Classical Set Theory. Outline. Classical Set Theory. 4. Linguistic model, approximate reasoning. 1. Fuzzy sets and set-theoretic operations.

Size: px
Start display at page:

Download "Classical Set Theory. Outline. Classical Set Theory. 4. Linguistic model, approximate reasoning. 1. Fuzzy sets and set-theoretic operations."

Transcription

1 Knowledge-Based Control Systems (SC48) Lecture 2: Fuzzy Sets and Systems lfredo Núñez Section of Railway Engineering CiTG, Delft University of Tecnology Te Neterlands Robert Babuška Delft Center for Systems and Control 3mE, Delft University of Tecnology Te Neterlands tel: tel: Classical Set Teory set is a collection of objects wit a common property. Outline. Fuzzy sets and set-teoretic operations. 2. Fuzzy relations. 3. Fuzzy systems 4. Linguistic model, approimate reasoning Classical Set Teory set is a collection of objects wit a common property. Eamples: Set of natural numbers smaller tan 5: = {, 2, 3, 4}

2 Classical Set Teory set is a collection of objects wit a common property. Eamples: Set of natural numbers smaller tan 5: = {, 2, 3, 4} Unit disk in te comple plane: = {z z C, z } Representation of Sets Enumeration of elements: = {, 2,..., n} Definition by property: = { X as propertyp } Caracteristic function: μ () :X {, } μ () = is member of is not member of Classical Set Teory set is a collection of objects wit a common property. Eamples: Set of natural numbers smaller tan 5: = {, 2, 3, 4} Unit disk in te comple plane: = {z z C, z } line in R 2 : = {(, y) a + by + c =, (, y, a, b, c) R} Set of natural numbers smaller tan

3 Fuzzy sets Classical Set pproac set of tall people = { 8} [cm] Wy Fuzzy Sets? Classical sets are good for well-defined concepts (mats, programs, etc.) Less suitable for representing commonsense knowledge in terms of vague concepts suc as: a tall person, slippery road, nice weater,... want to buy a big car wit moderate consumption If te temperature is too low, increase eating a lot Logical Propositions Jon is tall... true or false Jon s eigt: Jon = 8. μ (8.) = (true) Jon = 79.5 μ (79.5) = (false) [cm]

4 Fuzzy Set pproac [cm] is full member of ( 9) μ () = (, ) is partial member of (7 <<9) is not member of ( 7) Subjective and Contet Dependent [cm] tall in Cina tall in Europe tall in NB Fuzzy Logic Propositions Jon is tall... degree of trut Jon s eigt: Jon = 8. μ (8.) =.6 Jon = 79.5 μ (79.5) =.56 Paul = 2. μ (2.) = [cm] Sapes of Membersip Functions triangular trapezoidal bell-saped

5 Representation of Fuzzy Sets Pointwise as a list of membersip/element pairs: = {μ ()/,...,μ (n)/n} = {μ (i)/i i X} s a list of α-level/α-cut pairs: = {α/α,α 2/α2,...,α n,αn } = {α i/αi α i (, )} Linguistic Variable TEMPERTURE linguistic variable low medium ig linguistic terms µ semantic rule membersip functions t (temperature) base variable Basic requirements: coverage and semantic soundness Representation of Fuzzy Sets nalytical formula for te membersip function: μ () = + 2, R or more generally μ() = +d(, v). d(, v)... dissimilarity measure Various sortand notations: μ ()...()...a Properties of fuzzy sets

6 Support of a Fuzzy Set supp() ={ μ () > } supp( ) support is an ordinary set α-cut of a Fuzzy Set α = { μ () >α} or α = { μ () α} -level α is an ordinary set Core (Kernel) of a Fuzzy Set core() ={ μ () =} core( ) core is an ordinary set Conve and Non-Conve Fuzzy Sets conve non-conve B fuzzy set is conve all its α-cuts are conve sets.

