Advanced Accelerator R&D

Size: px
Start display at page:

Download "Advanced Accelerator R&D"

Transcription

1 Advanced Accelerator R&D Leading the Way? R. Assmann Leading Scientist DESY EuCARD2 Workshop Goethe University Frankfurt,

2 Novel Accelerator R&D Leading the Way? > Accelerator R&D is not leading the way!. > Advantages in must be shown and are the outcome of this research. > We perform accelerator R&D in Helmholtz as an : academic studies are explicitly allowed. > Some directions can fail but. These directions will change the way we design and build some of our accelerators. > We know that some ideas can provide huge returns! Ralph Aßmann EuCARD2 WS Page 2

3 From University Stockholm to the Laboratories > 1924: (*19 February 1883 in Finja, Sweden, 5 February 1960 in Danderyd, Sweden), Prof. at the technical university Stockholm, publishes in 1924 idea how to realize multiple acceleration of an ion with a given high voltage: U tot >> U HV Ralph Aßmann EuCARD2 WS Page 3

4 First Realization: Wideröe s PhD in 1927 at Univ. Aachen 27 pages Ralph Aßmann EuCARD2 WS Page 4

5 Wideröe Idea 1: switch high voltage Total energy gain >> available high voltage First short ion linac! Idea 2: Circular acc. Did not work in Wideröe s thesis due to stability issues Ralph Aßmann EuCARD2 WS Page 5

6 Cyclotron and Lawrence Berkeley National Laboratory The Nobel Prize in Physics 1939 was awarded to Ernest Lawrence "for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements". 90 Citations Ralph Aßmann EuCARD2 WS Page 6

7 Particle Accelerators 90 Years Success > Today: About 30,000 accelerators in the world > Used for science, medicine and industry Ralph Aßmann EuCARD2 WS Page 7

8 Livingston: Human-Made Accelerators at the Energy Frontier Ralph Aßmann EuCARD2 WS Page 8

9 We are not at the Limit: The Real Energy Frontier > Ultra high-energy cosmic rays mainly protons or heavier atomic nuclei. From 2008 to 2013: 72 cosmic rays with energies above 57 exa-electron volts 1 exa-ev = ev = 1 million TeV > Oh-My-God particle. > How does nature do it? Neutron stars as accelerators? Galactic jets acting as Zevatrons? Extragalactic supermassive black holes? Decay of superheavy dark matter by means of the Penrose process? Ralph Aßmann EuCARD2 WS Page 9

10 Livingston: Human-Made Accelerators at the Energy Frontier Ralph Aßmann EuCARD2 WS Page 10

11 Livingston: Human-Made Accelerators at the Energy Frontier Advent of plasma acc.: 1. Metallic cavity walls replaced with plasma walls overcoming hard physical limits of metallic RF structures. 2. Acceleration lengths (same energy) are factor shorter. Multi-GeV e- beams proven. 3. Still short-comings but no fundamental limit. 4. Technology for a Plan B project in the 2030 s!? Ralph Aßmann EuCARD2 WS Page 11

12 Long-Term Application 1: Compact linear collider Ralph Aßmann EuCARD2 WS Page 12

13 Long-Term Application 2: Laser-driven compact X-ray FEL Kilometer-scale X-ray FEL Linac Coherent Light Source X-ray Holography Microscope Coherent X-ray Beam stop Pin hole Zone plate sample Visualization by T. Tajima, 2010 Ralph Aßmann EuCARD2 WS Page 13

14 High Fields? Lasers! Transverse electrical field LBNL laboratory Note that power P is the peak power! Now we can buy 1 PW lasers! Ralph Aßmann EuCARD2 WS Page 14

15 Reminder: Plasma-Acceleration (Internal Injection) Ralph Aßmann EuCARD2 WS Page 15

16 Reminder: Plasma-Acceleration (Internal Injection) Ralph Aßmann EuCARD2 WS Page 16

17 Reminder: Plasma-Acceleration (Internal Injection) Ralph Aßmann EuCARD2 WS Page 17

18 Famous Accelerator Paper 1979: 3162 Citations > Idea: Use a plasma to convert the transverse electrical field of the laser into a longitudinal electrical field in the plasma! Ralph Aßmann EuCARD2 WS Page 18

