On bounded redundancy of universal codes

Size: px
Start display at page:

Download "On bounded redundancy of universal codes"

Transcription

1 On bounded redundancy of universal codes Łukasz Dębowski Institute of omputer Science, Polish Academy of Sciences ul. Jana Kazimierza 5, Warszawa, Poland Abstract onsider stationary ergodic measures for which the difference between the expected length of a uniquely decodable code and the block entropy is asymptotically bounded by a constant. Using ergodic decomposition, it is shown that the number of such measures is less than the base of the logarithm raised to the power of that constant. In consequence, an analogous statement is derived for excess lengths of universal codes. The latter was previously communicated without proof. Keywords: uniquely decodable codes, entropy, ergodic decomposition The work was partly supported by the Polish Ministry of Scientific Research and Information Technology, grant no. 1/P03A/045/28. 1

2 1 Introduction The aim of this note is to establish an impossibility result concerning uniquely decodable codes and stationary ergodic measures. onsider measures for which the difference between the expected length of a code and the block entropy is asymptotically bounded by a constant. We will show that the number of such measures is less than the base of the logarithm raised to the power of that constant. In other words, the expected length of a uniquely decodable code cannot be close to its lower bound for all ergodic measures. This simple but novel result is a showcase application of Shannon information measures for σ- algebras, a neat and powerful tool developed by Pinsker (1964), Wyner (1978), and Dębowski (2009). We will derive, as a corollary, an analogous statement for excess lengths of universal codes, which was communicated by Dębowski (2009) in a weaker form without a proof. The preliminaries are as follows. Let X = {0, 1,..., D X 1} be a finite alphabet. For the measurable space (X Z, X Z ), consider the shift transformation T : X Z (x k ) k Z (x k+1 ) k Z X Z, where x k X. The shift-invariant σ- algebra is I := { A X Z : T A = A }. Let (S, S) be the measurable space of stationary probability measures on (X Z, X Z ) (i.e., µ T = µ for µ S) and let (E, E) (S, S) be the subspace of ergodic measures (i.e., µ(a) {0, 1} for µ E and A I). To be precise, S and E are defined as the smallest σ-algebras containing all cylinder sets {µ S : µ(a) r} and {µ E : µ(a) r}, A X Z, r R, respectively. Since X Z is countably generated, all respective singletons {µ} belong to S and E. Define random variables X i ((x k ) k Z ) := x i on (X Z, X Z ) and write the blocks as X n:m := (X i ) n i m. For a stationary measure µ S consider the block entropy µ (n) := µ (X i+1:i+n ) := E µ log µ(x i+1:i+n = )], where E µ is the expectation with respect to µ and log is the natural logarithm. Moreover, we consider another finite alphabet Y = {0, 1,..., D Y 1} and a code : X + Y +, where X + = n=1 Xn. Denote the expected length of the code as µ (n) := E µ (X 1:n ) log D Y. The code is called uniquely decodable if its extension (u 1,..., u k ) := (u 1 )...(u k ), u i X n, k N, is an injection for any n. As shown by, e.g., over and Thomas (2006), this property implies the source coding inequality The main result of this work is as follows. µ (n) µ (n). (1) Theorem 1 Let be a uniquely decodable code. Then { card µ E : lim sup µ (n) µ (n) ] } K exp(k). (2) This theorem will be proved in the following section. As we have said, the proposition states that the codes cannot be too good. Whereas there are uncountably many ergodic measures, the difference µ (n) µ (n) is bounded only 1