7 Non-Conve Fuzzy Set: an Eample ig-risk age age [years] Hig-risk age for car insurance policy. Fuzzy set-teoretic operations Fuzzy Numbers and Singletons fuzzy number "about 3" fuzzy singleton 3 8 Fuzzy linear regression: y = Complement (Negation) of a Fuzzy Set μ Ā () = μ ()

8 Intersection (Conjunction) of Fuzzy Sets B μ B () =min(μ (),μ B ()) Union (Disjunction) of Fuzzy Sets B μ B () =ma(μ (),μ B ()) Oter Intersection Operators (T-norms) Probabilistic and (product operator): μ B () =μ () μ B () Lukasiewicz and (bounded difference): μ B () =ma(,μ ()+μ B () ) Many oter t-norms... [, ] [, ] [, ] Oter Union Operators (T-conorms) Probabilistic or : μ B () =μ ()+μ B () μ () μ B () Lukasiewicz or (bounded sum): μ B () =min(,μ ()+μ B ()) Many oter t-conorms... [, ] [, ] [, ]

9 Demo of a Matlab tool Linguistic Modifiers: Eample µ() More or less Very μ very() = μ 2 μ More or less() = μ Linguistic Modifiers (Hedges) Modify te meaning of a fuzzy set. For instance, very can cange te meaning of te fuzzy set tall to very tall. Oter common edges: sligtly, more or less, rater, etc. Usual approac: powered edges: μ M p() = μp Linguistic Modifiers more or less small not very small rater big.5 Small Medium Big

10 Fuzzy Set in Multidimensional Domains y = {μ (, y)/(, y) (, y) X Y } Cylindrical Etension 2 Cylindrical Etension 2 Cylindrical Etension 2 et2 () ={μ ()/(,2) (,2) X X2}

11 proj 2 Projection 2 Projection onto X2 2 2 () ={ sup X μ (,2)/2) 2 X2} Projection onto X 2 proj () ={ sup 2 X2 μ (,2))/ X} Intersection on Cartesian Product Space n operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set. Eample: 2 on X X2: 2 2

12 Intersection on Cartesian Product Space n operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set. Eample: 2 on X X2: 2 2 Intersection on Cartesian Product Space n operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set. Eample: 2 on X X2: 2 2 Intersection on Cartesian Product Space n operation between fuzzy sets are defined in different domains results in a multi-dimensional fuzzy set. Eample: 2 on X X2: 2 2 Fuzzy Relations Classical relation represents te presence or absence of interaction between te elements of two or more sets. Wit fuzzy relations, te degree of association (correlation) is represented by membersip grades. n n-dimensional fuzzy relation is a mapping R : X X2 X3... Xn [, ] wic assigns membersip grades to all n-tuples (,2,...,n) from te Cartesian product universe.

13 .5 Fuzzy Relations: Eample Eample: R : y ( is approimately equal to y ) μ R (, y) =e ( y) y membersip grade y Grapical Interpretation: Crisp Function y crisp argument interval argument y Relational Composition Given fuzzy relation R defined in X Y and fuzzy set defined in X, derive te corresponding fuzzy set B defined in Y : B = R =proj Y (et X Y () R) ma-min composition: μ B (y) =ma min (μ (),μ R (, y)) nalogous to evaluating a function. Grapical Interpretation: Interval Function crisp argument interval argument y y

14 y Grapical Interpretation: Fuzzy Relation crisp argument fuzzy argument y Fuzzy Systems Ma-Min Composition: Eample μ B (y) =ma min (μ (),μ R (, y)), y [ ] = [ ] Fuzzy Systems Systems wit fuzzy parameters y = Fuzzy inputs and states ẋ(t) =(t)+bu(t), () = 2 Rule-based systems If te eating power is ig ten te temperature will increase fast

15 Rule-based Fuzzy Systems Linguistic (Mamdani) fuzzy model If is ten y is B Fuzzy relational model If is ten y is B(.),B2(.8) Takagi Sugeno fuzzy model If is ten y = f() Linguistic Model If is ten y is B is antecedent (fuzzy proposition) y is B consequent (fuzzy proposition) Compound propositions (logical connectives, edges): If is very big and 2 is not small Linguistic Model If is ten y is B is antecedent (fuzzy proposition) y is B consequent (fuzzy proposition) Multidimensional ntecedent Sets 2 on X X2: 2 2