19 Famous Unkown Note 1985: Not in citation index > Idea: Beam Loading to Flatten Wakefield > Author: Simon van der Meer CLIC Note No. 3, CERN/PS/85-65 (AA) (1985). > Shape the electron beam to get optimized fields in the plasma, e.g. minimize energy spread. > Study: Tom Katsouleas. Katsouleas, T., et al. Beam Loading in Plasma Accelerators. Particle Accelerators, 1987, Vol. 22, pp (1987) Ralph Aßmann EuCARD2 WS Page 19

20 Famous Accelerator Paper 2002: 769 Citations > Idea: Generate e- beams from the plasma electrons > Authors: A. Pukhov, J. Meyer-ter-Vehn > Rejected by high impact journals. > Nature publications on the subsequent experimental verifications of this theory Ralph Aßmann EuCARD2 WS Page 20

21 Famous Accelerator Paper 2004: 1361 Citations Ralph Aßmann EuCARD2 WS Page 21

22 Ralph Aßmann EuCARD2 WS Page 22

23 5 PW laser and LWFA area High stability LWFA Comb beam high efficiency LWFA for FEL LWFA for science (FEL, ) PW laser, also for LWFA (finally 100 GeV?) FEL R&D for LWFA ICAN for high efficiency Protondriven PWFA Ralph Aßmann EuCARD2 WS Page 23

24 LWFA FEL e- driven PWFA PWFA modulation Ion plasma acc. and transport FEL, industrial applications, PWFA LWFA low density, external inj. atto-s radiation sources plasma wakefield imaging Two 1 PW laser, ion/p plasma acc., radiation therapy R&D LWFA, polarized particles LWFA, medical imaging, training LWFA for radiation sources Ralph Aßmann EuCARD2 WS Page 24

25 The EuPRAXIA Project Proposal Ralph Aßmann EuCARD2 WS Page 25

26 GERMANY Research Field Matter: new programme structure Matter and the Universe Fundamental Particles and Forces Cosmic Matter in the Laboratory Matter and Radiation from the Universe LK II performance category II = user operation of large scale facilities From Matter to Materials and Life In-House Research on the Structure, Dynamics and Function of Matter at Large Scale Faciltities Facility Topic: Research on Matter with Brilliant Light Sources Facility Topic: Neutrons for Research on Condensed Matter Facility Topic: Physics and Materials Science with Ion Beams Facility Topic: Research at Highest Electromagnetic Fields Matter and Technologies Accelerator Research and Development Detector Technologies and Systems Evaluation for the programme oriented funding in the research field Matter was recently completed Reinhard Brinkmann Director Accelerator Division Accelerator R&D EuCARD2 Meeting, DESY19 May 2014 page 26 PAGE 26 Review of the Research Field Matter Helmut Dosch

27 Helmholtz Distributed ARD Test Facility 27 Hamburg, 28/04/2015

28 BESSY VSR FLASH E-XFEL SRF CW Existing Flagship Project(s) SC RF Technology (to CW) BERLinPRO FLUTE SINBAD LIGHT ELBE AMTF PITZ JENA JUSPARC ARD ST3 FLASHForward REGAE LUX SEITE 28

29 FLASH E-XFEL BESSY VSR SRF CW e- plasma Injector KIT Plasma LC Plasma FEL DESY Medical Imaging Uni HH Existing Flagship Project(s) NEW - PROPOSED Flagship Project 1 HAMBURG SC RF Technology (to CW) e- plasma accelerator BERLinPRO FLUTE SINBAD LIGHT ELBE AMTF PITZ JENA JUSPARC ARD ST3 FLASHForward REGAE LUX SEITE 29

30 FLASH E-XFEL BESSY VSR SRF CW e- plasma Injector KIT Plasma LC Plasma FEL DESY Medical Imaging Uni HH Biol./M ed. Time-resolved plasma diagnostics, material R&D Pol. Beams (n) Existing Flagship Project(s) NEW - PROPOSED Flagship Project 1 HAMBURG NEW - PROPOSED Flagship Project 2 DRESDEN SC RF Technology (to CW) e- plasma accelerator p/ion plasma accelerator BERLinPRO FLUTE SINBAD LIGHT ELBE AMTF PITZ JENA JUSPARC ARD ST3 FLASHForward REGAE LUX SEITE 30