3 for countably many of them. Indeed, there exists a code satisfying the latter condition for measures in an arbitrary countable subset A E. For instance, let be the Shannon-Fano code for measure P = µ A c µµ, where µ A c µ = 1 and c µ > 0. Then lim sup n µ (n) µ (n) ] log c µ + log D Y < for all µ A. ere we show that this is not true if A is uncountable. Shields (1993) demonstrated, as another related result, that for any β 0, 1) and any universal code there exists such an ergodic measure that µ (n) µ (n) ] /n β =. (3) sup n N The code is called here universal if it is uniquely decodable and µ (n) µ (n) ] /n = 0 lim holds for any stationary measure µ S, cf. over and Thomas (2006). Thus Theorem 1 strengthens Shields result for β = 0. Next, we discuss the result mentioned in Dębowski (2009). Denote the mutual information between blocks of length n as E µ (n) := 2 µ (n) µ (2n) = I µ (X 1:n ; X n+1:2n ) := µ (X 1:n ) + µ (X n+1:2n ) µ (X 1:2n ), and the expected excess length of the code as E µ (n) := 2 µ (n) µ (2n) = E µ ( (X 1:n ) + (X n+1:2n ) (X 1:2n ) ) log D Y. There are a few universal codes for which excess lengths have a natural interpretation. Firstly, let (u) be the shortest program for generating string u for a prefix Turing machine. This code is universal and thus E µ (n) is the expectation of the algorithmic mutual information between blocks X 1:n and X n+1:2n, cf. Li and Vitányi (2008). While the shortest program for generating a string cannot be efficiently found, there exist also computable universal codes such as the Lempel-Ziv code (Ziv and Lempel, 1977) and grammar-based codes (Kieffer and Yang, 2000; Dębowski, 2011). In particular, the excess length E µ (n) of admissibly minimal grammar-based codes is bounded above by the number of distinct nonterminal symbols in the grammar used for compression (Dębowski, 2011). We claim this proposition, announced without proof as Theorem 6 in Dębowski (2009). Theorem 2 Let be a universal code. We have { card µ E : lim sup E µ (n) E µ (n) ] } K exp(k). The original statement in Dębowski (2009) was weaker, namely, the term E µ (n) was missing. (E µ (n) is nonnegative.) To prove Theorem 2, we use a lemma which resembles Lemma 1 in Dębowski (2011). 2

4 Lemma 1 (Excess-bounding lemma II) onsider a function G : N R such that lim k G(k)/k = 0 and G(n) 0 for all n. For any integer A 2 and a real number β 0, 1) these statements are equivalent: (i) G(n) γn β holds for a γ > 0 and all but finitely many n N. (ii) AG(n) G(An) δn β holds for a δ > 0 and all but finitely many n N. The exact relationship between constants γ and δ is given in the proof. Proof of Lemma 1: If (i) holds then (ii) holds for δ = Aγ because G(n) 0. onversely, if (ii) is true then for sufficiently large n, we obtain G(k) G(n) = G(n) n lim = k k k=0 so (i) holds with γ = δ/a(1 A β 1 )]. AG(A k n) G(A k+1 n) A k+1 δn β A(1 A β 1 ) Proof of Theorem 2: We apply Lemma 1 (ii) = (i) with G(n) = µ (n) µ (n) and A = 2. onsider an ergodic measure µ such that lim sup n E µ (n) E µ (n) ] K. This implies lim sup n µ (n) µ (n) ] K + ɛ for any ɛ > 0. Thus the claim follows from Theorem 1. Lemma 1 implies that the redundancy µ (n) µ (n) of universal codes is always bounded in a similar fashion to the excess redundancy Eµ (n) E µ (n). In particular, the result (3) given by Shields is equivalent to saying that for any β 0, 1) and any universal code there exists an ergodic measure such that sup n N E µ (n) E µ (n) ] /n β =. This remark concludes the Introduction. In the remaining part of the work we prove Theorem 1. 2 The proof of Theorem 1 Recall that I is the shift-invariant σ-algebra. onsider a stationary measure P S. According to the ergodic decomposition theorem (Kallenberg, 1997, Theorems ), if X is countable then there exists a random ergodic measure F : (X Z, I) (E, E) such that F (A) = P (A I) (4) P -almost surely for all A X Z. Because E P P (A I) = P (A), we have P (n) = E P F (n). (5) In contrast, by Theorem 7 from Dębowski (2011), the analogous decomposition for the block entropy reads P (n) = I P (X 1:n ; I) + E P F (n), (6) 3

