Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation

Size: px
Start display at page:

Download "Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation"

Transcription

1 Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation R. Eddie Wilson, University of Bristol EPSRC Advanced Research Fellowship EP/E055567/1 Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.1/25

2 Macroscopic Traffic Data M25 anticlockwise carriageway 1/4/ space (17km) vehicle trajectories stop-and-go waves average speed (km/h) 06:40 time 11:00 Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.2/25 0

3 Some facts and conclusions (I) Propagation of stop-and-go is (fairly) regular so can be captured by macroscopic deterministic models? v x Downstream interface does not spread (Kerner 90s) problem for LWR and I believe ARZ / Lebacque framework Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.3/25

4 Some facts and conclusions (II) Ignition of stop-and-go waves is irregular needs full noisiness of microscopic description (but predictions can only be probabilistic) Wavelength is much longer than vehicle separation how to capture the upscaling effect? General idea: identify families of models which are qualitatively ok and throw away models which are qualitatively inadequate IN FUTURE Fit models to microscopic data Use emergent macroscopic dynamics for predictions Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.4/25

5 Active Traffic Management system Aim, reduce: accidents, (variance of) journey times Queue Ahead warning systems Temporary speed limits Lane management Spacing of inductance loop pairs is in range 30m to 100m Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.5/25

6 ndividual Vehicle Data from ATM system x Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.6/25

7 Zoom-view and future scope 89 location A location B Individual vehicle data gives helicopter view (speeds km/h) time, 6 secs Location B is 100m downstream of location A: note lane change Propose to reconstruct vehicle trajectories over m 1 week lanes lanes Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.7/25

8 Jam formation in simulations 200 simulation of Optimal Velocity model dimensionless space dimensionless time Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.8/25

9 Car-following models x Typical form x n+1 v n v n x n h n x n 1 v n 1 ẋ n = v n, v n = f(h n,ḣn,v n ) and generalisations E.g. Bando model (1995) f = α {V (h n ) v n }, α > 0 V is Optimal Velocity or Speed-Headway function Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.9/25

10 Linear stability framework General car-following model v n = f(h n,ḣn,v n ), Equilbrium condition, there exists V (h) so that f(h, 0,V (h )) = 0 for all h > 0. Linearisation yields ṽ n = (D h f) h n + (Dḣf) hn + (D v f)ṽ n, with sensible sign constraints D h f, Dḣf 0 and D v f 0. Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.10/25

11 Linear stability, part 2 Re-arrangement ḣn = v n 1 v n gives h n = (D h f)( h n 1 h n ) + (Dḣf)( hn 1 hn ) + (D v f) hn. Then try exponential ansatz h n = real ( ce inθ e λt) θ is perturbation s discrete wavenumber real(λ) is growth rate to obtain quadratic { } λ 2 + (Dḣf)(1 e iθ ) (D v f) λ + (D h f)((1 e iθ ) = 0. Then derive results for λ(θ) in quite general terms (proofs omitted) Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.11/25

12 Technical details Short wavelength analysis, θ = π λ 2 + { 2(Dḣf) (D v f) } λ + 2D h f = 0 All coeffs positive, therefore stable roots Long wavelength analysis, θ > 0 small, λ = λ 1 θ + λ 2 θ 2 gives λ 1 = i(d h f)/(d v f) and λ 2 = (D { } hf) 1 (D v f) 3 2 (D vf) 2 (D h f) (Dḣf)(D v f) Can show neutral stability λ = iω for general θ is equivalent to λ 2 = 0. Therefore: need only analyse λ 2 Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.12/25

13 Onset from infinite wavelength x 10 3 growth rate onset of instability with change in parameters infinite wavelength discrete wavenumber Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.13/25

14 Onset at medium densities 0.1 long wavelength growth parameter change in parameters nondimensional headway Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.14/25

15 Equilibrium curves speed speed headway density flow density no observations due to sensing method Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.15/25

16 Other types of linear (in)stability Notional experiment in semi-infinite column of vehicles where second vehicle is instantaneously perturbed out of equilibrium Linearised dynamics of nth vehicle h n + [ (Dḣf) (D v f) ] hn +(D h f) h n = (D h f) h n 1 +(Dḣf) hn 1 Solve resonant oscillators inductively, large t h n (t) tn 1 (n 1)! [ λ(dḣf) + (D h f) 2λ + (Dḣf) (D v f) ] n 1 e λt where λ is stable platoon eigenvalue Use moving absolute space frame t = nh /(c + v ) and Stirling s formula to define growth wedge Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.16/25

