ABSTRACT INTEGRATION CHAPTER ONE

Size: px
Start display at page:

Download "ABSTRACT INTEGRATION CHAPTER ONE"

Transcription

1 CHAPTER ONE ABSTRACT INTEGRATION Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Suggestions and errors are invited and can be mailed to 1

2 1 Does there exist an infinite σ-algebra which has only countable many members? Solution: No. Suppose M be a σ-algebra on which has countably infinite members. For each x define B x = x M M M. Since M has countable members, so the intersection is over countable members or less, and so B x belongs M, since M is closed under countable intersection. Define N = {B x x }. So N M. Also we claim if A, B N, with A B, then A B =. Suppose A B, then some x A and same x B, but that would mean A = B = x M M M. Hence N is a collection of disjoint subsets of. Now if cardinality of N is finite say n N, then it would imply cardinality of M is 2 n, which is not the case. So cardinality of N should be at least ℵ 0. If cardinality of N = ℵ 0, then cardinality of M = 2 ℵ 0 = ℵ 1, which is not possible as M has countable many members. Also if cardinality of N ℵ 1, so is the cardinality of M, which again is not possible. So there does not exist an infinite σ-algebra having countable many members. 2

3 2 Prove an analogue of Theorem 1.8 for n functions. Solution: Analogous Theorem would be: Let u 1, u 2,..., u n be real-valued measurable functions on a measurable space, let Φ be a continuous map from R n into topological space Y, and define h(x) = Φ(u 1 (x), u 2 (x),..., u n (x)) for x. Then h : Y is measurable. Proof: Define f : R n such that f(x) = (u 1 (x), u 2 (x),..., u n (x)). So h = Φ f. So using Theorem 1.7, we only need to show f is a measurable function. Consider a cube Q in R n. Q = I 1 I 2 I n, where I i are the intervals in R. So f 1 (Q) = u 1 1 (I 1 ) u 1 2 (I 2 ) u 1 n (I n ) Since each u i is measurable, so f 1 (Q) is measurable for all cubes Q R n. But every open set V in R n is a countable union of such cubes, i.e V = i=1q i, therefore f 1 (V ) = f 1 ( Q i ) = f 1 (Q i ) i=1 Since countable union of measurable sets is measurable, so f 1 (V ) is measurable. Hence f is measurable. i=1 3

4 3 Prove that if f is a real function on a measurable space such that {x : f(x) r} is a measurable for every rational r, then f is measurable. Solution: Let M denotes the σ-algebra of measurable sets in. Let Ω be the collections of all E [, ] such that f 1 (E) M. So for all rationals r, [r, ] Ω. Let α R; we will show (α, ] Ω; hence from Theorem 1.12(c) conclude that f is measurable. Since rationals are dense in R, therefore there exists a sequence of rationals {r i } such that r i > α and r i α. Also (α, ] = 1 [r i, ]. Each [r i, ] Ω and Ω is a σ-algebra (Theorem 1.12(a)) and hence closed under countable union; therefore (α, ] Ω. And so from Theorem 1.12(c), we conclude f is measurable. 4

5 4 Let {a n } and {b n } be sequences in [, ], prove the following assertions: (a) (b) lim sup x ( a n ) = lim inf a n. lim sup (a n + b n ) lim sup a n + lim sup b n provided none of the sums is of the form. (c) If a n b n for all n, then lim sup a n lim sup b n. Show by an example that the strict inequality can hold in (b). Solution: (a) We have for all n N, sup { a i } = inf {a i} i n i n taking limit n, we have desired equality. (b) Again for all n N, we have {a i + b i } sup{a i } + sup{b i } sup i n i n Taking limit n, we have desired inequality. (c) Since a n b n for all n, so for all n we have inf {a i} inf {b i} i n i n Taking limit n, we have desired inequality. For strict inequality in (b), consider a n = ( 1) n and b n = ( 1) n+1. i n 5