31 FLASH E-XFEL BESSY VSR SRF CW e- plasma Injector KIT Plasma LC Time-resolved plasma diagnostics, material R&D Plan to ask Plasma for strategic Biol./M investment funding for Helmholtz FEL ed. distributed DESY ARD test facility. Universities included Medical as external partners with work Imagingpackage Uni HH responsibility. Pol. Beams (n) Existing Flagship Project(s) NEW - PROPOSED Flagship Project 1 HAMBURG NEW - PROPOSED Flagship Project 2 DRESDEN SC RF Technology (to CW) e- plasma accelerator p/ion plasma accelerator BERLinPRO FLUTE SINBAD LIGHT ELBE AMTF PITZ JENA JUSPARC ARD ST3 FLASHForward REGAE LUX SEITE 31

32 Short INnovative Bunches & Accelerators at Desy 50 as, ICS ERC Synergy Grant 14 M, DESY, Uni HH, Arizona ARD top class research in existing infrastructure (discontinued DORIS) < 1 fs with conventional technology ARD, DESY, Uni HH, KIT Footprint: 90 m x 50 m > 1 GeV/m, useable beam quality, FEL? LAOLA, ARD, DESY, Uni HH Third party funding, interest from ELI, Ralph Aßmann EuCARD2 WS Page 32

33 Hamburg Plasma Collaboration Lot s of Students = DESY Hamburg + DESY Zeuthen/Berlin + Uni Hamburg + Friends Wismar, Germany, 2012 Ralph Aßmann EuCARD2 WS Page 33

34 Part of Helmholtz ARD Team Dresden Ralph Aßmann EuCARD2 WS Page 34

35 Ralph Aßmann EuCARD2 WS Page 35

36 Accelerator on a Chip 2013: 28 Citations > Use dielectric structure to couple laser fields to electron beam. > Recent progresses in the US. > Funding support from EU Ralph Aßmann EuCARD2 WS Page 36

37 Synergy from the Start of R&D Onwards, based on new, laser-driven accelerator technology. Research on the photo-system. Laser science (F. Kärtner, DESY/Uni HH) Spectroscopy light sources (H. Chapman, DESY/Uni HH) Biology (P. Fromme, Uni Arizona) Accelerator science (R. Aßmann, DESY) > The only accelerator-related ERC synergy grant. Funding: 14 M over 6 years ( ) > Will be set up at DESY in the context of the multipurpose accelerator research facility SINBAD (part of the Distributed ARD test facility). Ralph Aßmann EuCARD2 WS Page 37

38 AXSIS Atto-Second Light Source (Obsolete Version) Ralph Aßmann EuCARD2 WS Page 38

39 Some Observations I > Novel accelerators are about new ideas, building new machines and doing new science. > Every y. It is often heavily criticized and not believed in. > These ideas. > Often create this academic environment for nurturing new ideas from young scientists. > Big and not interested in an academic environment. There are exceptions: See S. v.d. Meer or the ARD program Accelerator R&D as own research field. > The field requires, independent of project-related pressures and requirements. Must maintain this! Ralph Aßmann EuCARD2 WS Page 39

40 Some Observations II > Advanced accelerator work is often on! > This kind of work to our field. They later want to build what they invent influx to projects! > Novel and innovative studies excellent for the institutes and the scientists! > Novel accelerators are in a promising and at the same time critical phase of their development the next 10 years should be very interesting. Ralph Aßmann EuCARD2 WS Page 40

41 Wideröe 1992 at age 90 After all,. are not subject to any such considerations. The. The with regard to accelerating particles by electromagnetic means (i.e. within the scope of the Maxwell equations which have been known since the 19th century),, and technology surprises us almost daily with innovations which in turn allow us to broach new trains of thought. there are yet be made. They could allow us to advance to. Ralph Aßmann EuCARD2 WS Page 41 to

42 2 nd EAAC 2015 Sep , 2015 Isola d Elba TALKS LUNCH COFFEE DINNER BREAKFAST DISCUSSIONS Wave breaking

43 Thank you for your attention Ralph Aßmann EuCARD2 WS Page 43

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar SINBAD Ralph W. Aßmann Leading Scientist, DESY LAOLA Collaboration Meeting, Wismar 28.05.2013 Reminder: Helmholtz Roadmap > The latest Helmholtz-roadmap for research infrastructure was published in 2011.