17 Problems (?) with linear instability Setting a reduced speed limit to induce mid-range density and increase flow does not induce flow breakdown Stop-and-go waves almost always ignite at merges or other large amplitude externalities These problems may explain the continuing adherance to one-phase PDE models, be they first order like LWR or second order like ARZ/Lebacque Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.17/25

18 Introduction to bifurcation theory Loss of stability of uniform flow is via a Hopf bifurcation, of which there are two types: supercritical subcritical norm stable jam unstable jam stable unstable stable unstable parameter supercritical: stable periodic solutions are born subcritical: unstable periodic solutions are born, branch bends back so what is dynamics? Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.18/25

19 Introduction to bifurcation theory Loss of stability of uniform flow is via a Hopf bifurcation, of which there are two types: supercritical subcritical stable jam norm stable jam unstable jam stable unstable stable unstable parameter Subcritical bifurcation with cyclic fold gives jump to large ampitude traffic jam solution plus region of bistability Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.18/25

20 Computational results Application of numerical parameter continuation tools to analyse stop-and-go waves on the ring road 0.5 α two traffic jams Hopf (k = 1) fold (k = 1) Hopf (k > 1) fold (k > 1) stopping v amp k = 1 k = k = 3 k = collision h h 4 REW, Krauskopf and Orosz, also group of Gasser Large perturbations (lane changes at merges?) cause jump to jammed state Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.19/25

21 Search for new dynamics This explanation still requires uniform flow to be unstable in some parameter regime. Is a fix possible? Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.20/25

22 Search for new dynamics This explanation still requires uniform flow to be unstable in some parameter regime. Is a fix possible? Design bifurcation diagram: stable jam norm unstable jam always stable uniform flow headway Ongoing work v n = α(ḣn)f (V (h n ) v n ) Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.20/25

23 Alternative: travelling wave analysis Computationally wasteful (and perhaps inappropriate) to analyse wave structures via bifurcations of periodic orbits of large systems of ODEs/DDEs Instead: travelling wave analysis. Two methods: Weakly nonlinear continuum limit (Kim, Lee, Lee): ρ t + (ρv) x = 0, see TGF 01 } [ v t + vv x = α {ˆV (ρ) v + α ˆV (ρ) ρ x 2ρ + v ] xx 6ρ 2, Single advance/delay equation, derived from h n 1 (t) = h n (t + τ), v n 1 (t) = v n (t + τ) substitution in car-following model (ongoing work with Tony Humphries, McGill) Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.21/25

24 PSfrag Travelling wave phase diagram See TGF 01 R C L C R C L C L C R C R C R C CR R C LR LC RC ρ + L C R C L C R C L C L C L C L C CL RL L C R C L C R C R C R C ρ Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.22/25

25 Recent discrete computation (stable) 4 Solutions on (h,h + ) plane, τ d =0 α= h h Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.23/25

26 Recent discrete computation (unstable) 4 Solutions on (h,h + ) plane, τ d =0 α= h h Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.24/25

27 Broad conclusions For the car-following community: Still some work to do in understanding fully pattern mechanisms at the nonlinear level and on the infinite line. Fitting models to new sources of microsopic data. For the PDE community: Vanilla versions of LWR/ARZ/Lebacque do not qualitatively replicate data or what car-following models do generically (even at the linear level). This needs a fix NB global existence results will become ugly / difficult. Car-Following Models as Dynamical Systems and the Mechanisms for Macroscopic Pattern Formation p.25/25

Wilson, R. E. (2007). Mechanisms for spatiotemporal pattern formation in highway traffic models.

Wilson, R. E. (2007). Mechanisms for spatiotemporal pattern formation in highway traffic models. Wilson, R. E. (27). Mechanisms for spatiotemporal pattern formation in highway traffic models. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document

More information

Dynamical Phenomena induced by Bottleneck

Dynamical Phenomena induced by Bottleneck March 23, Sophia Antipolis, Workshop TRAM2 Dynamical Phenomena induced by Bottleneck Ingenuin Gasser Department of Mathematics University of Hamburg, Germany Tilman Seidel, Gabriele Sirito, Bodo Werner

More information

Bifurcations and multiple traffic jams in a car-following model with reaction-time delay

Bifurcations and multiple traffic jams in a car-following model with reaction-time delay Physica D 211 (2005) 277 293 Bifurcations and multiple traffic jams in a car-following model with reaction-time delay Gábor Orosz, Bernd Krauskopf, R. Eddie Wilson Bristol Centre for Applied Nonlinear