16 Partitioning of te ntecedent Space 2 conjunctive 2 oter connectives Formal pproac. Represent eac if ten rule as a fuzzy relation. 2. ggregate tese relations in one relation representative for te entire rule base. 3. Given an input, use relational composition to derive te corresponding output. Inference Mecanism Given te if-ten rules and an input fuzzy set, deduce te corresponding output fuzzy set. Formal approac based on fuzzy relations. Simplified approac (Mamdani inference). Interpolation (additive fuzzy systems). Modus Ponens Inference Rule Classical logic Fuzzy logic if is ten y is B if is ten y is B is is y is B y is B

17 Relational Representation of Rules If ten rules can be represented as a relation, using implications or conjunctions. Classical implication B B ( B) \B R: {, } {, } {, } Fuzzy Implications and Conjunctions Fuzzy implication is represented by a fuzzy relation: R:[, ] [, ] [, ] μ R (, y) =I(μ (),μ B (y)) I(a, b) implication function classical Kleene Diene I(a, b) =ma( a, b) Lukasiewicz I(a, b) =min(, a + b) T-norms Mamdani I(a, b) =min(a, b) Larsen I(a, b) =a b Relational Representation of Rules If ten rules can be represented as a relation, using implications or conjunctions. Conjunction B B \B R: {, } {, } {, } Inference Wit One Rule. Construct implication relation: μ R (, y) =I(μ (),μ B (y))

18 Inference Wit One Rule. Construct implication relation: μ R (, y) =I(μ (),μ B (y)) 2. Use relational composition to derive B from : B = R Grapical Illustration μ R (, y) =min(μ (),μ B (y)) μ B (y) =ma min (μ (),μ R (, y)) R= min( B, ) Inference Wit Several Rules. Construct implication relation for eac rule i: μ R i (, y) =I(μ i (),μ Bi (y)) 2. ggregate relations Ri into one: μ R (, y) = aggr(μ i ()) Te aggr operator is te minimum for implications and te maimum for conjunctions. 3. Use relational composition to derive B from : B = R R µ B ma(min(,r)) B B y y min(,r) Eample: Conjunction. Eac rule If is i ten ỹ is Bi is represented as a fuzzy relation on X Y : Ri = i Bi μ R i (, y) =μ i () μ Bi (y)

19 ggregation and Composition 2. Te entire rule base s relation is te union: R = K i= i K Ri μ R (, y) = ma Ri (, y)] 3. Given an input value te output value B is: B = R μ B (y) =ma [μ () μ R(, y)] X R If Flow is Zero ten Level is Zero Eample: Modeling of Liquid Level - If Fin is Zero ten is Zero - IfFin is Med ten is Med F out - IfFin is Large ten is Med Large R Large R2 If Flow is Medium ten Level is Medium R 2 Large

20 R3 If Flow is Large ten Level is Medium R 3 Large ggregated Relation Simplified pproac. Compute te matc between te input and te antecedent membersip functions (degree of fulfillment). 2. Clip te corresponding output fuzzy set for eac rule by using te degree of fulfillment. 3. ggregate output fuzzy sets of all te rules into one fuzzy set. Tis is called te Mamdani or ma-min inference metod. R R 2 R 3 Large Water Tank Eample - If Fin is Zero ten is Zero - IfFin is Med ten is Med F out - IfFin is Large ten is Med Large

21 Mamdani Inference: Eample Large If Fin is Zero ten... Large Determine te degree of fulfillment (trut) of te first rule. Mamdani Inference: Eample Large Given a crisp (numerical) input (Fin). If Fin is Zero ten is Zero Large Clip consequent membersip function of te first rule.

22 If Fin is Medium ten... Large Determine te degree of fulfillment (trut) of te second rule. ggregation Large Combine te result of te two rules (union). If Fin is Medium ten is Medium Large Clip consequent membersip function of te second rule. Defuzzification conversion of a fuzzy set to a crisp value y' y (a) center of gravity y' y (b) mean of maima

23 Center-of-Gravity Metod F μ B (yj)yj j= y = F μ B (yj) j= Fuzzy System Components Defuzzification Large Compute a crisp (numerical) output of te model (centerof-gravity metod).