6 5 (a) Suppose f : [, ] and g : [, ] are measurable. Prove that the sets {x : f(x) < g(x)}, {x : f(x) = g(x)} are measurable. Solution: Given f, g are measurable, therefore from 1.9(c) we conclude g f is also measurable. But then {x f(x) < g(x)} = (g f) 1 (0, ] is a measurable set by Theorem 1.12(c). Also {x f(x) = g(x)} = (g f) 1 (0) = (g f) 1 ( ( 1 n, 1 n ) = (g f) 1 ( 1 n, 1 n )) Since each (g f) 1 ( 1 n, 1 n) is measurable, so is their countable intersection. Hence {x f(x) = g(x)} is measurable. (b) Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable. Solution: Let f i be the sequence of real-measurable functions. Let A denotes the set of points at which f i converges to a finite limit. But then A = n=1 m=1 i,j m {x f i (x) f j (x) < 1 n } = n=1 m=1 i,j m ( (f i f j ) 1 1 n, 1 ) n Since for each i, j, f i f j is measurable, so (f i f j ) 1 ( 1 n, 1 n) is measurable too for all n. Also countable union and intersection of measurable sets is measurable, we conclude A is measurable. 6

7 6 Let be an uncountable set, let M be the collection of all sets E such that either E or E c is at most countable, and define µ(e) = 0 in the first case and µ(e) = 1 in the second. Prove that M is a σ-algebra in and that µ is a measure on M. Describe the corresponding measurable functions and their integrals. Solution: M is a σ-algebra in : M, since c = is countable. Similarly M. Next if A M, then either A or A c is countable, that is either (A c ) c is countable or A c is countable; showing A c M. So M is closed under complement. Finally, we show M is closed under countable union. Suppose A i M for i N, we will show A i also belongs to M. If all A i are countable, so is their countable union, so A i M. But when all A i are not countable means at least one say A j is uncountable. Then A c j is countable. Also ( A i ) c A c j, showing ( A i ) c is countable. So A i M. Hence M is closed under countable union. µ is a measure on M: Since µ takes values 0 and 1, therefore µ(a) [0, ] for all A M. Next we show µ is countable additive. Let A i for i N are disjoint measurable sets. Define A = A i. We will show µ(a) = µ(a i ). If all A i are countable, so is A; therefore µ(a i ) = 0 for all i and µ(a) = 0; and the equation µ(a) = µ(a i ) holds good. But when all A i are not countable means at least one say A j is uncountable. Since A j M, therefore A c j is countable. Also Since all A i are disjoint, so for i j, A i A c j. So µ(a i ) = 0 for i j. Also µ(a j ) = µ(a) = 1 since both are uncountable. Hence µ(a) = µ(a i ). Characterization of measurable functions and their integrals: Assume functions are real valued. First we isolate two class of measurable functions denoted by F and F, defines as: F = {f f is measurable & f 1 ([, α]) is countable for all α R} F = {f f is measurable & f 1 ([α, ]) is countable for all α R} Next we characterize the reaming measurable functions. Since f / F or F, therefore f 1 ([α, ]) is uncountable for some α R. Therefore α f defined as sup{α f 1 ([α, ]) is countable} exists. So if β > α f, then f 1 ([β, ]) is countable. Also if β < α f, then f 1 ([, β]) = f 1 ((β, ]). Since f 1 ((β, ]) is uncountable and belongs to M, therefore f 1 ((β, ]) is countable. And so f 1 (α f ) is uncountable. Also 7

8 f 1 (α f ) M, therefore f 1 (γ) is countable for all γ α f. Thus if f is a measurable function then either f F orf, or there exists α f R such that f 1 (α f ) is uncountable while f 1 (β) is countable for all β α f. Once we have characterization, integrals are easy to describe: if f F f dµ = if f F else α f 8

9 7 Suppose f n : [0, ] is measurable for n = 1, 2, 3,..., f 1 f 2 f 3 0, f n (x) f(x) as n, for every x, and f 1 L 1 (µ). Prove that then f n dµ = f dµ lim and show that this conclusion does not follow if the condition f 1 L 1 (µ) is omitted. Solution: Take g = f 1 in the Theorem 1.34 to conclude lim f n dµ = f dµ For showing f 1 L 1 (µ) is a necessary condition for the conclusion, take = R and f n = χ [n, ). So we have f(x) = 0 for all x, and therefore f dµ = 0. While f n dµ = for all n. 9

10 8 Put f n = χ E if n is odd, f n = 1 χ E if n is even. What is the relevance of this example to Fatou s lemma? Solution: With the described sequence of f n, strict inequality occurs in Fatou s Lemma (1.28). We have ( ) lim inf f n dµ = 0 While lim inf assuming µ() µ(e). f n dµ = min(µ(e), µ() µ(e)) 0, 10