More information

Microscopic Models under a Macroscopic Perspective

Microscopic Models under a Macroscopic Perspective Mathematical Models of Traffic Flow, Luminy, France, October 27 Microscopic Models under a Macroscopic Perspective Ingenuin Gasser Department of Mathematics University of Hamburg, Germany Tilman Seidel,

More information

Solitons in a macroscopic traffic model

Solitons in a macroscopic traffic model Solitons in a macroscopic traffic model P. Saavedra R. M. Velasco Department of Mathematics, Universidad Autónoma Metropolitana, Iztapalapa, 093 México, (e-mail: psb@xanum.uam.mx). Department of Physics,

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 7 Introduction to Phenomena Introduction to phenomena And some possible explanations... 2/5/2011, Prof. Dr. Serge Hoogendoorn, Delft University

More information

THE EXACTLY SOLVABLE SIMPLEST MODEL FOR QUEUE DYNAMICS

THE EXACTLY SOLVABLE SIMPLEST MODEL FOR QUEUE DYNAMICS DPNU-96-31 June 1996 THE EXACTLY SOLVABLE SIMPLEST MODEL FOR QUEUE DYNAMICS arxiv:patt-sol/9606001v1 7 Jun 1996 Yūki Sugiyama Division of Mathematical Science City College of Mie, Tsu, Mie 514-01 Hiroyasu

More information

Spontaneous Jam Formation

Spontaneous Jam Formation Highway Traffic Introduction Traffic = macroscopic system of interacting particles (driven or self-driven) Nonequilibrium physics: Driven systems far from equilibrium Collective phenomena physics! Empirical

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 4 Shockwave theory Shockwave theory I: Introduction Applications of the Fundamental Diagram February 14, 2010 1 Vermelding onderdeel organisatie

More information

From experimemts to Modeling

From experimemts to Modeling Traffic Flow: From experimemts to Modeling TU Dresden 1 1 Overview Empirics: Stylized facts Microscopic and macroscopic models: typical examples: Linear stability: Which concepts are relevant for describing

More information

STANDING WAVES AND THE INFLUENCE OF SPEED LIMITS

STANDING WAVES AND THE INFLUENCE OF SPEED LIMITS STANDING WAVES AND THE INFLUENCE OF SPEED LIMITS H. Lenz, R. Sollacher *, M. Lang + Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 8173 Munich, Germany fax: ++49/89/636-49767

More information

7 Two-dimensional bifurcations

7 Two-dimensional bifurcations 7 Two-dimensional bifurcations As in one-dimensional systems: fixed points may be created, destroyed, or change stability as parameters are varied (change of topological equivalence ). In addition closed

More information

suppressing traffic flow instabilities

suppressing traffic flow instabilities suppressing traffic flow instabilities S S VF VC VL D D Berthold K.P. Horn Traffic flow instabilities waste energy: At high densities traffic flow becomes unstable Traffic acts as if it was a dilatant

More information

arxiv: v1 [physics.soc-ph] 17 Oct 2016

arxiv: v1 [physics.soc-ph] 17 Oct 2016 Local stability conditions and calibrating procedure for new car-following models used in driving simulators arxiv:1610.05257v1 [physics.soc-ph] 17 Oct 2016 Valentina Kurc and Igor Anufriev Abstract The

More information

Stability and bifurcation in network traffic flow: A Poincaré map approach

Stability and bifurcation in network traffic flow: A Poincaré map approach Stability and bifurcation in network traffic flow: A Poincaré map approach arxiv:1307.7671v1 [math.ds] 29 Jul 2013 Wen-Long Jin July 30, 2013 Abstract Previous studies have shown that, in a diverge-merge

More information

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 18 Aug 2003

arxiv:cond-mat/ v3 [cond-mat.stat-mech] 18 Aug 2003 arxiv:cond-mat/0211684v3 [cond-mat.stat-mech] 18 Aug 2003 Three-Phase Traffic Theory and Highway Capacity Abstract Boris S. Kerner Daimler Chrysler AG, RIC/TS, T729, 70546 Stuttgart, Germany Hypotheses

More information

c) What are cumulative curves, and how are they constructed? (1 pt) A count of the number of vehicles over time at one location (1).