5 where I P (A; B) is the mutual information between σ-algebras defined by Pinsker (1964), Wyner (1978), or Dębowski (2009). By the source coding inequality (1) for µ = P, formulas (5) and (6) imply E P F (n) F (n) ] I P (X 1:n ; I). Because the P -completion of I is contained in the P -completion of the tail σ- algebra by Lemma 3 from Dębowski (2009), we also have lim n I P (X 1:n ; I) = I P (I; I) by Theorems 1(iii)-(v) and 2(i) from Dębowski (2009). ence lim sup E P F (n) F (n) ] I P (I; I) = P (I), (7) where P (A) := sup ] I i=1 P (A i) log P (A i ) is the entropy of a σ-algebra A with the supremum taken over all finite partitions {A i } I i=1, A i A. Write now { N(K) := card µ E : lim sup µ (n) µ (n) ] } K. Observe that if N(K) = 0 then (2) holds trivially. Thus it suffices to prove (2) for N(K) 1. onsider a natural number M 1 such that M N(K). Let A E be such a subset of M distinct ergodic measures µ that lim sup n µ (n) µ (n) ] K. Put the measure P = M 1 µ A µ. By the uniqueness of its ergodic decomposition (Kallenberg, 1997, Theorem 9.12), we have P (F = µ) = 1/M for µ A and P (F = µ) = 0 otherwise. Let F be the smallest σ-algebra with respect to which F is measurable. This σ-algebra is generated from the finite partition {(F = µ)} µ A and P (F) = log M. Because the P -completion of F equals the P -completion of I by Lemma 3 from Dębowski (2009), we also have P (I) = P (F) by Theorem 2(i) from Dębowski (2009). Take an ɛ > 0. Random variables K +ɛ F (n) F (n) ] are nonnegative P -almost surely for sufficiently large n because F assumes only finitely many values. Thus, by the Fatou lemma, K + ɛ E P lim sup n F (n) F (n) ] K + ɛ lim sup n E P F (n) F (n) ]. ence from inequality (7) we obtain log M = P (I) lim sup E P lim sup E P F (n) F (n) ] F (n) F (n) ] K. Since this holds for any M N(K), inequality (2) follows. Acknowledgments I would like to thank Jan Mielniczuk and an anonymous referee for their comments. References over, T. M., Thomas, J. A., Elements of Information Theory, 2nd ed. John Wiley, New York. 4

6 Dębowski, Ł., A general definition of conditional information and its application to ergodic decomposition. Statist. Probab. Lett. 79, Dębowski, Ł., On the vocabulary of grammar-based codes and the logical consistency of texts. IEEE Trans. Inform. Theor. 57, Kallenberg, O., Foundations of Modern Probability. Springer, New York. Kieffer, J.., Yang, E., Grammar-based codes: A new class of universal lossless source codes. IEEE Trans. Inform. Theor. 46, Li, M., Vitányi, P. M. B., An Introduction to Kolmogorov omplexity and Its Applications, 3rd ed. Springer, New York. Pinsker, M. S., Information and Information Stability of Random Variables and Processes. olden-day, San Francisco. Shields, P.., Universal redundancy rates don t exist. IEEE Trans. Inform. Theor. IT-39, Wyner, A. D., A definition of conditional mutual information for arbitrary ensembles. Inform. ontrol 38, Ziv, J., Lempel, A., A universal algorithm for sequential data compression. IEEE Trans. Inform. Theor. 23,

Chaitin Ω Numbers and Halting Problems

Chaitin Ω Numbers and Halting Problems Chaitin Ω Numbers and Halting Problems Kohtaro Tadaki Research and Development Initiative, Chuo University CREST, JST 1 13 27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan E-mail: tadaki@kc.chuo-u.ac.jp Abstract.