Lecture 1: Introduction & Fuzzy Control I

Lecture 1: Introduction & Fuzzy Control I Lecture 1: Introduction & Fuzzy Control I Jens Kober Robert Babuška Knowledge-Based Control Systems (SC42050) Cognitive Robotics 3mE, Delft University of Technology, The Netherlands 12-02-2018 Lecture

More information

is implemented by a fuzzy relation R i and is defined as

is implemented by a fuzzy relation R i and is defined as FS VI: Fuzzy reasoning schemes R 1 : ifx is A 1 and y is B 1 then z is C 1 R 2 : ifx is A 2 and y is B 2 then z is C 2... R n : ifx is A n and y is B n then z is C n x is x 0 and y is ȳ 0 z is C The i-th

More information

Rule-Based Fuzzy Model

Rule-Based Fuzzy Model In rule-based fuzzy systems, the relationships between variables are represented by means of fuzzy if then rules of the following general form: Ifantecedent proposition then consequent proposition The

More information

Fundamentals. 2.1 Fuzzy logic theory

Fundamentals. 2.1 Fuzzy logic theory Fundamentals 2 In this chapter we briefly review the fuzzy logic theory in order to focus the type of fuzzy-rule based systems with which we intend to compute intelligible models. Although all the concepts

More information

Towards Smooth Monotonicity in Fuzzy Inference System based on Gradual Generalized Modus Ponens

Towards Smooth Monotonicity in Fuzzy Inference System based on Gradual Generalized Modus Ponens 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) Towards Smooth Monotonicity in Fuzzy Inference System based on Gradual Generalized Modus Ponens Phuc-Nguyen Vo1 Marcin

More information

OUTLINE. Introduction History and basic concepts. Fuzzy sets and fuzzy logic. Fuzzy clustering. Fuzzy inference. Fuzzy systems. Application examples

OUTLINE. Introduction History and basic concepts. Fuzzy sets and fuzzy logic. Fuzzy clustering. Fuzzy inference. Fuzzy systems. Application examples OUTLINE Introduction History and basic concepts Fuzzy sets and fuzzy logic Fuzzy clustering Fuzzy inference Fuzzy systems Application examples "So far as the laws of mathematics refer to reality, they

More information

Fuzzy Expert Systems Lecture 6 (Fuzzy Logic )

Fuzzy Expert Systems Lecture 6 (Fuzzy Logic ) Fuzzy Expert Systems Lecture 6 (Fuzzy Logic ) Unlike Classical Logic, Fuzzy Logic is concerned, in the main, with modes of reasoning which are approximate rather than exact L. A. Zadeh Lecture 6 صفحه Summary

More information

Fuzzy Rules and Fuzzy Reasoning (chapter 3)

Fuzzy Rules and Fuzzy Reasoning (chapter 3) Fuzzy ules and Fuzzy easoning (chapter 3) Kai Goebel, Bill Cheetham GE Corporate esearch & Development goebel@cs.rpi.edu cheetham@cs.rpi.edu (adapted from slides by. Jang) Fuzzy easoning: The Big Picture

More information

Parameterized Soft Complex Fuzzy Sets

Parameterized Soft Complex Fuzzy Sets Journal of Progressive Researc in Matematics(JPRM) IN: 95-08 CITECH Volume Issue REERCH ORGNITION Publised online: June 7 05 Journal of Progressive Researc in Matematics www.scitecresearc.com/journals

More information

Fuzzy Rules and Fuzzy Reasoning. Chapter 3, Neuro-Fuzzy and Soft Computing: Fuzzy Rules and Fuzzy Reasoning by Jang

Fuzzy Rules and Fuzzy Reasoning. Chapter 3, Neuro-Fuzzy and Soft Computing: Fuzzy Rules and Fuzzy Reasoning by Jang Chapter 3, Neuro-Fuzzy and Soft Computing: Fuzzy Rules and Fuzzy Reasoning by Jang Outline Extension principle Fuzzy relations Fuzzy if-then rules Compositional rule of inference Fuzzy reasoning 2 Extension