c) What are cumulative curves, and how are they constructed? (1 pt) A count of the number of vehicles over time at one location (1). Exam 4821 Duration 3 hours. Points are indicated for each question. The exam has 5 questions 54 can be obtained. Note that half of the points is not always suffcient for a 6. Use your time wisely! Remarks:

More information

Two-dimensional macroscopic models for traffic flow on highways

Two-dimensional macroscopic models for traffic flow on highways Two-dimensional macroscopic models for traffic flow on highways Giuseppe Visconti Institut für Geometrie und Praktische Mathematik RWTH Aachen University (Germany) XVII Italian Meeting on Hyperbolic Equations

More information

Traffic Flow Theory & Simulation

Traffic Flow Theory & Simulation Traffic Flow Theory & Simulation S.P. Hoogendoorn Lecture 1 Introduction Photo by Wikipedia / CC BY SA Course 4821 - Introduction 1 57 Photo by wikipedia / CC BY SA Traffic Flow Theory & Simulation An

More information

How reaction time, update time and adaptation time influence the stability of traffic flow

How reaction time, update time and adaptation time influence the stability of traffic flow How reaction time, update time and adaptation time influence the stability of traffic flow Arne Kesting and Martin Treiber Technische Universität Dresden, Andreas-Schubert-Straße 3, 16 Dresden, Germany

More information

An improved CA model with anticipation for one-lane traffic flow

An improved CA model with anticipation for one-lane traffic flow An improved CA model with anticipation for one-lane traffic flow MARÍA ELENA. LÁRRAGA JESÚS ANTONIO DEL RÍ0 Facultad de Ciencias, Computer Science Dept. Universidad Autónoma del Estado de Morelos Av. Universidad

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Introduction to bifurcations

Introduction to bifurcations Introduction to bifurcations Marc R. Roussel September 6, Introduction Most dynamical systems contain parameters in addition to variables. A general system of ordinary differential equations (ODEs) could

More information

Macroscopic Simulation of Open Systems and Micro-Macro Link

Macroscopic Simulation of Open Systems and Micro-Macro Link Macroscopic Simulation of Open Systems and Micro-Macro Link Ansgar Hennecke 1 and Martin Treiber 1 and Dirk Helbing 1 II Institute for Theoretical Physics, University Stuttgart, Pfaffenwaldring 57, D-7756

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation

MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation 1 Bifurcations in Multiple Dimensions When we were considering one-dimensional systems, we saw that subtle changes in parameter

More information

STABILITY OF CONNECTED VEHICLE PLATOONS WITH DELAYED ACCELERATION FEEDBACK

STABILITY OF CONNECTED VEHICLE PLATOONS WITH DELAYED ACCELERATION FEEDBACK Proceedings of the ASME 3 Dynamic Systems and Control Conference DSCC3 October -3, 3, Palo Alto, California, USA DSCC3-44 STABILITY OF CONNECTED VEHICLE PLATOONS WITH DELAYED ACCELERATION FEEDBACK Jin

More information

An Interruption in the Highway: New Approach to Modeling the Car-Traffic

An Interruption in the Highway: New Approach to Modeling the Car-Traffic EJTP 7, No. 23 (21) 123 136 Electronic Journal of Theoretical Physics An Interruption in the Highway: New Approach to Modeling the Car-Traffic Amin Rezaeezadeh Electrical Engineering Department, Sharif

More information

Coupled Map Traffic Flow Simulator Based on Optimal Velocity Functions

Coupled Map Traffic Flow Simulator Based on Optimal Velocity Functions Coupled Map Traffic Flow Simulator Based on Optimal Velocity Functions Shin-ichi Tadaki 1,, Macoto Kikuchi 2,, Yuki Sugiyama 3,, and Satoshi Yukawa 4, 1 Department of Information Science, Saga University,

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Asymptotic traffic dynamics arising in diverge-merge networks with two intermediate links

Asymptotic traffic dynamics arising in diverge-merge networks with two intermediate links Asymptotic traffic dynamics arising in diverge-merge networks with two intermediate links Wen-Long Jin March 25, 2008 Abstract Basic road network components, such as merging and diverging junctions, contribute

More information

An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests

An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and Numerical Tests Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 367 373 c International Academic Publishers Vol. 46, No. 2, August 15, 2006 An Improved Car-Following Model for Multiphase Vehicular Traffic Flow and

More information

Period Doubling Cascade in Diffusion Flames

Period Doubling Cascade in Diffusion Flames Period Doubling Cascade in Diffusion Flames Milan Miklavčič Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA Combustion Theory and Modelling 11 No 1 (2007), 103-112 Abstract