11 9 Suppose µ is a positive measure on, f : [0, ] is measurable, f dµ = c, where 0 < c <, and α is a constant. Prove that lim n log[1 + (f/n) α ] dµ = if 0 < α < 1, c if α = 1, 0 if 1 < α <. Hint: If α 1, prove that the integrands is dominated are dominated by αf. If α < 1, Fatou s lemma can be applied. Solution: As given in the hint, we consider two cases for α: Case when 0 < α < 1: Define φ n (x) = n log(1 + (f(x)/n) α ). Since φ n : [0, ], therefore Fatou s lemma is applicable. So Also (lim inf lim n log(1 + (f(x)/n)α ) = lim φ n) dµ lim inf Since α < 1 and f dµ <, therefore φ n dµ 1 αf(x) α 1+(f(x)/n) α n α+1 1 = n 2 lim n log(1 + (f(x)/n)α ) = a.e x And hence (lim inf φ n ) dµ =. Therefore lim φ n dµ lim inf φ n dµ = αn1 α f(x)α 1 + (f(x)/n) α Case when α 1: We claim φ n (x) is dominated by αf(x). For a.e. x and α 1, we need to show n log(1 + (f(x)/n) α ) αf(x) for all n ( ( ) α ) f(x) i.e. log 1 + α f(x) n n Define g(λ) = log(1 + λ α ) αλ for λ 0. So if g(λ) 0 for α 1 and λ 0, then (1) follows by taking λ = f(x)/n. So we need show g(λ) 0 for α 1 and λ 0. Computing derivative of g, we have g (λ) = α(1 + λα λ α 1 ) 1 + λ α 11 (1)

12 When 0 λ 1, we have 1 λ α 1 0; while when λ > 1, we have λ α λ α 1 > 0. Thus g (λ) 0. Also g(0) = 0, therefore g(λ) 0 for all λ 0 and α 1. And so for α 1 we have log(1 + (f(x)/n) α ) αf(x) for all n and a.e x. Since αf(x) L 1 (µ), DCT(Theorem 1.34) is applicable. Thus lim n log(1 + (f/n) α ) dµ = lim (n log(1 + (f/n)α )) dµ When α = 1, lim (n log(1 + (f/n) α )) = f(x) (calculating the same as calculated for the case α < 1). And when α > 1, we have lim (n log(1 + (f/n) α )) = 0. And hence lim n log(1 + (f/n) α ) dµ = if 0 < α < 1, c if α = 1, 0 if 1 < α <. 12

13 10 Suppose µ() <, {f n } is a sequence of bounded complex measurable functions on, and f n f uniformly on. Prove that f n dµ = f dµ, lim n= and show that the hypothesis µ() < cannot be omitted. Solution: Let ɛ > 0. Since f n f uniformly, therefore there exists n 0 N such that f n (x) f(x) < ɛ n n 0 Therefore f(x) < f n0 (x) + ɛ. Also f n (x) < f(x) + ɛ. Combining both equations, we get f n (x) < f n0 + 2ɛ n n 0 Define g(x) = max( f 1 (x),, f n0 1(x), f n0 (x) + 2ɛ), then f n (x) g(x) for all n. Also g is bounded. Since µ() <, therefore g L 1 (µ). Now apply DCT(Theorem 1.34) to get lim f n dµ = f dµ To show µ() < is a necessary condition, consider = R with usual measure µ, and f n (x) = 1. We have lim n f n dµ =, while f dµ = 0, since f = 0. f uniformly is also a necessary condi- REMARK : The condition f n tion. 13

14 11 Show that A = n=1 k=n in Theorem 1.41, and hence prove the theorem without any reference to integration. Solution: A is defined as the collections of all x which lie in infinitely many E k. Thus x A x k=n E k n N; and so A = n=1 k=n Now let ɛ > 0. Since k=1 µ(e k) <, therefore there exists n 0 N such that k=n 0 µ(e k ) < ɛ. And µ(a) = µ( Make ɛ 0 to conclude µ(a) = 0. E k E k n=1 k=n E k ) µ( E k ) k=n 0 µ(e k ) k=n 0 < ɛ 14