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Hilberg s Conjecture a Challenge for Machine Learning

Hilberg s Conjecture a Challenge for Machine Learning Schedae Informaticae Vol. 23 (2014): 33 44 doi: 10.4467/20838476SI.14.003.3020 Hilberg s Conjecture a Challenge for Machine Learning Łukasz Dębowski Institute of Computer Science Polish Academy of Sciences

More information

1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE Source Coding, Large Deviations, and Approximate Pattern Matching

1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE Source Coding, Large Deviations, and Approximate Pattern Matching 1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002 Source Coding, Large Deviations, and Approximate Pattern Matching Amir Dembo and Ioannis Kontoyiannis, Member, IEEE Invited Paper

More information

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols.

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols. Universal Lossless coding Lempel-Ziv Coding Basic principles of lossless compression Historical review Variable-length-to-block coding Lempel-Ziv coding 1 Basic Principles of Lossless Coding 1. Exploit

More information

lossless, optimal compressor

lossless, optimal compressor 6. Variable-length Lossless Compression The principal engineering goal of compression is to represent a given sequence a, a 2,..., a n produced by a source as a sequence of bits of minimal possible length.

More information

Lebesgue-Radon-Nikodym Theorem

Lebesgue-Radon-Nikodym Theorem Lebesgue-Radon-Nikodym Theorem Matt Rosenzweig 1 Lebesgue-Radon-Nikodym Theorem In what follows, (, A) will denote a measurable space. We begin with a review of signed measures. 1.1 Signed Measures Definition

More information

MAGIC010 Ergodic Theory Lecture Entropy

MAGIC010 Ergodic Theory Lecture Entropy 7. Entropy 7. Introduction A natural question in mathematics is the so-called isomorphism problem : when are two mathematical objects of the same class the same (in some appropriately defined sense of

More information

Information Theory and Statistics Lecture 3: Stationary ergodic processes

Information Theory and Statistics Lecture 3: Stationary ergodic processes Information Theory and Statistics Lecture 3: Stationary ergodic processes Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Measurable space Definition (measurable space) Measurable space

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

Computable priors sharpened into Occam s razors

Computable priors sharpened into Occam s razors Computable priors sharpened into Occam s razors David R. Bickel To cite this version: David R. Bickel. Computable priors sharpened into Occam s razors. 2016. HAL Id: hal-01423673 https://hal.archives-ouvertes.fr/hal-01423673v2

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

On the Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts

On the Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts 1 On the Vocabulary of Grammar-Based Codes and the Logical Consistency of Texts Łukasz Dębowski arxiv:0810.3125v2 [cs.it] 31 Oct 2008 Abstract The article presents a new interpretation for Zipf s law in

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Estimation of entropy from subword complexity

Estimation of entropy from subword complexity Estimation of Łukasz Dębowski Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 1-248 Warszawa, Poland ldebowsk@ipipan.waw.pl Abstract. Subword complexity is a function

More information

On the lower limits of entropy estimation

On the lower limits of entropy estimation On the lower limits of entropy estimation Abraham J. Wyner and Dean Foster Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA e-mail: ajw@wharton.upenn.edu foster@wharton.upenn.edu

More information

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary

1 Introduction This work follows a paper by P. Shields [1] concerned with a problem of a relation between the entropy rate of a nite-valued stationary Prexes and the Entropy Rate for Long-Range Sources Ioannis Kontoyiannis Information Systems Laboratory, Electrical Engineering, Stanford University. Yurii M. Suhov Statistical Laboratory, Pure Math. &

More information

Pattern Matching and Lossy Data Compression on Random Fields

Pattern Matching and Lossy Data Compression on Random Fields Pattern Matching and Lossy Data Compression on Random Fields I. Kontoyiannis December 16, 2002 Abstract We consider the problem of lossy data compression for data arranged on twodimensional arrays (such