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

Macroscopic limits of microscopic models

Macroscopic limits of microscopic models Macroscopic limits of microscopic models The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Abeyaratne,

More information

Analysis of Bifurcations in a Power System Model with Excitation Limits

Analysis of Bifurcations in a Power System Model with Excitation Limits Analysis of Bifurcations in a Power System Model with Excitation Limits Rajesh G. Kavasseri and K. R. Padiyar Department of Electrical Engineering Indian Institute of Science, Bangalore, India Abstract

More information

FEEDBACK loops are always associated with certain time

FEEDBACK loops are always associated with certain time IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 2, FEBRUARY 218 545 Application of Predictor Feedback to Compensate Time Delays in Connected Cruise Control Tamás G. Molnár, Wubing

More information

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: 1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: ẋ = y x 2, ẏ = z + xy, ż = y z + x 2 xy + y 2 + z 2 x 4. (ii) Determine

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

Chapter 24 BIFURCATIONS

Chapter 24 BIFURCATIONS Chapter 24 BIFURCATIONS Abstract Keywords: Phase Portrait Fixed Point Saddle-Node Bifurcation Diagram Codimension-1 Hysteresis Hopf Bifurcation SNIC Page 1 24.1 Introduction In linear systems, responses

More information

arxiv: v1 [physics.soc-ph] 20 Dec 2014

arxiv: v1 [physics.soc-ph] 20 Dec 2014 Linearized Theory of Traffic Flow Tal Cohen 1 and Rohan Abeyaratne Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139, USA Abstract arxiv:1412.7371v1 [physics.soc-ph]

More information

String and robust stability of connected vehicle systems with delayed feedback

String and robust stability of connected vehicle systems with delayed feedback String and robust stability of connected vehicle systems with delayed feedback Gopal Krishna Kamath, Krishna Jagannathan and Gaurav Raina Department of Electrical Engineering Indian Institute of Technology

More information

2D Traffic Flow Modeling via Kinetic Models

2D Traffic Flow Modeling via Kinetic Models Modeling via Kinetic Models Benjamin Seibold (Temple University) September 22 nd, 2017 Benjamin Seibold (Temple University) 2D Traffic Modeling via Kinetic Models 09/22/2017, ERC Scale-FreeBack 1 / 18

More information

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel Nonlinear dynamics course - VUB

Chaos. Lendert Gelens. KU Leuven - Vrije Universiteit Brussel   Nonlinear dynamics course - VUB Chaos Lendert Gelens KU Leuven - Vrije Universiteit Brussel www.gelenslab.org Nonlinear dynamics course - VUB Examples of chaotic systems: the double pendulum? θ 1 θ θ 2 Examples of chaotic systems: the

More information

The Physics of Traffic Jams: Emergent Properties of Vehicular Congestion

The Physics of Traffic Jams: Emergent Properties of Vehicular Congestion December 10 2008 David Zeb Rocklin The Physics of Traffic Jams: Emergent Properties of Vehicular Congestion The application of methodology from statistical physics to the flow of vehicles on public roadways

More information

Data-Fitted Generic Second Order Macroscopic Traffic Flow Models. A Dissertation Submitted to the Temple University Graduate Board

Data-Fitted Generic Second Order Macroscopic Traffic Flow Models. A Dissertation Submitted to the Temple University Graduate Board Data-Fitted Generic Second Order Macroscopic Traffic Flow Models A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Vehicular Traffic: A Forefront Socio-Quantitative Complex System

Vehicular Traffic: A Forefront Socio-Quantitative Complex System Vehicular Traffic: A Forefront Socio-Quantitative Complex System Jaron T. Krogel 6 December 2007 Abstract We present the motivation for studying traffic systems from a physical perspective. We proceed

More information

arxiv: v2 [physics.soc-ph] 29 Sep 2014

arxiv: v2 [physics.soc-ph] 29 Sep 2014 Universal flow-density relation of single-file bicycle, pedestrian and car motion J. Zhang, W. Mehner, S. Holl, and M. Boltes Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich,

More information

A first car following model

A first car following model A first car following model CE 391F March 21, 2013 ANNOUNCEMENTS Homework 3 to be posted this weekend Course project abstracts due Tuesday Announcements REVIEW Driver characteristics... Reaction time and

More information

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation W.L. Jin and H.M. Zhang August 3 Abstract: In this paper we study the Payne-Whitham (PW) model as

