Engines of Discovery

Size: px
Start display at page:

Download "https://acceleratorinstitute.web.cern.ch/acceleratorinstitute/engines.pdf Engines of Discovery"

Transcription

1

2 Contents I. Electrostatic Machines II. Cyclotrons III. Linacs IV. Betatrons V. Synchrotrons VI. Colliders VII. Synchrotron Radiation Sources VIII. Cancer Therapy Machines IX. The Future X. Concluding Remarks

3 The race to high energies Rutherford fired the starting pistol At the Royal Society in 1928 he said I have long hoped for a source of positive particles more energetic than those emitted from natural radioactive substances.

4 Wideroe s Linac

5 Cavendish Laboratory

6 Linacs an idea waiting for a technology Luis Alvarez Ed Ginzton

7 Cyclotrons an inspired discovery A picture of the 11-inch cyclotron built by Lawrence and his graduate students, David Sloan and M. Stanley Livingston, during 1931.

8 The CALUTRON The concept of electromagnetic separation of the isotopes of uranium, U238 and U235, only the later, which is only 1/2% of natural uranium, being fissionable, was developed by E.O.Lawrence. A first demonstration was made on the not-yet-completed 184, and soon Oak Ridge with 1000 calutrons was established. Although all the material for the Hiroshima bomb was electromagnetically separated, that method has not been used since WWII and, as we all know, centrifuges are now the method of choice.

9 Discovery of the Synchrotron Oliphant The Arsenal Synchrotron

10 This 300 MeV electron synchroton at the General Electric Co. at Schenectady, built in the late 1940s. The photograph shows a beam of synchrotron radiation emerging.

11 Strong focusing The invention of strong focusing, in the early 1950 s, by Ernie Courant, Hartland Snyder and Stan Livingston, revolutionized accelerator design in that it allowed small apertures (unlike the Bevatron whose aperture was large enough to contain a jeep, with its windshield down). The concept was independently discovered by Nick Christofilos.

12 AdA the first electron -positron storage ring Built and operated at Frascati, Italy and later moved to take advantage of a more powerful source of positrons in France. Bruno Touschek

13 The Large Hadron Collider (LHC) But why was the 20 TeV SSC never built?.

14 The CMS detector.

15 Future Projects 1 The International Linear Collider (ILC) & Compact Linear Collider (CLIC) 2 Spallation Neutron Source 3 Rare Isotope Accelerator and FAIR 4 Neutrino Super Beams, Neutrino Factories and Muon Colliders 5 Accelerators for Heavy Ion Fusion 6 Proton Drivers for Power Reactors 7 Laser and Plasma Acceleration 8 Medical accelerators (FFAG accelerators)

16 Synchrotron Light Sources Spring 8, a synchrotron light source located in Japan. This intricate structure of a complex protein molecule structure has been determined by reconstructing scattered synchrotron radiation

17 Linac Coherent Light Source and the European Union X-Ray Free Electron Laser (Fourth Generation) FELs, invented in the late 1970 s at Stanford are now becoming the basis of major facilities in the USA (SLAC) and Europe (DESY).They promise intense coherent radiation. The present projects expect to reach radiation of 1 Angstrom (0.1 nano-meters, 10kilo-volt radiation)

18 10 12 Electrons 14 GeV Peak current > 1000A Transversely < 0.1 mm photons 0.15 < λ < 1.5 nm Pulse: 100 femtoseconds down to 100 attoseconds Rate 120 Hz 1000 to times brighter than third generation Cost M$ 300 The SLAC site showing its two-mile long linear accelerator, the two arms of the SLC linear collider, and the large ring of PEPII. This is where the LCLS will be located.

19 A possible fourth generation light source. This is the proposed facility LUX, as envisioned by a team at LBL. Features a recirculating Engines linac and energy recovery. of Discovery X-ray pulses of femtosecond length.

20 Cancer Therapy Machines A modern system for treating a patient with x-rays produced by a high energy electron beam. The system, built by Varian, shows the very precise controls for positioning of a patient. The whole device is mounted on a gantry. As the gantry is rotated, so is the accelerator and the resulting x-rays, so that the radiation can be delivered to the tumor from all directions.