More information

Accelerator R&D Towards a New Generation of Accelerators

Accelerator R&D Towards a New Generation of Accelerators Accelerator R&D Towards a New Generation of Accelerators R.W. Aßmann Leading Scientist DESY CERN, 12.3.2015 Content 1. Why are we working on new accelerators? 2. What is our organization and funding? 3.

More information

Accelerator Activities at PITZ

Accelerator Activities at PITZ Accelerator Activities at PITZ Plasma acceleration etc. Outline > Motivation / Accelerator Research & Development (ARD) > Plasma acceleration Basic Principles Activities SINBAD > ps-fs electron and photon

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Outlook for PWA Experiments

Outlook for PWA Experiments Outlook for PWA Experiments Ralph Assmann, Steffen Hillenbrand, Frank Zimmermann CERN, BE Department, ABP Group KET Meeting Dortmund 25 October 2010 themes community interest and potential first demonstration

More information

Accelerator R&D. Ralph W. Aßmann Leading Scientist, DESY

Accelerator R&D. Ralph W. Aßmann Leading Scientist, DESY Accelerator R&D Ralph W. Aßmann Leading Scientist, DESY 23.07.2013 Acknowledge discussions with and/or material from: F. Zimmermann, A. Caldwell, N. Walker, A. Seryi, R. Brinkmann, M. Harrison, S. Myers,

More information

Lectures on accelerator physics

Lectures on accelerator physics Lectures on accelerator physics Lecture 3 and 4: Examples Examples of accelerators 1 Rutherford s Scattering (1909) Particle Beam Target Detector 2 Results 3 Did Rutherford get the Nobel Prize for this?

More information

Welcome to DESY. Welcome to DESY at the Eighth International Workshop on Radiation Safety at Synchrotron Radiation Sources

Welcome to DESY. Welcome to DESY at the Eighth International Workshop on Radiation Safety at Synchrotron Radiation Sources Welcome to DESY Welcome to DESY at the Eighth International Workshop on Radiation Safety at Synchrotron Radiation Sources Norbert Tesch Head of DESY Radiation Protection Group June 3, 2015 DESY - Deutsches

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Welcome to DESY. What is DESY and what kind of research is done here?

Welcome to DESY. What is DESY and what kind of research is done here? Welcome to DESY. What is DESY and what kind of research is done here? Michael Grefe DESY Press and Public Relations (PR) What is DESY? > Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

More information

Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators. Koji TAKATA KEK. Accelerator Course, Sokendai

Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators. Koji TAKATA KEK. Accelerator Course, Sokendai .... Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai

More information

Contents. LC : Linear Collider. µ-µ Collider. Laser-Plasma Wave Accelerator. Livingston Chart 6 References

Contents. LC : Linear Collider. µ-µ Collider. Laser-Plasma Wave Accelerator. Livingston Chart 6 References .... Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators VI : References Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator

More information

Overview of accelerator science opportunities with FACET ASF

Overview of accelerator science opportunities with FACET ASF Overview of accelerator science opportunities with FACET ASF Bob Siemann DOE FACET Review, February 19-20, 2008 OUTLINE I. Plasma Wakefield Acceleration II. Plasma Wakefield Based Linear Colliders III.

More information

Report on the XFEL STI Round Table Workshop

Report on the XFEL STI Round Table Workshop Report on the XFEL STI Round Table Workshop June 22-24th, 2004 background workshop XFEL preparatory phase Jochen R. Schneider DESY Approaching the European XFEL Facility Steering Committee chairman: H.

More information

Summary of lecture 1 and 2: Main ingredients in LHC success

Summary of lecture 1 and 2: Main ingredients in LHC success Summary of lecture 1 and 2: Main ingredients in LHC success LHC LHC Tevatron Tevatron s=1.8tev Energy 10 times higher cross section than Tevatron and integrated luminosity already ½ at end of 2011! 1 Lectures

More information

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011 Preface Accelerator science took off in the 20th century. Accelerator scientists invent many innovative technologies to produce and manipulate high energy and high quality beams that are instrumental to

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

4 th Verbundforschungs-Workshop Condensed Matter

4 th Verbundforschungs-Workshop Condensed Matter 4 th Verbundforschungs-Workshop Condensed Matter Andreas Jankowiak Institute for Accelerator Physics and Department of Accelerator Operation 4 th Verbundforschungs-Workshop Condensed Matter 10.-11.10.2012,