More information

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1,

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1, 2.8.7. Poincaré-Andronov-Hopf Bifurcation. In the previous section, we have given a rather detailed method for determining the periodic orbits of a two dimensional system which is the perturbation of a

More information

A hydrodynamic theory based statistical model of arterial traffic

A hydrodynamic theory based statistical model of arterial traffic CALIFORNIA CENTER FOR INNOVATIVE TRANSPORTATION INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY A hydrodynamic theory based statistical model of arterial traffic Aude Hofleitner,

More information

2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) 2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

More information

Chapter 5 Traffic Flow Characteristics

Chapter 5 Traffic Flow Characteristics Chapter 5 Traffic Flow Characteristics 1 Contents 2 Introduction The Nature of Traffic Flow Approaches to Understanding Traffic Flow Parameters Connected with Traffic Flow Categories of Traffic Flow The

More information

Résonance et contrôle en cavité ouverte

Résonance et contrôle en cavité ouverte Résonance et contrôle en cavité ouverte Jérôme Hœpffner KTH, Sweden Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson Outline The flow case Investigation tools resonance Reduced dynamic model for feedback

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Jan 1999

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Jan 1999 Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model arxiv:cond-mat/99124v1 [cond-mat.stat-mech] 22 Jan 1999 Martin Treiber, Ansgar Hennecke, and Dirk Helbing II. Institute

More information

Lecture 7: The Swift-Hohenberg equation in one spatial dimension

Lecture 7: The Swift-Hohenberg equation in one spatial dimension Lecture 7: The Swift-Hohenberg equation in one spatial dimension Edgar Knobloch: notes by Vamsi Krishna Chalamalla and Alban Sauret with substantial editing by Edgar Knobloch January 10, 2013 1 Introduction

More information

To Delay or Not to Delay Stability of Connected Cruise Control

To Delay or Not to Delay Stability of Connected Cruise Control To Delay or Not to Delay Stability of Connected Cruise Control Jin I. Ge, Gábor Orosz, Dávid Hajdu, Tamás Insperger and Jeff Moehlis Abstract The dynamics of connected vehicle systems are investigated

More information

Global bifurcation diagram for the Kerner-Konhäuser traffic flow model

Global bifurcation diagram for the Kerner-Konhäuser traffic flow model International Journal of Bifurcation and Chaos c World Scientific Publishing Company Global bifurcation diagram for the Kerner-Konhäuser traffic flow model Joaquín Delgado Mathematics Department. UAM Iztapalapa.

More information

A Unifying Approach to the Dynamics of Production, Supply, and Traffic Networks. Dirk Helbing

A Unifying Approach to the Dynamics of Production, Supply, and Traffic Networks. Dirk Helbing A Unifying Approach to the Dynamics of Production, Supply, and Traffic Networks Institute for Transport & Economics Faculty of Traffic Sciences Dresden University of Technology www.helbing.org 1 How Chip

More information

Shock wave analysis. Chapter 8. List of symbols. 8.1 Kinematic waves

Shock wave analysis. Chapter 8. List of symbols. 8.1 Kinematic waves Chapter 8 Shock wave analysis Summary of the chapter. Flow-speed-density states change over time and space. When these changes of state occur, a boundary is established that demarks the time-space domain

More information

Synchronization Transitions in Complex Networks

Synchronization Transitions in Complex Networks Synchronization Transitions in Complex Networks Y. Moreno 1,2,3 1 Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza, Zaragoza 50018, Spain 2 Department of Theoretical

More information

A lattice traffic model with consideration of preceding mixture traffic information

A lattice traffic model with consideration of preceding mixture traffic information Chin. Phys. B Vol. 0, No. 8 011) 088901 A lattice traffic model with consideration of preceding mixture traffic information Li Zhi-Peng ) a), Liu Fu-Qiang ) a), Sun Jian ) b) a) School of Electronics and

More information

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F : 1 Bifurcations Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 A bifurcation is a qualitative change

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

Analysis of connected vehicle networks using network-based perturbation techniques

Analysis of connected vehicle networks using network-based perturbation techniques Nonlinear Dyn 27 89:65 672 DOI.7/s7-7-354-y ORIGINAL PAPER Analysis of connected vehicle networks using network-based perturbation techniques Sergei S. Avedisov Gábor Orosz Received: 27 September 26 /