More information

Motivation. From Propositions To Fuzzy Logic and Rules. Propositional Logic What is a proposition anyway? Outline

Motivation. From Propositions To Fuzzy Logic and Rules. Propositional Logic What is a proposition anyway? Outline Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo Motivation From Propositions

More information

THE COMPLETE SOLUTION PROCEDURE FOR THE FUZZY EOQ INVENTORY MODEL WITH LINEAR AND FIXED BACK ORDER COST

THE COMPLETE SOLUTION PROCEDURE FOR THE FUZZY EOQ INVENTORY MODEL WITH LINEAR AND FIXED BACK ORDER COST Aryabatta Journal of Matematics & Informatics Vol. 5, No., July-ec., 03, ISSN : 0975-739 Journal Impact Factor (0) : 0.93 THE COMPLETE SOLUTION PROCEURE FOR THE FUZZY EOQ INVENTORY MOEL WITH LINEAR AN

More information

Fuzzy Rules and Fuzzy Reasoning (chapter 3)

Fuzzy Rules and Fuzzy Reasoning (chapter 3) 9/4/00 Fuzz ules and Fuzz easoning (chapter ) Kai Goebel, ill Cheetham GE Corporate esearch & Development goebel@cs.rpi.edu cheetham@cs.rpi.edu (adapted from slides b. Jang) Fuzz easoning: The ig Picture

More information

COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS

COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS COMPARISON OF FUZZY LOGIC CONTROLLERS FOR A MULTIVARIABLE PROCESS KARTHICK S, LAKSHMI P, DEEPA T 3 PG Student, DEEE, College of Engineering, Guindy, Anna University, Cennai Associate Professor, DEEE, College

More information

Computational Intelligence Lecture 6:Fuzzy Rule Base and Fuzzy Inference Engine

Computational Intelligence Lecture 6:Fuzzy Rule Base and Fuzzy Inference Engine Computational Intelligence Lecture 6:Fuzzy Rule Base and Fuzzy Inference Engine Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 200 arzaneh Abdollahi Computational

More information

Financial Informatics XI: Fuzzy Rule-based Systems

Financial Informatics XI: Fuzzy Rule-based Systems Financial Informatics XI: Fuzzy Rule-based Systems Khurshid Ahmad, Professor of Computer Science, Department of Computer Science Trinity College, Dublin-2, IRELAND November 19 th, 28. https://www.cs.tcd.ie/khurshid.ahmad/teaching.html

More information

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

2. The Logic of Compound Statements Summary. Aaron Tan August 2017 2. The Logic of Compound Statements Summary Aaron Tan 21 25 August 2017 1 2. The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence Statements; Compound Statements; Statement Form (Propositional

More information

Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University. Fuzzy Logic Controllers - Tutorial

Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University. Fuzzy Logic Controllers - Tutorial Institute for Advanced Management Systems Research Department of Information Technologies Åbo Akademi University Directory Table of Contents Begin Article Fuzzy Logic Controllers - Tutorial Robert Fullér

More information

Computational Intelligence Lecture 13:Fuzzy Logic

Computational Intelligence Lecture 13:Fuzzy Logic Computational Intelligence Lecture 13:Fuzzy Logic Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi Computational Intelligence Lecture

More information

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering

CSCE 478/878 Lecture 2: Concept Learning and the General-to-Specific Ordering Outline Learning from eamples CSCE 78/878 Lecture : Concept Learning and te General-to-Specific Ordering Stepen D. Scott (Adapted from Tom Mitcell s slides) General-to-specific ordering over ypoteses Version

More information

Applied Logic. Lecture 3 part 1 - Fuzzy logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw

Applied Logic. Lecture 3 part 1 - Fuzzy logic. Marcin Szczuka. Institute of Informatics, The University of Warsaw Applied Logic Lecture 3 part 1 - Fuzzy logic Marcin Szczuka Institute of Informatics, The University of Warsaw Monographic lecture, Spring semester 2017/2018 Marcin Szczuka (MIMUW) Applied Logic 2018 1

More information

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL Eample: design a cruise control system After gaining an intuitive understanding of the plant s dynamics and establishing the design objectives, the control engineer typically solves the cruise control

More information

Faster Adaptive Network Based Fuzzy Inference System

Faster Adaptive Network Based Fuzzy Inference System Faster Adaptive Network Based Fuzzy Inference System Submitted in partial fulfillment Of the requirements for The Degree of Doctor of Philosophy In Statistics At the University of Canterbury By Issarest

More information

Fuzzy and Rough Sets Part I

Fuzzy and Rough Sets Part I Fuzzy and Rough Sets Part I Decision Systems Group Brigham and Women s Hospital, Harvard Medical School Harvard-MIT Division of Health Sciences and Technology Aim Present aspects of fuzzy and rough sets.

