braverman Based on joint work with Jim Dai (Cornell), Itai Gurvich (Cornell), and Junfei Huang (CUHK). November 17, 2017 Outline

More information

Simple and explicit bounds for multi-server queues with universal (and better) scaling

Simple and explicit bounds for multi-server queues with universal (and better) scaling Simple and explicit bounds for multi-server queues with universal and better scaling ρ Yuan Li Georgia Institute of Technology, yuanli@gatech.edu David A. Goldberg Georgia Institute of Technology, dgoldberg9@isye.gatech.edu,

More information

Dynamics of Order Positions and Related Queues in a LOB. Xin Guo UC Berkeley

Dynamics of Order Positions and Related Queues in a LOB. Xin Guo UC Berkeley Dynamics of Order Positions and Related Queues in a LOB Xin Guo UC Berkeley Angers, France 09/01/15 Joint work with R. Zhao (UC Berkeley) and L. J. Zhu (U. Minnesota) Outline 1 Background/Motivation 2

More information

BRAVO for QED Queues

BRAVO for QED Queues 1 BRAVO for QED Queues Yoni Nazarathy, The University of Queensland Joint work with Daryl J. Daley, The University of Melbourne, Johan van Leeuwaarden, EURANDOM, Eindhoven University of Technology. Applied

More information

Managing Call Centers with Many Strategic Agents

Managing Call Centers with Many Strategic Agents Managing Call Centers with Many Strategic Agents Rouba Ibrahim, Kenan Arifoglu Management Science and Innovation, UCL YEQT Workshop - Eindhoven November 2014 Work Schedule Flexibility 86SwofwthewqBestwCompanieswtowWorkwForqwofferw

More information

Proactive Care with Degrading Class Types

Proactive Care with Degrading Class Types Proactive Care with Degrading Class Types Yue Hu (DRO, Columbia Business School) Joint work with Prof. Carri Chan (DRO, Columbia Business School) and Prof. Jing Dong (DRO, Columbia Business School) Motivation

More information

HEAVY-TRAFFIC EXTREME-VALUE LIMITS FOR QUEUES

HEAVY-TRAFFIC EXTREME-VALUE LIMITS FOR QUEUES HEAVY-TRAFFIC EXTREME-VALUE LIMITS FOR QUEUES by Peter W. Glynn Department of Operations Research Stanford University Stanford, CA 94305-4022 and Ward Whitt AT&T Bell Laboratories Murray Hill, NJ 07974-0636

More information

Service-Level Differentiation in Many-Server Service Systems: A Solution Based on Fixed-Queue-Ratio Routing

Service-Level Differentiation in Many-Server Service Systems: A Solution Based on Fixed-Queue-Ratio Routing Service-Level Differentiation in Many-Server Service Systems: A Solution Based on Fixed-Queue-Ratio Routing Itay Gurvich Ward Whitt October 13, 27 Abstract Motivated by telephone call centers, we study

More information

HEAVY-TRAFFIC LIMITS VIA AN AVERAGING PRINCIPLE FOR SERVICE SYSTEMS RESPONDING TO UNEXPECTED OVERLOADS OHAD PERRY

HEAVY-TRAFFIC LIMITS VIA AN AVERAGING PRINCIPLE FOR SERVICE SYSTEMS RESPONDING TO UNEXPECTED OVERLOADS OHAD PERRY HEAVY-TRAFFIC LIMITS VIA AN AVERAGING PRINCIPLE FOR SERVICE SYSTEMS RESPONDING TO UNEXPECTED OVERLOADS OHAD PERRY Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

More information

HEAVY-TRAFFIC LIMITS FOR STATIONARY NETWORK FLOWS. By Ward Whitt, and Wei You November 28, 2018

HEAVY-TRAFFIC LIMITS FOR STATIONARY NETWORK FLOWS. By Ward Whitt, and Wei You November 28, 2018 Stochastic Systems HEAVY-TRAFFIC LIMITS FOR STATIONARY NETWORK FLOWS By Ward Whitt, and Wei You November 28, 2018 We establish heavy-traffic limits for the stationary flows in generalized Jackson networks,

More information

The Generalized Drift Skorokhod Problem in One Dimension: Its solution and application to the GI/GI/1 + GI and. M/M/N/N transient distributions

The Generalized Drift Skorokhod Problem in One Dimension: Its solution and application to the GI/GI/1 + GI and. M/M/N/N transient distributions The Generalized Drift Skorokhod Problem in One Dimension: Its solution and application to the GI/GI/1 + GI and M/M/N/N transient distributions Josh Reed Amy Ward Dongyuan Zhan Stern School of Business

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Xu Sun and Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University

More information

REAL-TIME DELAY ESTIMATION BASED ON DELAY HISTORY SUPPLEMENTARY MATERIAL

REAL-TIME DELAY ESTIMATION BASED ON DELAY HISTORY SUPPLEMENTARY MATERIAL REAL-TIME DELAY ESTIMATION BASED ON DELAY HISTORY SUPPLEMENTARY MATERIAL by Rouba Ibrahim and Ward Whitt IEOR Department Columbia University {rei2101, ww2040}@columbia.edu Abstract Motivated by interest

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

The G/GI/N Queue in the Halfin-Whitt Regime I: Infinite Server Queue System Equations