More information

On the distribution schemes for determining flows through a merge

On the distribution schemes for determining flows through a merge On the distribution schemes for determining flows through a merge W. L. Jin and H. M. Zhang April 11, 2002 Abstract: In this paper, we study various distribution schemes for determining flows through a

More information

nario is a hypothetical driving process aiming at testing these models under various driving regimes (such as free flow and car following); the

nario is a hypothetical driving process aiming at testing these models under various driving regimes (such as free flow and car following); the 1 Preface For years, I have been thinking about writing an introductory book on traffic flow theory. The main purpose is to help readers like me who are new to this subject and do not have much preparation

More information

Continuum Modelling of Traffic Flow

Continuum Modelling of Traffic Flow Continuum Modelling of Traffic Flow Christopher Lustri June 16, 2010 1 Introduction We wish to consider the problem of modelling flow of vehicles within a traffic network. In the past, stochastic traffic

More information

Mathematical modeling of complex systems Part 1. Overview

Mathematical modeling of complex systems Part 1. Overview 1 Mathematical modeling of complex systems Part 1. Overview P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

8.385 MIT (Rosales) Hopf Bifurcations. 2 Contents Hopf bifurcation for second order scalar equations. 3. Reduction of general phase plane case to seco

8.385 MIT (Rosales) Hopf Bifurcations. 2 Contents Hopf bifurcation for second order scalar equations. 3. Reduction of general phase plane case to seco 8.385 MIT Hopf Bifurcations. Rodolfo R. Rosales Department of Mathematics Massachusetts Institute of Technology Cambridge, Massachusetts MA 239 September 25, 999 Abstract In two dimensions a Hopf bifurcation

More information

Modeling Traffic Flow on Multi-Lane Road: Effects of Lane-Change Manoeuvres Due to an On-ramp

Modeling Traffic Flow on Multi-Lane Road: Effects of Lane-Change Manoeuvres Due to an On-ramp Global Journal of Pure and Applied Mathematics. ISSN 973-768 Volume 4, Number 28, pp. 389 46 Research India Publications http://www.ripublication.com/gjpam.htm Modeling Traffic Flow on Multi-Lane Road:

More information

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model

Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Letter Forma, 15, 281 289, 2000 Self-Replication, Self-Destruction, and Spatio-Temporal Chaos in the Gray-Scott Model Yasumasa NISHIURA 1 * and Daishin UEYAMA 2 1 Laboratory of Nonlinear Studies and Computations,

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Orosz, G., & Stepan, G. (4). Hopf bifurcation calculations in delayed systems with translational symmetry. https://doi.org/1.17/s33-4- 65-4 Early version, also known as pre-print Link to published version

More information

arxiv: v1 [physics.soc-ph] 24 Mar 2014

arxiv: v1 [physics.soc-ph] 24 Mar 2014 Modelling supported driving as an optimal control cycle: Framework and model characteristics Meng Wang a, Martin Treiber b, Winnie Daamen a, Serge P. Hoogendoorn a, Bart van Arem a a Delft University of

More information

Problem Set Number 2, j/2.036j MIT (Fall 2014)

Problem Set Number 2, j/2.036j MIT (Fall 2014) Problem Set Number 2, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Mon., September 29, 2014. 1 Inverse function problem #01. Statement: Inverse function

More information

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology Complex Behavior in Coupled Nonlinear Waveguides Roy Goodman, New Jersey Institute of Technology Nonlinear Schrödinger/Gross-Pitaevskii Equation i t = r + V (r) ± Two contexts for today: Propagation of

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.306 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Monday March 12, 2018. Turn it in (by 3PM) at the Math.

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Long-wave Instability in Anisotropic Double-Diffusion

Long-wave Instability in Anisotropic Double-Diffusion Long-wave Instability in Anisotropic Double-Diffusion Jean-Luc Thiffeault Institute for Fusion Studies and Department of Physics University of Texas at Austin and Neil J. Balmforth Department of Theoretical

More information

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry Oldrich POLACH and Adrian VETTER Bombardier Transportation Winterthur, Switzerland Contents Motivation Methods

More information

2 Lecture 2: Amplitude equations and Hopf bifurcations

2 Lecture 2: Amplitude equations and Hopf bifurcations Lecture : Amplitude equations and Hopf bifurcations This lecture completes the brief discussion of steady-state bifurcations by discussing vector fields that describe the dynamics near a bifurcation. From

More information

Global bifurcation diagram for the Kerner-Konhäuser traffic flow model

Global bifurcation diagram for the Kerner-Konhäuser traffic flow model International Journal of Bifurcation and Chaos c World Scientific Publishing Company Global bifurcation diagram for the Kerner-Konhäuser traffic flow model Joaquín Delgado Mathematics Department. UAM Iztapalapa.