More information

Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References. Koji TAKATA KEK. Accelerator Course, Sokendai

Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References. Koji TAKATA KEK. Accelerator Course, Sokendai .... Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator

More information

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator

Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Electron Spectrometer for FLASHForward Plasma-Wakefield Accelerator Artemis Kontogoula Supervisor: Vladyslav Libov September 7, 2017 National & Kapodistrian University of Athens, Greece Deutsches Elektronen-Synchrotron

More information

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration

An Astrophysical Plasma Wakefield Accelerator. Alfven Wave Induced Plasma Wakefield Acceleration An Astrophysical Plasma Wakefield Accelerator Alfven Wave Induced Plasma Wakefield Acceleration Laboratory Astrophysics at SLAC Study in a Laboratory setting: Fundamental physics Astrophysical Dynamics

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010 SLAC National Accelerator Laboratory Persis S. Drell Director August 30, 2010 SLAC Mission Explore the ultimate structure and dynamics of matter in the domains of energy, space and time at the smallest

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

arxiv: v1 [physics.acc-ph] 1 Sep 2015

arxiv: v1 [physics.acc-ph] 1 Sep 2015 based on proton-driven plasma wakefield acceleration arxiv:1509.00235v1 [physics.acc-ph] 1 Sep 2015 A. Caldwell Max Planck Institute for Physics, Munich, Germany E-mail: caldwell@mpp.mpg.de UCL, London,

More information

Plasma wakefield acceleration and high energy physics

Plasma wakefield acceleration and high energy physics Plasma wakefield acceleration and high energy physics Matthew Wing (UCL/DESY) Introduction and motivation Plasma wakefield acceleration Laser-driven plasma wakefield acceleration Electron-driven plasma

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

XFEL project overview

XFEL project overview EUROPEAN STRATEGY FORUM on RESEARCH INFRASTRUCTURES ESFRI workshop on Technical Challenges at the Proposed European XFEL Laboratory 30-31 October 2003 XFEL project overview Jochen R. Schneider (DESY) Scientific

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Matthew Wing (UCL) Motivation : particle physics; large accelerators General concept : proton-driven plasma wakefield acceleration Towards a first test experiment

More information

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko

Electron acceleration behind self-modulating proton beam in plasma with a density gradient. Alexey Petrenko Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko Outline AWAKE experiment Motivation Baseline parameters Longitudinal motion of electrons Effect

More information

Summer Students 2003

Summer Students 2003 Welcome to Where are you? What do we do? What will you do? DORIS/PETRA HERA TESLA/FEL Summer Students 2003 1 DESY - Overview Mission: Development, construction and running of accelerators Exploit the accelerators

More information

CARE-ELAN Final Report

CARE-ELAN Final Report CARE-ELAN Final Report ELAN in Summary: Country Number of institutes Finland 1 3 France 8 70 Germany 12 130 Italy 5 45 Netherlands 2 7 Poland 3 20 Portugal 1 3 Spain 3 9 Sweden 1 2 Switzerland 2 3 United

More information

arxiv: v1 [physics.acc-ph] 1 Jan 2014

arxiv: v1 [physics.acc-ph] 1 Jan 2014 The Roads to LPA Based Free Electron Laser Xiongwei Zhu Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 arxiv:1401.0263v1 [physics.acc-ph] 1 Jan 2014 January 3, 2014 Abstract

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

Research Topics in Beam Physics Department

Research Topics in Beam Physics Department Introduction Research Topics in Beam Physics Department The physics of particle beams has been a broad and vibrant research field encompassing the study of charged particle beams and their interactions.