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

Levels of Knowledge and Belief Computational Social Choice Seminar

Levels of Knowledge and Belief Computational Social Choice Seminar Levels of Knowledge and Belief Computational Social Choice Seminar Eric Pacuit Tilburg University ai.stanford.edu/~epacuit November 13, 2009 Eric Pacuit 1 Introduction and Motivation Informal Definition:

More information

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 26.10.2007 1 / 18 Overview 1 Summary

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Lecture 4 : Adaptive source coding algorithms

Lecture 4 : Adaptive source coding algorithms Lecture 4 : Adaptive source coding algorithms February 2, 28 Information Theory Outline 1. Motivation ; 2. adaptive Huffman encoding ; 3. Gallager and Knuth s method ; 4. Dictionary methods : Lempel-Ziv

More information

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M.

Lecture 10. Theorem 1.1 [Ergodicity and extremality] A probability measure µ on (Ω, F) is ergodic for T if and only if it is an extremal point in M. Lecture 10 1 Ergodic decomposition of invariant measures Let T : (Ω, F) (Ω, F) be measurable, and let M denote the space of T -invariant probability measures on (Ω, F). Then M is a convex set, although

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

3 Integration and Expectation

3 Integration and Expectation 3 Integration and Expectation 3.1 Construction of the Lebesgue Integral Let (, F, µ) be a measure space (not necessarily a probability space). Our objective will be to define the Lebesgue integral R fdµ

More information

A Comparison of Methods for Redundancy Reduction in Recurrence Time Coding

A Comparison of Methods for Redundancy Reduction in Recurrence Time Coding 1 1 A Comparison of Methods for Redundancy Reduction in Recurrence Time Coding Hidetoshi Yokoo, Member, IEEE Abstract Recurrence time of a symbol in a string is defined as the number of symbols that have

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

Coding on Countably Infinite Alphabets

Coding on Countably Infinite Alphabets Coding on Countably Infinite Alphabets Non-parametric Information Theory Licence de droits d usage Outline Lossless Coding on infinite alphabets Source Coding Universal Coding Infinite Alphabets Enveloppe

More information

Estimates for probabilities of independent events and infinite series

Estimates for probabilities of independent events and infinite series Estimates for probabilities of independent events and infinite series Jürgen Grahl and Shahar evo September 9, 06 arxiv:609.0894v [math.pr] 8 Sep 06 Abstract This paper deals with finite or infinite sequences

More information

A dyadic endomorphism which is Bernoulli but not standard

A dyadic endomorphism which is Bernoulli but not standard A dyadic endomorphism which is Bernoulli but not standard Christopher Hoffman Daniel Rudolph November 4, 2005 Abstract Any measure preserving endomorphism generates both a decreasing sequence of σ-algebras

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Lecture 1: September 25, A quick reminder about random variables and convexity

Lecture 1: September 25, A quick reminder about random variables and convexity Information and Coding Theory Autumn 207 Lecturer: Madhur Tulsiani Lecture : September 25, 207 Administrivia This course will cover some basic concepts in information and coding theory, and their applications

More information

Random Reals à la Chaitin with or without prefix-freeness

Random Reals à la Chaitin with or without prefix-freeness Random Reals à la Chaitin with or without prefix-freeness Verónica Becher Departamento de Computación, FCEyN Universidad de Buenos Aires - CONICET Argentina vbecher@dc.uba.ar Serge Grigorieff LIAFA, Université

More information

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS J. Appl. Math. & Computing Vol. 4(2004), No. - 2, pp. 277-288 THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS LIDONG WANG, GONGFU LIAO, ZHENYAN CHU AND XIAODONG DUAN

More information

A statistical mechanical interpretation of algorithmic information theory

A statistical mechanical interpretation of algorithmic information theory A statistical mechanical interpretation of algorithmic information theory Kohtaro Tadaki Research and Development Initiative, Chuo University 1 13 27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. E-mail: tadaki@kc.chuo-u.ac.jp