21 A drawing showing the Japanese proton ion synchrotron, HIMAC. The facility consists of two synchrotrons, so as to maintain a continuous supply of ions (or protons) to the treatment area. The pulse of ions is synchronized with the respiration of the patient so as to minimize the effect of organ movement.

22 Ions Left is the phase diagram for the quark-gluon plasma Right is gold-gold collision in RHIC

23 Unstable Isotopes and their Ions The Rare Isotope Accelerator (RIA) scheme. The heart of the facility is composed of a driver accelerator capable of accelerating every element of the periodic table up to at least 400 MeV/nucleon. Rare isotopes will be produced in a number of dedicated production targets and will be used at rest for experiments, or they can be accelerated to energies below or near the Coulomb barrier.

24 Neutrino experiments Solar Neutrino Problem Super K K to K Gran Sasso Minos and NUMI Super Beams Neutrino Factories Muon Colliders Kamiokande This very large underground detector, located in the mountains of Japan. Many very important results have come from this facility that first took data in The facility was instrumental in solving the solar neutrino problem.

25 CLIC A diagram showing the CERN approach to a linear collider. The two main linacs are driven by 12 GHz radio frequency power derived from a drive beam of low energy but high intensity that will be prepared in a series of rings combined with a conventional linac.

26 Inertial fusion An artist s view of a heavy ion inertial fusion facility in the US. Although the facility is large, it is made of components that all appear to be feasible to construct and operate.

27 Proton Drivers for Power Reactors A linac scheme for driving a reactor. These devices can turn thorium into a reactor fuel, power a reactor safely, and burn up long-lived fission products.

28 Oxford/LBNL Plasma-Laser Experiments: Guiding achieved over 33 mm: Capillary 190 um Input laser power 40 TW Peak input intensity > W cm -2 Plasma: cm -3 Spot size at entrance 26 μm Spot size at exit 33 μm W. P. Leemans et al. Nature Physics (2006) Butler et al. Phys. Rev. Lett (2002). D. J. Spence et al. Phys. Rev. E (R) (2001) Entrance Exit Plasma channel formed by heat conduction to capillary wall. E = (1.0 +/-0.06) GeV ΔE = 2.5% r.m.s Δθ = 1.6 mrad r.m.s.

29 Accelerators bringing nations together The King of Jordan discussing with scientists the Sesame Project, which will be located in Jordan and available to all scientists.

30 Conclusions Accelerators embody all that is good in modern technology They continue to be in many research fields for developing countries. Their practical application in Industry and Medicine is Expanding Their future (for the young engineer or physicist) is a bright one.

31 Links Author s ted.wilson@cern.ch : This talk: Particle Accelerators

Engines of Discovery

Engines of Discovery http://www.enginesofdiscovery.com/ Synchrotron Light Sources Spring 8, a synchrotron light source located in Japan. This intricate structure of a complex protein molecule structure has been determined

More information

Particle Accelerators for Research and for Medicine

Particle Accelerators for Research and for Medicine Particle Accelerators for Research and for Medicine Prof. Ted Wilson (CERN and Oxford University) based on the book: ISBN-013 978-981-270-070-4 http://www.enginesofdiscovery.com/ This talk: http://acceleratorinstitute.web.cern.ch/acceleratorinstitute/tt2012/

More information

Particle Accelerators for Research and for Medicine

Particle Accelerators for Research and for Medicine Particle Accelerators for Research and for Medicine Prof. Ted Wilson (CERN and Oxford University) based on the book: ISBN-013 978-981-270-070-4 http://www.enginesofdiscovery.com/ This talk: http://acceleratorinstitute.web.cern.ch/acceleratorinstitute/spring13/

More information

Introduction to Particle Accelerators & CESR-C

Introduction to Particle Accelerators & CESR-C Introduction to Particle Accelerators & CESR-C Michael Billing June 7, 2006 What Are the Uses for Particle Accelerators? Medical Accelerators Create isotopes tracers for Medical Diagnostics & Biological