More information

Direct-Current Accelerator

Direct-Current Accelerator Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 11 Accelerators One of the most important tools of nuclear science is the

More information

Particle accelerators. Dr. Alessandro Cianchi

Particle accelerators. Dr. Alessandro Cianchi Particle accelerators Dr. Alessandro Cianchi Particle accelerators: instructions 48 hrs lectures (Wednesday 6, Friday 6 9:00) All the documentation is available via web in pdf @ http://people.roma2.infn.it/~cianchi/didattica.html

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS J. Plasma Physics (2012), vol. 78, part 4, pp. 347 353. c Cambridge University Press 2012 doi:.17/s0022377812000086 347 A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration

More information

High-gradient X-band RF technology for CLIC and beyond

High-gradient X-band RF technology for CLIC and beyond High-gradient X-band RF technology for CLIC and beyond Philip Burrows 1 Oxford University Oxford, UK E-mail: Philip.Burrows@physics.ox.ac.uk Walter Wuensch CERN Geneva, Switzerland E-mail: Walter.Wuensch@cern.ch

More information

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration

VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration VHEeP: A very high energy electron proton collider based on protondriven plasma wakefield acceleration Allen Caldwell (MPI) Matthew Wing (UCL/DESY/Univ. Hamburg) Introduction Accelerator based on plasma

More information

Particle Driven Acceleration Experiments

Particle Driven Acceleration Experiments Particle Driven Acceleration Experiments Edda Gschwendtner CAS, Plasma Wake Acceleration 2014 2 Outline Introduction Motivation for Beam Driven Plasmas Wakefield Acceleration Experiments Electron and proton

More information

Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2011. Oct.

Koji TAKATA KEK.   Accelerator Course, Sokendai. Second Term, JFY2011. Oct. .... Fundamental Concepts of Particle Accelerators I : Dawn of Particle Accelerator Technology Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam On behalf of SPARCLAB collaboration EMITTANCE X X X X X X X X 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

Office of Science Perspective

Office of Science Perspective Office of Science Perspective Symposium on Accelerators for America s Future October 26, 2009 Dr. William F. Brinkman Director, Office of Science U.S. Department of Energy A Rich Heritage of Advancement

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC Electron Acceleration in a Plasma Wakefield Accelerator E200 Collaboration @ FACET, SLAC Chan Joshi UCLA Making Big Science Small : Moving Toward a TeV Accelerator Using Plasmas Work Supported by DOE Compact

More information

CLASS 32. NUCLEAR BINDING ENERGY

CLASS 32. NUCLEAR BINDING ENERGY CLASS 3. NUCLEAR BINDING ENERGY 3.. INTRODUCTION Scientists found that hitting atoms with alpha particles could induce transformations in light elements. (Recall that the capture of an alpha particle by

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Overview & Introduc0on Prospects for a very high energy ep and ea collider Leo Stodolsky Fest Symposium. June 1-2, 2017

Overview & Introduc0on Prospects for a very high energy ep and ea collider Leo Stodolsky Fest Symposium. June 1-2, 2017 Overview & Introduc0on Prospects for a very high energy ep and ea collider Leo Stodolsky Fest Symposium June 1,2 2017 Max Planck Ins0tute for Physics Workshop Prospects for a very high energy ep and ea

More information

Applications of Accelerators from Basic Science to Industrial Use

Applications of Accelerators from Basic Science to Industrial Use Applications of Accelerators from Basic Science to Industrial Use December 13 th, 2016 Kiyokazu Sato TOSHIBA Corporation Keihin Product Operations 2016 Toshiba Corporation 1 /23 Contents 1. Applications

More information

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575

Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Accelerator Physics and Technologies for Linear Colliders University of Chicago, Physics 575 Lecture 1: S. D. Holmes, An Introduction to Accelerators for High Energy Physics I. Introduction to the Course

More information

Earth Science Lesson Plan Quarter 4, Week 10, Day 1

Earth Science Lesson Plan Quarter 4, Week 10, Day 1 Earth Science Lesson Plan Quarter 4, Week 10, Day 1 Outcomes for Today Standard Focus: PREPARE 1. Background knowledge necessary for today s reading. Before the term black hole was coined in 1967, these

More information

Research at DESY. Th. Naumann

Research at DESY. Th. Naumann Research at DESY Th. Naumann 1 Thanks 2 Research at DESY Staff: 1150 Budget: 158 M Hamburg/Zeuthen ~ 10/1 Particle Physics HERA Astro-Particle Physics ILC Synchrotron Radiation PETRA3 VUV-FEL XFEL 3 DESY

More information

BEAM DIAGNOSTICS CHALLENGES

BEAM DIAGNOSTICS CHALLENGES International Beam Instrumentation Conference Barcelona September 13 th, 2016 BEAM DIAGNOSTICS CHALLENGES IN PLASMA WAKEFIELD ACCELERATION Seminar Jens Osterhoff FLASHFORWARD Project Leader Head, Research