More information

THE MEASURE-THEORETIC ENTROPY OF LINEAR CELLULAR AUTOMATA WITH RESPECT TO A MARKOV MEASURE. 1. Introduction

THE MEASURE-THEORETIC ENTROPY OF LINEAR CELLULAR AUTOMATA WITH RESPECT TO A MARKOV MEASURE. 1. Introduction THE MEASURE-THEORETIC ENTROPY OF LINEAR CELLULAR AUTOMATA WITH RESPECT TO A MARKOV MEASURE HASAN AKIN Abstract. The purpose of this short paper is to compute the measure-theoretic entropy of the onedimensional

More information

Lecture 4: Completion of a Metric Space

Lecture 4: Completion of a Metric Space 15 Lecture 4: Completion of a Metric Space Closure vs. Completeness. Recall the statement of Lemma??(b): A subspace M of a metric space X is closed if and only if every convergent sequence {x n } X satisfying

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015

PART III. Outline. Codes and Cryptography. Sources. Optimal Codes (I) Jorge L. Villar. MAMME, Fall 2015 Outline Codes and Cryptography 1 Information Sources and Optimal Codes 2 Building Optimal Codes: Huffman Codes MAMME, Fall 2015 3 Shannon Entropy and Mutual Information PART III Sources Information source:

More information

ABSTRACT INTEGRATION CHAPTER ONE

ABSTRACT INTEGRATION CHAPTER ONE CHAPTER ONE ABSTRACT INTEGRATION Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Suggestions and errors are invited and can be mailed

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Amobile satellite communication system, like Motorola s

Amobile satellite communication system, like Motorola s I TRANSACTIONS ON INFORMATION THORY, VOL. 45, NO. 4, MAY 1999 1111 Distributed Source Coding for Satellite Communications Raymond W. Yeung, Senior Member, I, Zhen Zhang, Senior Member, I Abstract Inspired

More information

Asymptotic redundancy and prolixity

Asymptotic redundancy and prolixity Asymptotic redundancy and prolixity Yuval Dagan, Yuval Filmus, and Shay Moran April 6, 2017 Abstract Gallager (1978) considered the worst-case redundancy of Huffman codes as the maximum probability tends

More information

Pointwise Redundancy in Lossy Data Compression and Universal Lossy Data Compression

Pointwise Redundancy in Lossy Data Compression and Universal Lossy Data Compression Pointwise Redundancy in Lossy Data Compression and Universal Lossy Data Compression I. Kontoyiannis To appear, IEEE Transactions on Information Theory, Jan. 2000 Last revision, November 21, 1999 Abstract

More information

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables Jaap Geluk 1 and Qihe Tang 2 1 Department of Mathematics The Petroleum Institute P.O. Box 2533, Abu Dhabi, United Arab

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 Exam #1 Solutions This is a take-home examination. The exam includes 8 questions.

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

5.1 Inequalities via joint range

5.1 Inequalities via joint range ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 5: Inequalities between f-divergences via their joint range Lecturer: Yihong Wu Scribe: Pengkun Yang, Feb 9, 2016

More information

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s.

If Y and Y 0 satisfy (1-2), then Y = Y 0 a.s. 20 6. CONDITIONAL EXPECTATION Having discussed at length the limit theory for sums of independent random variables we will now move on to deal with dependent random variables. An important tool in this

More information

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

Memory in Classical Information Theory: A Brief History

Memory in Classical Information Theory: A Brief History Beyond iid in information theory 8- January, 203 Memory in Classical Information Theory: A Brief History sergio verdu princeton university entropy rate Shannon, 948 entropy rate: memoryless process H(X)

More information

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved. Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: topolog@auburn.edu ISSN: 0146-4124