The G/GI/N Queue in the Halfin-Whitt Regime I: Infinite Server Queue System Equations The G/GI/ Queue in the Halfin-Whitt Regime I: Infinite Server Queue System Equations J. E Reed School of Industrial and Systems Engineering Georgia Institute of Technology October 17, 27 Abstract In this

More information

APPENDIX to Stabilizing Performance in Many-Server Queues with Time-Varying Arrivals and Customer Feedback

APPENDIX to Stabilizing Performance in Many-Server Queues with Time-Varying Arrivals and Customer Feedback APPENDIX to Stabilizing Performance in Many-Server Queues with -Varying Arrivals and Customer Feedback Yunan Liu and Ward Whitt Department of Industrial Engineering North Carolina State University Raleigh,

More information

Transient Analysis of a Series Configuration Queueing System

Transient Analysis of a Series Configuration Queueing System Transient Analysis of a Series Configuration Queueing System Yu-Li Tsai*, Daichi Yanagisawa, and Katsuhiro Nishinari Abstract In this paper, we consider the transient analysis of a popular series configuration

More information

THE HEAVY-TRAFFIC BOTTLENECK PHENOMENON IN OPEN QUEUEING NETWORKS. S. Suresh and W. Whitt AT&T Bell Laboratories Murray Hill, New Jersey 07974

THE HEAVY-TRAFFIC BOTTLENECK PHENOMENON IN OPEN QUEUEING NETWORKS. S. Suresh and W. Whitt AT&T Bell Laboratories Murray Hill, New Jersey 07974 THE HEAVY-TRAFFIC BOTTLENECK PHENOMENON IN OPEN QUEUEING NETWORKS by S. Suresh and W. Whitt AT&T Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT This note describes a simulation experiment involving

More information

State-dependent Limited Processor Sharing - Approximations and Optimal Control

State-dependent Limited Processor Sharing - Approximations and Optimal Control State-dependent Limited Processor Sharing - Approximations and Optimal Control Varun Gupta University of Chicago Joint work with: Jiheng Zhang (HKUST) State-dependent Limited Processor Sharing Processor

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

STAFFING A CALL CENTER WITH UNCERTAIN ARRIVAL RATE AND ABSENTEEISM

STAFFING A CALL CENTER WITH UNCERTAIN ARRIVAL RATE AND ABSENTEEISM STAFFING A CALL CENTER WITH UNCERTAIN ARRIVAL RATE AND ABSENTEEISM by Ward Whitt Department of Industrial Engineering and Operations Research Columbia University, New York, NY 10027 6699 Abstract This

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

Estimation of arrival and service rates for M/M/c queue system

Estimation of arrival and service rates for M/M/c queue system Estimation of arrival and service rates for M/M/c queue system Katarína Starinská starinskak@gmail.com Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics

More information

Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems

Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems OPERATIONS RESEARCH Vol. 58, No. 3, May June 2010, pp. 624 637 issn 0030-364X eissn 1526-5463 10 5803 0624 informs doi 10.1287/opre.1090.0777 2010 INFORMS Fair Dynamic Routing in Large-Scale Heterogeneous-Server

More information

Maximum pressure policies for stochastic processing networks

Maximum pressure policies for stochastic processing networks Maximum pressure policies for stochastic processing networks Jim Dai Joint work with Wuqin Lin at Northwestern Univ. The 2011 Lunteren Conference Jim Dai (Georgia Tech) MPPs January 18, 2011 1 / 55 Outline

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY SECOND EDITION ACADEMIC PRESS An imprint of Elsevier Science Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents

More information

ANALYSIS OF THE LAW OF THE ITERATED LOGARITHM FOR THE IDLE TIME OF A CUSTOMER IN MULTIPHASE QUEUES

ANALYSIS OF THE LAW OF THE ITERATED LOGARITHM FOR THE IDLE TIME OF A CUSTOMER IN MULTIPHASE QUEUES International Journal of Pure and Applied Mathematics Volume 66 No. 2 2011, 183-190 ANALYSIS OF THE LAW OF THE ITERATED LOGARITHM FOR THE IDLE TIME OF A CUSTOMER IN MULTIPHASE QUEUES Saulius Minkevičius

More information

Moments of the maximum of the Gaussian random walk

Moments of the maximum of the Gaussian random walk Moments of the maximum of the Gaussian random walk A.J.E.M. Janssen (Philips Research) Johan S.H. van Leeuwaarden (Eurandom) Model definition Consider the partial sums S n = X 1 +... + X n with X 1, X,...

More information

IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory. Fall 2009, Professor Whitt. Class Lecture Notes: Wednesday, September 9.

IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory. Fall 2009, Professor Whitt. Class Lecture Notes: Wednesday, September 9. IEOR 8100: Topics in OR: Asymptotic Methods in Queueing Theory Fall 2009, Professor Whitt Class Lecture Notes: Wednesday, September 9. Heavy-Traffic Limits for the GI/G/1 Queue 1. The GI/G/1 Queue We will

More information

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis Quality of Real-Time Streaming in Wireless Cellular Networs : Stochastic Modeling and Analysis B. Blaszczyszyn, M. Jovanovic and M. K. Karray Based on paper [1] WiOpt/WiVid Mai 16th, 2014 Outline Introduction

More information