15 12 Suppose f L 1 (µ). Prove that to each ɛ > 0 there exists a δ > 0 such that f dµ < ɛ whenever µ(e) < δ. E Solution: Let (, M, µ) be the measure space. Suppose the statement is not true. Therefore there exists a ɛ > 0 such that there exists no δ > 0 such that f dµ < ɛ whenever µ(e) < δ. That means for each δ > 0, E there exists a E δ M such that µ(e δ ) < δ, while E δ f dµ > ɛ. By taking δ = 1/2 n, where n N, we construct a sequence of measurable sets {E 1/2 n}, such that µ(e 1/2 n) < 1/2 n for all n and E 1/2 f dµ > ɛ. n Now define A k = n=k E 1/2 n and A = k=1 A k. We have A 1 A 2 A 3, and µ(a 1 ) = µ( n=1 E 1/2 n) n=1 µ(e 1/2 n) < n=1 1/2n <. Therefore from Theorem 1.19(e), we conclude µ(a k ) µ(a). Next define φ : M [0, ] such that φ(e) = f dµ. Clearly, by Theorem 1.29, φ is a measure on M. Therefore, again by Theorem 1.19(e), we E have φ(a k ) φ(a). Since A = k=1 n=k E 1/2n, therefore from previous Exercise, we get µ(a) = 0. Therefore φ(a) = f dµ = 0. While A φ(a k ) = φ( E 1/2 n) φ(e 1/2 k) = n=k E 1/2 k f dµ > ɛ Therefore φ(a k ) φ(a), a contradiction. Hence the result. 15

16 13 Show that proposition 1.24(c) is also true when c =. Solution: We have to show cf dµ = c f dµ, when c = and f 0 We consider two cases: when f dµ = 0 and f dµ > 0. When f dµ = 0, we have from Theorem 1.39(a), f = 0 a.e., therefore, cf = 0 a.e.. And hence cf dµ = 0 = c f dµ While when f dµ > 0, there exist a ɛ > 0 and a measurable set E, such that µ(e) > 0 and f(x) > ɛ whenever x E; because otherwise f(x) < ɛ a.e. for all ɛ > 0; making ɛ 0, we get f(x) = 0 a.e. and hence f dµ = 0, which is not the case. But then cf dµ cf dµ > ɛ c dµ = E E Also c f dµ = Hence the proposition is true for c = too. 16

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due 9/5). Prove that every countable set A is measurable and µ(a) = 0. 2 (Bonus). Let A consist of points (x, y) such that either x or y is

More information

Integration on Measure Spaces

Integration on Measure Spaces Chapter 3 Integration on Measure Spaces In this chapter we introduce the general notion of a measure on a space X, define the class of measurable functions, and define the integral, first on a class of

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Austin Mohr Math 704 Homework 6

Austin Mohr Math 704 Homework 6 Austin Mohr Math 704 Homework 6 Problem 1 Integrability of f on R does not necessarily imply the convergence of f(x) to 0 as x. a. There exists a positive continuous function f on R so that f is integrable

More information

Section 2: Classes of Sets

Section 2: Classes of Sets Section 2: Classes of Sets Notation: If A, B are subsets of X, then A \ B denotes the set difference, A \ B = {x A : x B}. A B denotes the symmetric difference. A B = (A \ B) (B \ A) = (A B) \ (A B). Remarks

More information

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M.

(U) =, if 0 U, 1 U, (U) = X, if 0 U, and 1 U. (U) = E, if 0 U, but 1 U. (U) = X \ E if 0 U, but 1 U. n=1 A n, then A M. 1. Abstract Integration The main reference for this section is Rudin s Real and Complex Analysis. The purpose of developing an abstract theory of integration is to emphasize the difference between the

More information

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus Homework 3 Solutions, Real Analysis I, Fall, 2010. (9) Let f : (, ) [, ] be a function whose restriction to (, 0) (0, ) is continuous. Assume the one-sided limits p = lim x 0 f(x), q = lim x 0 + f(x) exist

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Stat 451: Solutions to Assignment #1

Stat 451: Solutions to Assignment #1 Stat 451: Solutions to Assignment #1 2.1) By definition, 2 Ω is the set of all subsets of Ω. Therefore, to show that 2 Ω is a σ-algebra we must show that the conditions of the definition σ-algebra are

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

A List of Problems in Real Analysis

A List of Problems in Real Analysis A List of Problems in Real Analysis W.Yessen & T.Ma December 3, 218 This document was first created by Will Yessen, who was a graduate student at UCI. Timmy Ma, who was also a graduate student at UCI,