More information

Lecture 1 - Overview of Accelerators I ACCELERATOR PHYSICS MT E. J. N. Wilson

Lecture 1 - Overview of Accelerators I ACCELERATOR PHYSICS MT E. J. N. Wilson Lecture 1 - Overview of Accelerators I ACCELERATOR PHYSICS MT 2011 E. J. N. Wilson Lecture 1 - E. Wilson 13-Oct 2011 - Slide 1 Links Author s e-mail: ted.wilson@cern.ch Engines of Discovery : http://www.worldscibooks.com/physics/6272.html

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Direct-Current Accelerator

Direct-Current Accelerator Nuclear Science A Teacher s Guide to the Nuclear Science Wall Chart 1998 Contemporary Physics Education Project (CPEP) Chapter 11 Accelerators One of the most important tools of nuclear science is the

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011 Preface Accelerator science took off in the 20th century. Accelerator scientists invent many innovative technologies to produce and manipulate high energy and high quality beams that are instrumental to

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators. Koji TAKATA KEK. Accelerator Course, Sokendai

Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators. Koji TAKATA KEK. Accelerator Course, Sokendai .... Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator Course, Sokendai

More information

Welcome to DESY. What is DESY and what kind of research is done here?

Welcome to DESY. What is DESY and what kind of research is done here? Welcome to DESY. What is DESY and what kind of research is done here? Michael Grefe DESY Press and Public Relations (PR) What is DESY? > Deutsches Elektronen-Synchrotron (German electron synchrotron) DESY

More information

Particle accelerators

Particle accelerators Particle accelerators Charged particles can be accelerated by an electric field. Colliders produce head-on collisions which are much more energetic than hitting a fixed target. The center of mass energy

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Contents. LC : Linear Collider. µ-µ Collider. Laser-Plasma Wave Accelerator. Livingston Chart 6 References

Contents. LC : Linear Collider. µ-µ Collider. Laser-Plasma Wave Accelerator. Livingston Chart 6 References .... Fundamental Concepts of Particle Accelerators V : Future of the High Energy Accelerators VI : References Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

Accelerator Basics. Abhishek Rai IUAC

Accelerator Basics. Abhishek Rai IUAC Accelerator Basics Abhishek Rai IUAC School on Accelerator Science and Technology May 7-18, 2018 Some basics Charge on an electron(e) = 1.6 10-19 Coulomb (1 unit of charge) 1 Atomic mass unit (amu) = 1.66

More information

Applications of Accelerators from Basic Science to Industrial Use

Applications of Accelerators from Basic Science to Industrial Use Applications of Accelerators from Basic Science to Industrial Use December 13 th, 2016 Kiyokazu Sato TOSHIBA Corporation Keihin Product Operations 2016 Toshiba Corporation 1 /23 Contents 1. Applications

More information

Historical developments. of particle acceleration

Historical developments. of particle acceleration Historical developments of particle acceleration Y.Papaphilippou N. Catalan-Lasheras USPAS, Cornell University, Ithaca, NY 20 th June 1 st July 2005 1 Outline Principles of Linear Acceleration Electrostatic

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

Review of ISOL-type Radioactive Beam Facilities

Review of ISOL-type Radioactive Beam Facilities Review of ISOL-type Radioactive Beam Facilities, CERN Map of the nuclear landscape Outline The ISOL technique History and Geography Isotope Separation On-Line Existing facilities First generation facilities

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References. Koji TAKATA KEK. Accelerator Course, Sokendai

Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References. Koji TAKATA KEK. Accelerator Course, Sokendai .... Fundamental Concepts of Particle Accelerators V: Future of the High Energy Accelerators VI: References Koji TAKATA KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html Accelerator

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Physics at Accelerators

Physics at Accelerators Physics at Accelerators Course outline: The first 4 lectures covers the physics principles of accelerators. Preliminary plan: Lecture 1: Accelerators, an introduction. Acceleration principles. Lecture

More information

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN 5 th Particle Physics Workshop National Centre for Physics Quaid-i-Azam University Campus, Islamabad PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN 2 nd Lecture Examples of Modern

More information

e + e - (1) Silicon Vertex Detector

e + e - (1) Silicon Vertex Detector 3.1 GeV (4) Electromagnetic Calorimeter (3) Cerenkov- Detector (2) Drift Chamber (5) 1.5 T Solenoid (6) Instrumented Iron Yoke e + e - (1) Silicon Vertex Detector 9.0 GeV e + e - Colliders as B Factories

More information

Office of Science Perspective

Office of Science Perspective Office of Science Perspective Symposium on Accelerators for America s Future October 26, 2009 Dr. William F. Brinkman Director, Office of Science U.S. Department of Energy A Rich Heritage of Advancement

More information

Applications of scattering theory! From the structure of the proton! to protein structure!