More information

A Measure and Integral over Unbounded Sets

A Measure and Integral over Unbounded Sets A Measure and Integral over Unbounded Sets As presented in Chaps. 2 and 3, Lebesgue s theory of measure and integral is limited to functions defined over bounded sets. There are several ways of introducing

More information

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor)

Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Dynkin (λ-) and π-systems; monotone classes of sets, and of functions with some examples of application (mainly of a probabilistic flavor) Matija Vidmar February 7, 2018 1 Dynkin and π-systems Some basic

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory Part V 7 Introduction: What are measures and why measurable sets Lebesgue Integration Theory Definition 7. (Preliminary). A measure on a set is a function :2 [ ] such that. () = 2. If { } = is a finite

More information

THIS paper is about the design of sequential dimensionpreserving

THIS paper is about the design of sequential dimensionpreserving 1 Sequential Recurrence-Based Multidimensional Universal Source Coding of Lempel-Ziv Type Tyll Krueger, Guido Montúfar, Ruedi Seiler, and Rainer Siegmund-Schultze Abstract We define an algorithm that parses

More information

Chapter 2: Source coding

Chapter 2: Source coding Chapter 2: meghdadi@ensil.unilim.fr University of Limoges Chapter 2: Entropy of Markov Source Chapter 2: Entropy of Markov Source Markov model for information sources Given the present, the future is independent

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

5 Set Operations, Functions, and Counting

5 Set Operations, Functions, and Counting 5 Set Operations, Functions, and Counting Let N denote the positive integers, N 0 := N {0} be the non-negative integers and Z = N 0 ( N) the positive and negative integers including 0, Q the rational numbers,

More information

Tight Bounds for Symmetric Divergence Measures and a New Inequality Relating f-divergences

Tight Bounds for Symmetric Divergence Measures and a New Inequality Relating f-divergences Tight Bounds for Symmetric Divergence Measures and a New Inequality Relating f-divergences Igal Sason Department of Electrical Engineering Technion, Haifa 3000, Israel E-mail: sason@ee.technion.ac.il Abstract

More information

arxiv: v4 [cs.it] 17 Oct 2015

arxiv: v4 [cs.it] 17 Oct 2015 Upper Bounds on the Relative Entropy and Rényi Divergence as a Function of Total Variation Distance for Finite Alphabets Igal Sason Department of Electrical Engineering Technion Israel Institute of Technology

More information

A One-to-One Code and Its Anti-Redundancy

A One-to-One Code and Its Anti-Redundancy A One-to-One Code and Its Anti-Redundancy W. Szpankowski Department of Computer Science, Purdue University July 4, 2005 This research is supported by NSF, NSA and NIH. Outline of the Talk. Prefix Codes

More information

The Kolmogorov extension theorem

The Kolmogorov extension theorem The Kolmogorov extension theorem Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto June 21, 2014 1 σ-algebras and semirings If X is a nonempty set, an algebra of sets on

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

1.1. MEASURES AND INTEGRALS

1.1. MEASURES AND INTEGRALS CHAPTER 1: MEASURE THEORY In this chapter we define the notion of measure µ on a space, construct integrals on this space, and establish their basic properties under limits. The measure µ(e) will be defined

More information

On Locating-Dominating Codes in Binary Hamming Spaces

On Locating-Dominating Codes in Binary Hamming Spaces Discrete Mathematics and Theoretical Computer Science 6, 2004, 265 282 On Locating-Dominating Codes in Binary Hamming Spaces Iiro Honkala and Tero Laihonen and Sanna Ranto Department of Mathematics and

More information

Functional Analysis HW #1

Functional Analysis HW #1 Functional Analysis HW #1 Sangchul Lee October 9, 2015 1 Solutions Solution of #1.1. Suppose that X

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 2017 Author: Galen Reeves Last Modified: October 18, 2017 Outline of lecture: 5.1 Introduction to Lossless Source