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

So, we can say that fuzzy proposition is a statement p which acquires a fuzzy truth value T(p) ranges from(0 to1).

So, we can say that fuzzy proposition is a statement p which acquires a fuzzy truth value T(p) ranges from(0 to1). Chapter 4 Fuzzy Proposition Main difference between classical proposition and fuzzy proposition is in the range of their truth values. The proposition value for classical proposition is either true or

More information

Handling Uncertainty using FUZZY LOGIC

Handling Uncertainty using FUZZY LOGIC Handling Uncertainty using FUZZY LOGIC Fuzzy Set Theory Conventional (Boolean) Set Theory: 38 C 40.1 C 41.4 C 38.7 C 39.3 C 37.2 C 42 C Strong Fever 38 C Fuzzy Set Theory: 38.7 C 40.1 C 41.4 C More-or-Less

More information

Fundamentals of Concept Learning

Fundamentals of Concept Learning Aims 09s: COMP947 Macine Learning and Data Mining Fundamentals of Concept Learning Marc, 009 Acknowledgement: Material derived from slides for te book Macine Learning, Tom Mitcell, McGraw-Hill, 997 ttp://www-.cs.cmu.edu/~tom/mlbook.tml

More information

This time: Fuzzy Logic and Fuzzy Inference

This time: Fuzzy Logic and Fuzzy Inference This time: Fuzzy Logic and Fuzzy Inference Why use fuzzy logic? Tipping example Fuzzy set theory Fuzzy inference CS 460, Sessions 22-23 1 What is fuzzy logic? A super set of Boolean logic Builds upon fuzzy

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

1. Brief History of Intelligent Control Systems Design Technology

1. Brief History of Intelligent Control Systems Design Technology Acknowledgments We would like to express our appreciation to Professor S.V. Ulyanov for his continuous help, value corrections and comments to the organization of this paper. We also wish to acknowledge

More information

Fuzzy Sets and Fuzzy Logic

Fuzzy Sets and Fuzzy Logic Fuzzy Sets and Fuzzy Logic Crisp sets Collection of definite, well-definable objects (elements). Representation of sets: list of all elements ={x,,x n }, x j X elements with property P ={x x satisfies

More information

Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems

Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems SSIE 617 Fall 2008 Radim BELOHLAVEK Dept. Systems Sci. & Industrial Eng. Watson School of Eng. and Applied Sci. Binghamton University SUNY Radim Belohlavek (SSIE

More information

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic

EEE 8005 Student Directed Learning (SDL) Industrial Automation Fuzzy Logic EEE 8005 Student Directed Learning (SDL) Industrial utomation Fuzzy Logic Desire location z 0 Rot ( y, φ ) Nail cos( φ) 0 = sin( φ) 0 0 0 0 sin( φ) 0 cos( φ) 0 0 0 0 z 0 y n (0,a,0) y 0 y 0 z n End effector

More information

Walrasian Equilibrium in an exchange economy

Walrasian Equilibrium in an exchange economy Microeconomic Teory -1- Walrasian equilibrium Walrasian Equilibrium in an ecange economy 1. Homotetic preferences 2 2. Walrasian equilibrium in an ecange economy 11 3. Te market value of attributes 18

More information

Logic for Computer Science - Week 4 Natural Deduction

Logic for Computer Science - Week 4 Natural Deduction Logic for Computer Science - Week 4 Natural Deduction 1 Introduction In the previous lecture we have discussed some important notions about the semantics of propositional logic. 1. the truth value of a

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves. Calculus can be divided into two ke areas: Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and minima problems Integral