Applications of scattering theory! From the structure of the proton! to protein structure! Applications of scattering theory From the structure of the proton to protein structure Nicuşor Tîmneanu 2016 Contents and goals What is scattering and why study it? How is the structure of matter determined?

More information

Lectures on accelerator physics

Lectures on accelerator physics Lectures on accelerator physics Lecture 3 and 4: Examples Examples of accelerators 1 Rutherford s Scattering (1909) Particle Beam Target Detector 2 Results 3 Did Rutherford get the Nobel Prize for this?

More information

PARTICLE PHYSICS :Higher Level Long Questions

PARTICLE PHYSICS :Higher Level Long Questions PARTICLE PHYSICS :Higher Level Long Questions Particle Accelerators (including Cockcroft and Walton experiment) 2013 Question 10 (a) In 1932 J.D. Cockroft and E.T.S. Walton accelerated protons to energies

More information

CLASS 32. NUCLEAR BINDING ENERGY

CLASS 32. NUCLEAR BINDING ENERGY CLASS 3. NUCLEAR BINDING ENERGY 3.. INTRODUCTION Scientists found that hitting atoms with alpha particles could induce transformations in light elements. (Recall that the capture of an alpha particle by

More information

Particle accelerators. Dr. Alessandro Cianchi

Particle accelerators. Dr. Alessandro Cianchi Particle accelerators Dr. Alessandro Cianchi Particle accelerators: instructions 48 hrs lectures (Wednesday 6, Friday 6 9:00) All the documentation is available via web in pdf @ http://people.roma2.infn.it/~cianchi/didattica.html

More information

Discovery of the Neutrino Mass-I. P1X* Frontiers of Physics Lectures October 2004 Dr Paul Soler University of Glasgow

Discovery of the Neutrino Mass-I. P1X* Frontiers of Physics Lectures October 2004 Dr Paul Soler University of Glasgow -I P1X* Frontiers of Physics Lectures 19-0 October 004 Dr Paul Soler University of Glasgow Outline 1. Introduction: the structure of matter. Neutrinos:.1 Neutrino interactions. Neutrino discovery and questions.3

More information

Accelerator Physics WS 2012/13

Accelerator Physics WS 2012/13 Lecture: Accelerator Physics Heidelberg WS 2012/13 Prof. A. Schöning Physikalisches Institut der Universität Heidelberg Introduction 1 Goal of this Lecture Introduction to Accelerator Physics: experimental

More information

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using:

Research Physicist Field of Nuclear physics and Detector physics. Developing detector for radiation fields around particle accelerators using: Christopher Cassell Research Physicist Field of Nuclear physics and Detector physics Developing detector for radiation fields around particle accelerators using: Experimental data Geant4 Monte Carlo Simulations

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

M d e i di l ca A pplilli t ca i ttions o f P arti ttic ti l P e h Physics Saverio Braccini INSEL

M d e i di l ca A pplilli t ca i ttions o f P arti ttic ti l P e h Physics Saverio Braccini INSEL Medical la Applications of Particle Physics Saverio Braccini INSELSPITALSPITAL Department of Medical Radiation Physics University Hospital, Berne, Switzerland Rome - 14-15.06.07 - SB - 1/5 Saverio.Braccini@cern.ch

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 28th July 2014 Pedro Castro / MPY Accelerator Physics 28 th July 2014

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

Section 4 : Accelerators

Section 4 : Accelerators Section 4 : Accelerators In addition to their critical role in the evolution of nuclear science, nuclear particle accelerators have become an essential tool in both industry and medicine. Table 4.1 summarizes