More information

Particle Accelerators. The Electrostatic Accelerators

Particle Accelerators. The Electrostatic Accelerators Particle Accelerators The Electrostatic Accelerators References K. Wille The Physics of Particle Accelerator, Oxford University press pag 1-29 H. Wiedeman Particle accelerator physics volume 1, chapter

More information

ACCELERATORS AND MEDICAL PHYSICS

ACCELERATORS AND MEDICAL PHYSICS ACCELERATORS AND MEDICAL PHYSICS 1 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 1-28.10.10 - U. Amaldi 1 Short history of Medical Physics with radiations (*) In physics radiation is

More information

Status of the Transverse Diagnostics at FLASHForward

Status of the Transverse Diagnostics at FLASHForward Journal of Physics: Conference Series PAPER OPEN ACCESS Status of the Transverse Diagnostics at FLASHForward To cite this article: P Niknejadi et al 2018 J. Phys.: Conf. Ser. 1067 042010 View the article

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

Introduction to Accelerator Physics CHESS & LEPP

Introduction to Accelerator Physics CHESS & LEPP 1 Introduction to Accelerator Physics Content 1. A History of Particle Accelerators 2. E & M in Particle Accelerators 3. Linear Beam Optics in Straight Systems 4. Linear Beam Optics in Circular Systems

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

Lecture 1 August 29

Lecture 1 August 29 HASYLAB - Facility - Free Electron Laser (FEL) http://www-hasylab.desy.de/facility/fel/main.htm Page 1 of 1 8/23/2006 HASYLAB Facility Free Electron Laser Overview FLASH FLASH User Info Events Job Offers

More information

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software

Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software Simulation of laser propagation in plasma chamber including nonlinearities by utilization of VirtualLab 5 software DESY Summer Student Programme, 2012 Anusorn Lueangaramwong Chiang Mai University, Thailand

More information

Experiments with combined laser and gamma beams at ELI-NP

Experiments with combined laser and gamma beams at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

Summary and outlook. Total γp cross section Vector meson cross sections Very low x physics and saturation. Sensitivity to leptoquarks

Summary and outlook. Total γp cross section Vector meson cross sections Very low x physics and saturation. Sensitivity to leptoquarks Physics case of the very high energy electron proton collider, VHEeP Allen Caldwell (MPI, Munich) Matthew Wing (UCL / DESY) Introduction, motivation, reminder of VHEeP Physics case of very high energy

More information

Engines of Discovery

Engines of Discovery http://www.enginesofdiscovery.com/ Synchrotron Light Sources Spring 8, a synchrotron light source located in Japan. This intricate structure of a complex protein molecule structure has been determined

More information

Experiments at the Large Hadron Collider Challenges and Opportunities

Experiments at the Large Hadron Collider Challenges and Opportunities Experiments at the Large Hadron Collider Challenges and Opportunities Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK 11 December 2014 What

More information

The CERN Accelerator School holds courses in all of the member states of CERN. 2013, Erice, Italy

The CERN Accelerator School holds courses in all of the member states of CERN. 2013, Erice, Italy The CERN Accelerator School holds courses in all of the member states of CERN 2013, Erice, Italy Superconductivity for Accelerators Numerous changes in last weeks Background RF Magnets Technology Case

More information

Physics of Accelerators-I. D. P. Mahapatra Utkal University, Bhubaneswar

Physics of Accelerators-I. D. P. Mahapatra Utkal University, Bhubaneswar Physics of Accelerators-I D. P. Mahapatra Utkal University, Bhubaneswar Introduction Brief history of developments in NP, Requirement of accelerators, Lorntz force and acceleration principles, Acceleration

More information

TERA CONTRIBUTIONS TO PARTNER

TERA CONTRIBUTIONS TO PARTNER TERA CONTRIBUTIONS TO PARTNER Ugo Amaldi University of Milano Bicocca and TERA Foundation 1 CNAO status 2 The CNAO Foundation builds with INFN in Pavia the Centre designed by TERA on the basis of PIMMS.