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

Islamic University of Gaza Electrical Engineering Department EELE 6306 Fuzzy Logic Control System Med term Exam October 30, 2011

Islamic University of Gaza Electrical Engineering Department EELE 6306 Fuzzy Logic Control System Med term Exam October 30, 2011 Islamic University of Gaza Electrical Engineering Department EELE 6306 Fuzzy Logic Control System Med term Exam October 30, 2011 Dr. Basil Hamed Exam Time 2:00-4:00 Name Solution Student ID Grade GOOD

More information

Outline. Introduction, or what is fuzzy thinking? Fuzzy sets Linguistic variables and hedges Operations of fuzzy sets Fuzzy rules Summary.

Outline. Introduction, or what is fuzzy thinking? Fuzzy sets Linguistic variables and hedges Operations of fuzzy sets Fuzzy rules Summary. Fuzzy Logic Part ndrew Kusiak Intelligent Systems Laboratory 239 Seamans Center The University of Iowa Iowa City, Iowa 52242-527 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Tel: 39-335

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Introduction to fuzzy sets

Introduction to fuzzy sets Introduction to fuzzy sets Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information

Hamidreza Rashidy Kanan. Electrical Engineering Department, Bu-Ali Sina University

Hamidreza Rashidy Kanan. Electrical Engineering Department, Bu-Ali Sina University Lecture 3 Fuzzy Systems and their Properties Hamidreza Rashidy Kanan Assistant Professor, Ph.D. Electrical Engineering Department, Bu-Ali Sina University h.rashidykanan@basu.ac.ir; kanan_hr@yahoo.com 2

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Fuzzy logic Fuzzyapproximate reasoning

Fuzzy logic Fuzzyapproximate reasoning Fuzzy logic Fuzzyapproximate reasoning 3.class 3/19/2009 1 Introduction uncertain processes dynamic engineering system models fundamental of the decision making in fuzzy based real systems is the approximate

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

This time: Fuzzy Logic and Fuzzy Inference

This time: Fuzzy Logic and Fuzzy Inference This time: Fuzzy Logic and Fuzzy Inference Why use fuzzy logic? Tipping example Fuzzy set theory Fuzzy inference CS 460, Sessions 22-23 1 What is fuzzy logic? A super set of Boolean logic Builds upon fuzzy

More information

Artificial Intelligence. Propositional logic

Artificial Intelligence. Propositional logic Artificial Intelligence Propositional logic Propositional Logic: Syntax Syntax of propositional logic defines allowable sentences Atomic sentences consists of a single proposition symbol Each symbol stands

More information

Where are we? Operations on fuzzy sets (cont.) Fuzzy Logic. Motivation. Crisp and fuzzy sets. Examples

Where are we? Operations on fuzzy sets (cont.) Fuzzy Logic. Motivation. Crisp and fuzzy sets. Examples Operations on fuzzy sets (cont.) G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, chapters -5 Where are we? Motivation Crisp and fuzzy sets alpha-cuts, support,

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Today s s lecture. Lecture 16: Uncertainty - 6. Dempster-Shafer Theory. Alternative Models of Dealing with Uncertainty Information/Evidence

Today s s lecture. Lecture 16: Uncertainty - 6. Dempster-Shafer Theory. Alternative Models of Dealing with Uncertainty Information/Evidence Today s s lecture Lecture 6: Uncertainty - 6 Alternative Models of Dealing with Uncertainty Information/Evidence Dempster-Shaffer Theory of Evidence Victor Lesser CMPSCI 683 Fall 24 Fuzzy logic Logical

More information

CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS

CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS CHAPTER 1 - LOGIC OF COMPOUND STATEMENTS 1.1 - Logical Form and Logical Equivalence Definition. A statement or proposition is a sentence that is either true or false, but not both. ex. 1 + 2 = 3 IS a statement

More information

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016

MAT244 - Ordinary Di erential Equations - Summer 2016 Assignment 2 Due: July 20, 2016 MAT244 - Ordinary Di erential Equations - Summer 206 Assignment 2 Due: July 20, 206 Full Name: Student #: Last First Indicate wic Tutorial Section you attend by filling in te appropriate circle: Tut 0