More information

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear

Alpha decay usually occurs in heavy nuclei such as uranium or plutonium, and therefore is a major part of the radioactive fallout from a nuclear Radioactive Decay Radioactivity is the spontaneous disintegration of atomic nuclei. This phenomenon was first reported in 1896 by the French physicist Henri Becquerel. Marie Curie and her husband Pierre

More information

Introduction to Accelerator Physics Part 1

Introduction to Accelerator Physics Part 1 Introduction to Accelerator Physics Part 1 Pedro Castro / Accelerator Physics Group (MPY) Introduction to Accelerator Physics DESY, 27th July 2015 Pedro Castro / MPY Introduction to Accelerator Physics

More information

Particles and Waves Final Revision Exam Questions Part 1

Particles and Waves Final Revision Exam Questions Part 1 Particles and Waves Final Revision Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN Version 2013 P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model 1 Section

More information

Future Directions in Experimental Nuclear and Particle Physics

Future Directions in Experimental Nuclear and Particle Physics Future Directions in Experimental Nuclear and Particle Physics Robert Bacher Bacher at the Caltech Synchrotron Barry Barish Bacher Symposium Caltech 5-Nov-05 Bacher and the Energy Frontier In the Spring

More information

Colliders - Quo Vadis?

Colliders - Quo Vadis? Colliders - Quo Vadis? past 20 years, next 20 years and beyond Vladimir Shiltsev Fermi National Accelerator Laboratory Accelerator Physics Center Colliders Invented in 1956 (if not earlier) First collisions

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model

More information

RDCH 702 Lecture 8: Accelerators and Isotope Production

RDCH 702 Lecture 8: Accelerators and Isotope Production RDCH 702 Lecture 8: Accelerators and Isotope Production Particle generation Accelerator Direct Voltage Linear Cyclotrons Synchrotrons Photons * XAFS * Photonuclear Heavy Ions Neutrons sources Fission products

More information

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics

Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Unravelling the Mysteries of Matter with the CERN Large Hadron Collider An Introduction/Overview of Particle Physics Introductory Lecture August 3rd 2014 International Centre for Theoretical Physics and

More information

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator.

Medical Linac. Block diagram. Electron source. Bending magnet. Accelerating structure. Klystron or magnetron. Pulse modulator. Block diagram Medical Linac Electron source Bending magnet Accelerating structure Pulse modulator Klystron or magnetron Treatment head 1 Medical Linac 2 Treatment Head 3 Important Accessories Wedges Dynamic

More information

Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy *

Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy * Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy * D. Trbojevic 1), E. Keil 2), and A. Sessler 3) 1) Brookhaven National Laboratory, Upton, New York, USA 2)

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

ACCELERATORS AND MEDICAL PHYSICS

ACCELERATORS AND MEDICAL PHYSICS ACCELERATORS AND MEDICAL PHYSICS 1 Ugo Amaldi University of Milano Bicocca and TERA Foundation EPFL 1-28.10.10 - U. Amaldi 1 Short history of Medical Physics with radiations (*) In physics radiation is

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Bill Murray, RAL, Quarks and leptons Bosons and forces The Higgs March 2002 1 Outline: An introduction to particle physics What is the Higgs Boson? Some unanswered questions

More information

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University

O WILEY- MODERN NUCLEAR CHEMISTRY. WALTER D. LOVELAND Oregon State University. DAVID J. MORRISSEY Michigan State University MODERN NUCLEAR CHEMISTRY WALTER D. LOVELAND Oregon State University DAVID J. MORRISSEY Michigan State University GLENN T. SEABORG University of California, Berkeley O WILEY- INTERSCIENCE A JOHN WILEY &

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

17/01/17 F. Ould-Saada

17/01/17 F. Ould-Saada Chapter 3 3.1 Why Do We Need Accelerators? 3.1.1 The Center-of-Mass (c.m.) System 3.1.2 The Laboratory System 3.1.3 Fixed Target Accelerator and Collider 3.2 Linear and Circular Accelerators 3.2.1 Linear

More information

Particle Accelerators

Particle Accelerators Experimental Methods of Particle Physics Particle Accelerators Andreas Streun, PSI andreas.streun@psi.ch https://ados.web.psi.ch/empp-streun Andreas Streun, PSI 1 Particle Accelerators 1. Introduction