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

GLUING LEMMAS AND SKOROHOD REPRESENTATIONS

GLUING LEMMAS AND SKOROHOD REPRESENTATIONS GLUING LEMMAS AND SKOROHOD REPRESENTATIONS PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO Abstract. Let X, E), Y, F) and Z, G) be measurable spaces. Suppose we are given two probability measures γ and

More information

2 Plain Kolmogorov Complexity

2 Plain Kolmogorov Complexity 2 Plain Kolmogorov Complexity In this section, we introduce plain Kolmogorov Complexity, prove the invariance theorem - that is, the complexity of a string does not depend crucially on the particular model

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

On minimal models of the Region Connection Calculus

On minimal models of the Region Connection Calculus Fundamenta Informaticae 69 (2006) 1 20 1 IOS Press On minimal models of the Region Connection Calculus Lirong Xia State Key Laboratory of Intelligent Technology and Systems Department of Computer Science

More information

Empirical Processes: General Weak Convergence Theory

Empirical Processes: General Weak Convergence Theory Empirical Processes: General Weak Convergence Theory Moulinath Banerjee May 18, 2010 1 Extended Weak Convergence The lack of measurability of the empirical process with respect to the sigma-field generated

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 28 Author: Galen Reeves Last Modified: September 27, 28 Outline of lecture: 5. Introduction to Lossless Source

More information

Kolmogorov complexity and its applications

Kolmogorov complexity and its applications CS860, Winter, 2010 Kolmogorov complexity and its applications Ming Li School of Computer Science University of Waterloo http://www.cs.uwaterloo.ca/~mli/cs860.html We live in an information society. Information

More information

Coding of memoryless sources 1/35

Coding of memoryless sources 1/35 Coding of memoryless sources 1/35 Outline 1. Morse coding ; 2. Definitions : encoding, encoding efficiency ; 3. fixed length codes, encoding integers ; 4. prefix condition ; 5. Kraft and Mac Millan theorems

More information

Functions of several variables of finite variation and their differentiability

Functions of several variables of finite variation and their differentiability ANNALES POLONICI MATHEMATICI LX.1 (1994) Functions of several variables of finite variation and their differentiability by Dariusz Idczak ( Lódź) Abstract. Some differentiability properties of functions

More information

arxiv: v1 [cs.it] 5 Sep 2008

arxiv: v1 [cs.it] 5 Sep 2008 1 arxiv:0809.1043v1 [cs.it] 5 Sep 2008 On Unique Decodability Marco Dalai, Riccardo Leonardi Abstract In this paper we propose a revisitation of the topic of unique decodability and of some fundamental

More information

MEASURE-THEORETIC ENTROPY

MEASURE-THEORETIC ENTROPY MEASURE-THEORETIC ENTROPY Abstract. We introduce measure-theoretic entropy 1. Some motivation for the formula and the logs We want to define a function I : [0, 1] R which measures how suprised we are or

More information

E-Companion to The Evolution of Beliefs over Signed Social Networks

E-Companion to The Evolution of Beliefs over Signed Social Networks OPERATIONS RESEARCH INFORMS E-Companion to The Evolution of Beliefs over Signed Social Networks Guodong Shi Research School of Engineering, CECS, The Australian National University, Canberra ACT 000, Australia

More information

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India

Measure and Integration: Concepts, Examples and Exercises. INDER K. RANA Indian Institute of Technology Bombay India Measure and Integration: Concepts, Examples and Exercises INDER K. RANA Indian Institute of Technology Bombay India Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076,

More information

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica Acta Universitatis Carolinae. Mathematica et Physica František Žák Representation form of de Finetti theorem and application to convexity Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011),

More information

Using Information Theory to Study Efficiency and Capacity of Computers and Similar Devices

Using Information Theory to Study Efficiency and Capacity of Computers and Similar Devices Information 2010, 1, 3-12; doi:10.3390/info1010003 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Using Information Theory to Study Efficiency and Capacity of Computers

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information