More information

An extended microscopic traffic flow model based on the spring-mass system theory

An extended microscopic traffic flow model based on the spring-mass system theory Modern Physics Letters B Vol. 31, No. 9 (2017) 1750090 (9 pages) c World Scientific Publishing Company DOI: 10.1142/S0217984917500907 An extended microscopic traffic flow model based on the spring-mass

More information

2056 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 2017

2056 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 2017 256 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 217 Optimal Control of Connected Vehicle Systems With Communication Delay and Driver Reaction Time Jin I. Ge and Gábor

More information

Answers to Problem Set # 01, MIT (Winter-Spring 2018)

Answers to Problem Set # 01, MIT (Winter-Spring 2018) Answers to Problem Set # 01, 18.306 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Contents 1 Nonlinear solvable ODEs 2 1.1 Statement:

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

MASTER: Macroscopic Traffic Simulation Based on A Gas-Kinetic, Non-Local Traffic Model

MASTER: Macroscopic Traffic Simulation Based on A Gas-Kinetic, Non-Local Traffic Model MASTER: Macroscopic Traffic Simulation Based on A Gas-Kinetic, Non-Local Traffic Model Dirk Helbing, Ansgar Hennecke, Vladimir Shvetsov, and Martin Treiber II. Institute of Theoretical Physics, University

More information

CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES

CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES CHAPTER 5 DELAY ESTIMATION FOR OVERSATURATED SIGNALIZED APPROACHES Delay is an important measure of effectiveness in traffic studies, as it presents the direct cost of fuel consumption and indirect cost

More information

2.1 Traffic Stream Characteristics. Time Space Diagram and Measurement Procedures Variables of Interest

2.1 Traffic Stream Characteristics. Time Space Diagram and Measurement Procedures Variables of Interest 2.1 Traffic Stream Characteristics Time Space Diagram and Measurement Procedures Variables of Interest Traffic Stream Models 2.1 Traffic Stream Characteristics Time Space Diagram Speed =100km/h = 27.78

More information

Global Bifurcation Diagram for the Kerner-Konhäuser Traffic Flow Model

Global Bifurcation Diagram for the Kerner-Konhäuser Traffic Flow Model arxiv:1311.4119v1 [math.ds] 17 Nov 2013 Global Bifurcation Diagram for the Kerner-Konhäuser Traffic Flow Model Joaquín Delgado Patricia Saavedra Keywords: Continuous traffic flow. Traveling waves. Bautin

More information

Modelling, Simulation & Computing Laboratory (msclab) Faculty of Engineering, Universiti Malaysia Sabah, Malaysia

Modelling, Simulation & Computing Laboratory (msclab) Faculty of Engineering, Universiti Malaysia Sabah, Malaysia 1.0 Introduction Intelligent Transportation Systems (ITS) Long term congestion solutions Advanced technologies Facilitate complex transportation systems Dynamic Modelling of transportation (on-road traffic):

More information

Some Dynamical Behaviors In Lorenz Model

Some Dynamical Behaviors In Lorenz Model International Journal Of Computational Engineering Research (ijceronline.com) Vol. Issue. 7 Some Dynamical Behaviors In Lorenz Model Dr. Nabajyoti Das Assistant Professor, Department of Mathematics, Jawaharlal

More information

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING 1 INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING M. J. McCready, D. D. Uphold, K. A. Gifford Department of Chemical Engineering University of Notre Dame Notre

More information

THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS

THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the

More information

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation Center for Turbulence Research Annual Research Briefs 006 363 Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation By S. Fedotov AND S. Abarzhi 1. Motivation

More information

Homogenization Theory

Homogenization Theory Homogenization Theory Sabine Attinger Lecture: Homogenization Tuesday Wednesday Thursday August 15 August 16 August 17 Lecture Block 1 Motivation Basic Ideas Elliptic Equations Calculation of Effective

More information

Chaos and R-L diode Circuit

Chaos and R-L diode Circuit Chaos and R-L diode Circuit Rabia Aslam Chaudary Roll no: 2012-10-0011 LUMS School of Science and Engineering Thursday, December 20, 2010 1 Abstract In this experiment, we will use an R-L diode circuit

More information