More information

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes

Laser Wakefield Acceleration. Presented by Derek Schaeffer For Advanced Optics, Physics 545 Professor Sergio Mendes Laser Wakefield Acceleration Pioneering Studies Conducted by the Lasers, Optical Accelerator Systems Integrated Studies (L OASIS) Program at Lawrence Berkeley National Laboratory Presented by Derek Schaeffer

More information

Summary of lecture 1 and 2: Main ingredients in LHC success

Summary of lecture 1 and 2: Main ingredients in LHC success Summary of lecture 1 and 2: Main ingredients in LHC success LHC LHC Tevatron Tevatron s=1.8tev Energy 10 times higher cross section than Tevatron and integrated luminosity already ½ at end of 2011! 1 Lectures

More information

GSI Helmholtzzentrum für Schwerionenforschung. Indian Institute of Technology Ropar

GSI Helmholtzzentrum für Schwerionenforschung. Indian Institute of Technology Ropar GSI Helmholtzzentrum für Schwerionenforschung PHL556: Accelerators and Detectors Lectures: Hans-Jürgen Wollersheim office: 360 phone: 0188 1242294 e-mail: h.j.wollersheim@gsi.de Tuesday 15:50 16:40 Wednesday

More information

A 8 ECTS credit course autumn opintoviikon kurssi sysksyllä 2008

A 8 ECTS credit course autumn opintoviikon kurssi sysksyllä 2008 Introduction A 8 ECTS credit course autumn 2008 8 opintoviikon kurssi sysksyllä 2008 http://www.helsinki.fi/~www_sefo/accelerators/ lectures Mon 12-14, Tue 14-16 in D116 weeks 38-42, 44-50 (no lectures

More information

Perspective from Fermilab NRC-DUSEL, December 15, 2010

Perspective from Fermilab NRC-DUSEL, December 15, 2010 Perspective from Fermilab NRC-DUSEL, December 15, 2010 Outline Summary An underground laboratory for the US Unique advantages of DUSEL The importance of DUSEL in Fermilab s plans Overall particle physics

More information

Colliders and the Machine Detector Interface

Colliders and the Machine Detector Interface Colliders and the Machine Detector Interface M. Sullivan SLAC National Accelerator Laboratory for the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study High Energy

More information

Accelerators Ideal Case

Accelerators Ideal Case Accelerators Ideal Case Goal of an accelerator: increase energy of CHARGED par:cles Increase energy ΔE = r 2 F dr = q ( E + v B)d r The par:cle trajectory direc:on dr parallel to v ΔE = increase of energy

More information

Introduction to Modern Physics and to the LNF-INFN Activities

Introduction to Modern Physics and to the LNF-INFN Activities Introduction to Modern Physics and to the LNF-INFN Activities INSPYRE 2016 INternational School on modern PhYsics and Research Quantum Legacy 15-19 February 2016 Catalina Curceanu LNF-INFN Discovery

More information

Mega-Science research infrastructure

Mega-Science research infrastructure The Ministry of Education and Science of the Russian Federation Mega-Science research infrastructure By Sergey Salikhov Director of Department for Science and technology, Ministry of Education and Science

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Physics in Italy

Physics in Italy Physics in Italy 1950-2000 Nicola Cabibbo Dipartimento di Fisica Università di Roma La Sapienza INFN Sezione di Roma Lares, 3 July 2009 Nicola Cabibbo Physics in Italy Lares, 3 July 2009 1 / 27 The Conversi,

More information

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning

Quanta to Quarks. Science Teachers Workshop 2014 Workshop Session. Adrian Manning Quanta to Quarks Science Teachers Workshop 2014 Workshop Session Adrian Manning The Quanta to Quarks module! The Quanta to Quarks module ultimately deals with some of the most fundamental questions about

More information

Unconventional Acceleration Systems for Proton Radiotherapy

Unconventional Acceleration Systems for Proton Radiotherapy Unconventional Acceleration Systems for Proton Radiotherapy Thomas Rockwell Mackie Emeritus Professor University of Wisconsin Director of Medical Devices Morgridge Institute for Research Madison WI Conflict