More information

Street, London, WC1E 6BT, UK ABSTRACT

Street, London, WC1E 6BT, UK ABSTRACT Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies S. Cipiccia *a, D. Reboredo a, F. A. Vittoria b, G. H. Welsh a, P. Grant a, D. W. Grant

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

Laser wakefield electron acceleration to multi-gev energies

Laser wakefield electron acceleration to multi-gev energies Laser wakefield electron acceleration to multi-gev energies N.E. Andreev Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Russia

More information

https://acceleratorinstitute.web.cern.ch/acceleratorinstitute/engines.pdf Engines of Discovery

https://acceleratorinstitute.web.cern.ch/acceleratorinstitute/engines.pdf Engines of Discovery https://acceleratorinstitute.web.cern.ch/acceleratorinstitute/engines.pdf Contents I. Electrostatic Machines II. Cyclotrons III. Linacs IV. Betatrons V. Synchrotrons VI. Colliders VII. Synchrotron Radiation

More information

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using:

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using: Christopher Cassell Research Physicist Field of Nuclear physics and Detector physics Developing detector for radiation fields around particle accelerators using: Experimental data Geant4 Monte Carlo Simulations

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN

Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Welcome Hoşgeldiniz Prof. Emmanuel Tsesmelis Deputy Head of International Relations CERN Accelerating Science and Innovation The Mission of CERN Push back the frontiers of knowledge E.g. the secrets of

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

Fundamental Concepts of Particle Accelerators I : Dawn of Particle Accelerator Technology. Koji TAKATA KEK. Accelerator Course, Sokendai

Fundamental Concepts of Particle Accelerators I : Dawn of Particle Accelerator Technology. Koji TAKATA KEK. Accelerator Course, Sokendai .... Fundamental Concepts of Particle Accelerators I : Dawn of Particle Accelerator Technology Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai

More information

A proposed very high energy electron proton collider, VHEeP

A proposed very high energy electron proton collider, VHEeP A proposed very high energy electron proton collider, VHEeP UCL, London, UK E-mail: m.wing@ucl.ac.uk A. Caldwell Max Planck Institute for Physics, Munich, Germany E-mail: caldwell@mpp.mpg.de The possibility

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research

Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Introduction to Accelerators. Scientific Tools for High Energy Physics and Synchrotron Radiation Research Pedro Castro Introduction to Particle Accelerators DESY, July 2010 What you will see Pedro Castro

More information

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Dark Current at Injector Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Considerations for the guns Ultra-low slice emittance of electron beams higher gradient at the gun cavity solenoid field

More information

Saptaparnee Chaudhuri. University of South Carolina Dept. of Physics and Astronomy

Saptaparnee Chaudhuri. University of South Carolina Dept. of Physics and Astronomy Saptaparnee Chaudhuri University of South Carolina Dept. of Physics and Astronomy 1 WORKING OF LAWRENCE S CYCLOTRON APPLICATIONS AND LIMITATIONS OF CYCLOTRON THE SYNCHROCYCLOTRON THE SYNCHROTRON 2 LAWRENCE

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

History. EuroLEAP kick-off: general presentation, B Cros May 16th 06 2

History. EuroLEAP kick-off: general presentation, B Cros May 16th 06 2 European Laser Electron controlled Acceleration in Plasmas to GeV energy range NEST ADVENTURE STREP Proposal Coordinator: Brigitte CROS (CNRS- LPGP) Approved January, 2006 History This NEST STREP Adventure

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Konstantin Lotov Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia AWAKE Collaboration Motivation

More information

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes Laser Wakefield Acceleration Pioneering Studies Conducted by the Lasers, Optical Accelerator Systems Integrated Studies (L OASIS) Program at Lawrence Berkeley National Laboratory Presented by Derek Schaeffer

More information

FEL R&D goals and potential in UK Institutes

FEL R&D goals and potential in UK Institutes FEL R&D goals and potential in UK Institutes Brian McNeil, Department of Physics, University of Strathclyde For: Peter Ratoff, Director, Cockcroft Institute, Daresbury Laboratory UK-XFEL R&D goals Critically

More information

The European X-ray Free- Electron Laser Facility in Hamburg

The European X-ray Free- Electron Laser Facility in Hamburg The European X-ray Free- Electron Laser Facility in Hamburg Massimo Altarelli European X-ray Free-Electron Laser Facility 22607 Hamburg, Germany massimo.altarelli@xfel.eu Some Third Generation Synchrotrons

More information