More information

18.175: Lecture 3 Integration

18.175: Lecture 3 Integration 18.175: Lecture 3 Scott Sheffield MIT Outline Outline Recall definitions Probability space is triple (Ω, F, P) where Ω is sample space, F is set of events (the σ-algebra) and P : F [0, 1] is the probability

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

4 Integration 4.1 Integration of non-negative simple functions

4 Integration 4.1 Integration of non-negative simple functions 4 Integration 4.1 Integration of non-negative simple functions Throughout we are in a measure space (X, F, µ). Definition Let s be a non-negative F-measurable simple function so that s a i χ Ai, with disjoint

More information

Lebesgue measure and integration

Lebesgue measure and integration Chapter 4 Lebesgue measure and integration If you look back at what you have learned in your earlier mathematics courses, you will definitely recall a lot about area and volume from the simple formulas

More information

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries Chapter 1 Measure Spaces 1.1 Algebras and σ algebras of sets 1.1.1 Notation and preliminaries We shall denote by X a nonempty set, by P(X) the set of all parts (i.e., subsets) of X, and by the empty set.

More information

MATH5011 Real Analysis I. Exercise 1 Suggested Solution

MATH5011 Real Analysis I. Exercise 1 Suggested Solution MATH5011 Real Analysis I Exercise 1 Suggested Solution Notations in the notes are used. (1) Show that every open set in R can be written as a countable union of mutually disjoint open intervals. Hint:

More information

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define 1 Measures 1.1 Jordan content in R N II - REAL ANALYSIS Let I be an interval in R. Then its 1-content is defined as c 1 (I) := b a if I is bounded with endpoints a, b. If I is unbounded, we define c 1

More information

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1)

n [ F (b j ) F (a j ) ], n j=1(a j, b j ] E (4.1) 1.4. CONSTRUCTION OF LEBESGUE-STIELTJES MEASURES In this section we shall put to use the Carathéodory-Hahn theory, in order to construct measures with certain desirable properties first on the real line

More information

consists of two disjoint copies of X n, each scaled down by 1,

consists of two disjoint copies of X n, each scaled down by 1, Homework 4 Solutions, Real Analysis I, Fall, 200. (4) Let be a topological space and M be a σ-algebra on which contains all Borel sets. Let m, µ be two positive measures on M. Assume there is a constant

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

CHAPTER I THE RIESZ REPRESENTATION THEOREM

CHAPTER I THE RIESZ REPRESENTATION THEOREM CHAPTER I THE RIESZ REPRESENTATION THEOREM We begin our study by identifying certain special kinds of linear functionals on certain special vector spaces of functions. We describe these linear functionals

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

Introduction to Real Analysis

Introduction to Real Analysis Christopher Heil Introduction to Real Analysis Chapter 0 Online Expanded Chapter on Notation and Preliminaries Last Updated: January 9, 2018 c 2018 by Christopher Heil Chapter 0 Notation and Preliminaries:

More information

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}.

Dual Space of L 1. C = {E P(I) : one of E or I \ E is countable}. Dual Space of L 1 Note. The main theorem of this note is on page 5. The secondary theorem, describing the dual of L (µ) is on page 8. Let (X, M, µ) be a measure space. We consider the subsets of X which

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Lebesgue Measure on R n

Lebesgue Measure on R n CHAPTER 2 Lebesgue Measure on R n Our goal is to construct a notion of the volume, or Lebesgue measure, of rather general subsets of R n that reduces to the usual volume of elementary geometrical sets

More information

MA359 Measure Theory

MA359 Measure Theory A359 easure Theory Thomas Reddington Usman Qureshi April 8, 204 Contents Real Line 3. Cantor set.................................................. 5 2 General easures 2 2. Product spaces...............................................

More information

Chapter 5. Measurable Functions

Chapter 5. Measurable Functions Chapter 5. Measurable Functions 1. Measurable Functions Let X be a nonempty set, and let S be a σ-algebra of subsets of X. Then (X, S) is a measurable space. A subset E of X is said to be measurable if

More information

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as

FUNDAMENTALS OF REAL ANALYSIS by. II.1. Prelude. Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as FUNDAMENTALS OF REAL ANALYSIS by Doğan Çömez II. MEASURES AND MEASURE SPACES II.1. Prelude Recall that the Riemann integral of a real-valued function f on an interval [a, b] is defined as b n f(xdx :=

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017.

Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 2017 Nadia S. Larsen. 17 November 2017. Product measures, Tonelli s and Fubini s theorems For use in MAT4410, autumn 017 Nadia S. Larsen 17 November 017. 1. Construction of the product measure The purpose of these notes is to prove the main

More information

Chapter IV Integration Theory

Chapter IV Integration Theory Chapter IV Integration Theory This chapter is devoted to the developement of integration theory. The main motivation is to extend the Riemann integral calculus to larger types of functions, thus leading

More information

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6 MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION Extra Reading Material for Level 4 and Level 6 Part A: Construction of Lebesgue Measure The first part the extra material consists of the construction

More information

Partial Solutions to Folland s Real Analysis: Part I

Partial Solutions to Folland s Real Analysis: Part I Partial Solutions to Folland s Real Analysis: Part I (Assigned Problems from MAT1000: Real Analysis I) Jonathan Mostovoy - 1002142665 University of Toronto January 20, 2018 Contents 1 Chapter 1 3 1.1 Folland

More information

Review of measure theory

Review of measure theory 209: Honors nalysis in R n Review of measure theory 1 Outer measure, measure, measurable sets Definition 1 Let X be a set. nonempty family R of subsets of X is a ring if, B R B R and, B R B R hold. bove,

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

3 COUNTABILITY AND CONNECTEDNESS AXIOMS

3 COUNTABILITY AND CONNECTEDNESS AXIOMS 3 COUNTABILITY AND CONNECTEDNESS AXIOMS Definition 3.1 Let X be a topological space. A subset D of X is dense in X iff D = X. X is separable iff it contains a countable dense subset. X satisfies the first

More information

The Caratheodory Construction of Measures

The Caratheodory Construction of Measures Chapter 5 The Caratheodory Construction of Measures Recall how our construction of Lebesgue measure in Chapter 2 proceeded from an initial notion of the size of a very restricted class of subsets of R,

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

Defining the Integral

Defining the Integral Defining the Integral In these notes we provide a careful definition of the Lebesgue integral and we prove each of the three main convergence theorems. For the duration of these notes, let (, M, µ) be

More information

Lebesgue Measure. Dung Le 1

Lebesgue Measure. Dung Le 1 Lebesgue Measure Dung Le 1 1 Introduction How do we measure the size of a set in IR? Let s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its

More information

Measurable functions are approximately nice, even if look terrible.

Measurable functions are approximately nice, even if look terrible. Tel Aviv University, 2015 Functions of real variables 74 7 Approximation 7a A terrible integrable function........... 74 7b Approximation of sets................ 76 7c Approximation of functions............

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

Measure and integration

Measure and integration Chapter 5 Measure and integration In calculus you have learned how to calculate the size of different kinds of sets: the length of a curve, the area of a region or a surface, the volume or mass of a solid.

More information

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions

FUNDAMENTALS OF REAL ANALYSIS by. IV.1. Differentiation of Monotonic Functions FUNDAMNTALS OF RAL ANALYSIS by Doğan Çömez IV. DIFFRNTIATION AND SIGND MASURS IV.1. Differentiation of Monotonic Functions Question: Can we calculate f easily? More eplicitly, can we hope for a result

More information

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure.

36-752: Lecture 1. We will use measures to say how large sets are. First, we have to decide which sets we will measure. 0 0 0 -: Lecture How is this course different from your earlier probability courses? There are some problems that simply can t be handled with finite-dimensional sample spaces and random variables that

More information

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures.

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Measures In General Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Definition: σ-algebra Let X be a set. A

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

Solutions to Homework Assignment 2

Solutions to Homework Assignment 2 Solutions to Homework Assignment Real Analysis I February, 03 Notes: (a) Be aware that there maybe some typos in the solutions. If you find any, please let me know. (b) As is usual in proofs, most problems

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

2 Measure Theory. 2.1 Measures

2 Measure Theory. 2.1 Measures 2 Measure Theory 2.1 Measures A lot of this exposition is motivated by Folland s wonderful text, Real Analysis: Modern Techniques and Their Applications. Perhaps the most ubiquitous measure in our lives

More information

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION

INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION 1 INTRODUCTION TO MEASURE THEORY AND LEBESGUE INTEGRATION Eduard EMELYANOV Ankara TURKEY 2007 2 FOREWORD This book grew out of a one-semester course for graduate students that the author have taught at