More information

Particle Physics with Electronic Detectors

Particle Physics with Electronic Detectors Particle Physics with Electronic Detectors This experiment performed by the Oxford group on the 7 GeV proton synchrotron, NIMROD, at the Rutherford Laboratory in 1967 gave the first usefully accurate measurement

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

Introduction to REX-ISOLDE concept and overview of (future) European projects

Introduction to REX-ISOLDE concept and overview of (future) European projects Introduction to REX-ISOLDE concept and overview of (future) European projects Thanks to: Y. Blumenfeld, P. Butler, M. Huyse, M. Lindroos, K. Riisager, P. Van Duppen Energetic Radioactive Beam Facilities

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 13 Registration: https://uebungen.physik.uni-heidelberg.de/v/378 Experimental Tests of QED Part 1 1 Overview PART I Cross Sections and QED tests

More information

Physics of Accelerators-I. D. P. Mahapatra Utkal University, Bhubaneswar

Physics of Accelerators-I. D. P. Mahapatra Utkal University, Bhubaneswar Physics of Accelerators-I D. P. Mahapatra Utkal University, Bhubaneswar Introduction Brief history of developments in NP, Requirement of accelerators, Lorntz force and acceleration principles, Acceleration

More information

Occupational Radiation Protection at Accelerator Facilities: Challenges

Occupational Radiation Protection at Accelerator Facilities: Challenges Occupational Radiation Protection at Accelerator Facilities: Challenges Haridas.G Health Physics Division Bhabha Atomic Research Centre INDIA Int. Conf. on Occupational Radiation Protection: Enhancing

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

High-gradient X-band RF technology for CLIC and beyond

High-gradient X-band RF technology for CLIC and beyond High-gradient X-band RF technology for CLIC and beyond Philip Burrows 1 Oxford University Oxford, UK E-mail: Philip.Burrows@physics.ox.ac.uk Walter Wuensch CERN Geneva, Switzerland E-mail: Walter.Wuensch@cern.ch

More information

The Next Steps in Particle Physics

The Next Steps in Particle Physics by JOHN ELLIS The Next Steps in Particle Physics PARTICLE PHYSICS IS NOW POISED to take its next steps. A well-established framework is provided by the Standard Model, which has been tested in experiments

More information

FACET*, a springboard to the accelerator frontier of the future

FACET*, a springboard to the accelerator frontier of the future Going Beyond Current Techniques: FACET*, a springboard to the accelerator frontier of the future Patric Muggli University of Southern California muggli@usc.edu *Facilities for Accelerator Science and Experimental

More information

R&D of emulsion technology to study fragment interaction to improve ion therapy

R&D of emulsion technology to study fragment interaction to improve ion therapy FJPPL 07 11 May@KEK R&D of emulsion technology to study fragment interaction to improve ion therapy Imad Laktineh (Lyon)/ Kimio Niwa (Nagoya University) Toshiyuki Toshito (KEK) Japanese-French collaboration

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

PHYS 3446 Lecture #18

PHYS 3446 Lecture #18 PHYS 3446 Lecture #18 Monday, Nov. 7, 2016 Dr. Jae Yu Particle Accelerators Electro-static Accelerators Cyclotron Accelerators Synchrotron Accelerators Elementary Particle Properties Forces and their relative

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION CERN-SL-2000-070 CLIC Note 463 AP Multi-TeV CLIC Photon Collider Option H. Burkhardt Considerations for an option of γγ collisions at multi-tev

More information

Experiments at the Large Hadron Collider Challenges and Opportunities

Experiments at the Large Hadron Collider Challenges and Opportunities Experiments at the Large Hadron Collider Challenges and Opportunities Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK 11 December 2014 What

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

The Turkish Accelerator Center (TAC) Project. Bora Ketenoğlu. Department of Engineering Physics Ankara University / TURKEY

The Turkish Accelerator Center (TAC) Project. Bora Ketenoğlu. Department of Engineering Physics Ankara University / TURKEY The Turkish Accelerator Center (TAC) Project Bora Ketenoğlu Department of Engineering Physics Ankara University / TURKEY Contents The emblem & homepage Why do we want to build an accelerator complex? Where

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information