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information

Summary of Real Analysis by Royden

Summary of Real Analysis by Royden Summary of Real Analysis by Royden Dan Hathaway May 2010 This document is a summary of the theorems and definitions and theorems from Part 1 of the book Real Analysis by Royden. In some areas, such as

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

Measures and Measure Spaces

Measures and Measure Spaces Chapter 2 Measures and Measure Spaces In summarizing the flaws of the Riemann integral we can focus on two main points: 1) Many nice functions are not Riemann integrable. 2) The Riemann integral does not

More information

1 Measurable Functions

1 Measurable Functions 36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Doléans-Dade; Sec 1.3 and

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

3 Measurable Functions

3 Measurable Functions 3 Measurable Functions Notation A pair (X, F) where F is a σ-field of subsets of X is a measurable space. If µ is a measure on F then (X, F, µ) is a measure space. If µ(x) < then (X, F, µ) is a probability

More information

Chapter 4. Measure Theory. 1. Measure Spaces

Chapter 4. Measure Theory. 1. Measure Spaces Chapter 4. Measure Theory 1. Measure Spaces Let X be a nonempty set. A collection S of subsets of X is said to be an algebra on X if S has the following properties: 1. X S; 2. if A S, then A c S; 3. if

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989),

1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer 11(2) (1989), Real Analysis 2, Math 651, Spring 2005 April 26, 2005 1 Real Analysis 2, Math 651, Spring 2005 Krzysztof Chris Ciesielski 1/12/05: sec 3.1 and my article: How good is the Lebesgue measure?, Math. Intelligencer

More information

Section Integration of Nonnegative Measurable Functions

Section Integration of Nonnegative Measurable Functions 18.2. Integration of Nonnegative Measurable Functions 1 Section 18.2. Integration of Nonnegative Measurable Functions Note. We now define integrals of measurable functions on measure spaces. Though similar

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond

Measure Theory on Topological Spaces. Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond Measure Theory on Topological Spaces Course: Prof. Tony Dorlas 2010 Typset: Cathal Ormond May 22, 2011 Contents 1 Introduction 2 1.1 The Riemann Integral........................................ 2 1.2 Measurable..............................................

More information

Functional Analysis, Stein-Shakarchi Chapter 1

Functional Analysis, Stein-Shakarchi Chapter 1 Functional Analysis, Stein-Shakarchi Chapter 1 L p spaces and Banach Spaces Yung-Hsiang Huang 018.05.1 Abstract Many problems are cited to my solution files for Folland [4] and Rudin [6] post here. 1 Exercises

More information

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias

Notes on Measure, Probability and Stochastic Processes. João Lopes Dias Notes on Measure, Probability and Stochastic Processes João Lopes Dias Departamento de Matemática, ISEG, Universidade de Lisboa, Rua do Quelhas 6, 1200-781 Lisboa, Portugal E-mail address: jldias@iseg.ulisboa.pt

More information

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2

Math 5051 Measure Theory and Functional Analysis I Homework Assignment 2 Math 551 Measure Theory and Functional nalysis I Homework ssignment 2 Prof. Wickerhauser Due Friday, September 25th, 215 Please do Exercises 1, 4*, 7, 9*, 11, 12, 13, 16, 21*, 26, 28, 31, 32, 33, 36, 37.

More information

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X : MATH 337 Metric Spaces Dr. Neal, WKU Let X be a non-empty set. The elements of X shall be called points. We shall define the general means of determining the distance between two points. Throughout we

More information

Math212a1413 The Lebesgue integral.

Math212a1413 The Lebesgue integral. Math212a1413 The Lebesgue integral. October 28, 2014 Simple functions. In what follows, (X, F, m) is a space with a σ-field of sets, and m a measure on F. The purpose of today s lecture is to develop the

More information

6. Duals of L p spaces

6. Duals of L p spaces 6 Duals of L p spaces This section deals with the problem if identifying the duals of L p spaces, p [1, ) There are essentially two cases of this problem: (i) p = 1; (ii) 1 < p < The major difference between

More information

Homework 11. Solutions

Homework 11. Solutions Homework 11. Solutions Problem 2.3.2. Let f n : R R be 1/n times the characteristic function of the interval (0, n). Show that f n 0 uniformly and f n µ L = 1. Why isn t it a counterexample to the Lebesgue

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Having completed our study of Lebesgue measure, we are now ready to consider the Lebesgue integral. Before diving into the details of its construction, though, we would like to give

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information