More information

Fuzzy Sets. Mirko Navara navara/fl/fset printe.pdf February 28, 2019

Fuzzy Sets. Mirko Navara   navara/fl/fset printe.pdf February 28, 2019 The notion of fuzzy set. Minimum about classical) sets Fuzzy ets Mirko Navara http://cmp.felk.cvut.cz/ navara/fl/fset printe.pdf February 8, 09 To aviod problems of the set theory, we restrict ourselves

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

Fuzzy expert systems

Fuzzy expert systems The Islamic University of Gaza Faculty of Engineering Dept. of Computer Engineering ECOM5039:Artificial Intelligence Eng. Ibraheem Lubbad Fuzzy expert systems Main points: Fuzzy logic is determined as

More information

2010/07/12. Content. Fuzzy? Oxford Dictionary: blurred, indistinct, confused, imprecisely defined

2010/07/12. Content. Fuzzy? Oxford Dictionary: blurred, indistinct, confused, imprecisely defined Content Introduction Graduate School of Science and Technology Basic Concepts Fuzzy Control Eamples H. Bevrani Fuzzy GC Spring Semester, 2 2 The class of tall men, or the class of beautiful women, do not

More information

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System

A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System 1 / 31 A Zadeh-Norm Fuzzy Description Logic for Handling Uncertainty: Reasoning Algorithms and the Reasoning System Judy Zhao 1, Harold Boley 2, Weichang Du 1 1. Faculty of Computer Science, University

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

. If lim. x 2 x 1. f(x+h) f(x)

. If lim. x 2 x 1. f(x+h) f(x) Review of Differential Calculus Wen te value of one variable y is uniquely determined by te value of anoter variable x, ten te relationsip between x and y is described by a function f tat assigns a value

More information

Analyzing fuzzy and contextual approaches to vagueness by semantic games

Analyzing fuzzy and contextual approaches to vagueness by semantic games Analyzing fuzzy and contextual approaches to vagueness by semantic games PhD Thesis Christoph Roschger Institute of Computer Languages Theory and Logic Group November 27, 2014 Motivation Vagueness ubiquitous

More information

Efficient Approximate Reasoning with Positive and Negative Information

Efficient Approximate Reasoning with Positive and Negative Information Efficient Approximate Reasoning with Positive and Negative Information Chris Cornelis, Martine De Cock, and Etienne Kerre Fuzziness and Uncertainty Modelling Research Unit, Department of Applied Mathematics

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

Warm-Up Problem. Write a Resolution Proof for. Res 1/32

Warm-Up Problem. Write a Resolution Proof for. Res 1/32 Warm-Up Problem Write a Resolution Proof for Res 1/32 A second Rule Sometimes throughout we need to also make simplifications: You can do this in line without explicitly mentioning it (just pretend you

More information

It rains now. (true) The followings are not propositions.

It rains now. (true) The followings are not propositions. Chapter 8 Fuzzy Logic Formal language is a language in which the syntax is precisely given and thus is different from informal language like English and French. The study of the formal languages is the

More information

3.2 THE FUNDAMENTAL WELFARE THEOREMS

3.2 THE FUNDAMENTAL WELFARE THEOREMS Essential Microeconomics -1-3.2 THE FUNDMENTL WELFRE THEOREMS Walrasian Equilibrium 2 First welfare teorem 3 Second welfare teorem (conve, differentiable economy) 12 Te omotetic preference 2 2 economy

More information

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13 N igerian Journal of M atematics and Applications V olume 23, (24), 3 c N ig. J. M at. Appl. ttp : //www.kwsman.com CONSTRUCTION OF POLYNOMIAL BASIS AND ITS APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

More information

Copyright c 2008 Kevin Long

Copyright c 2008 Kevin Long Lecture 4 Numerical solution of initial value problems Te metods you ve learned so far ave obtained closed-form solutions to initial value problems. A closedform solution is an explicit algebriac formula

More information

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey.

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey. Major results: (wrt propositional logic) How to reason correctly. How to reason efficiently. How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague,

More information

15414/614 Optional Lecture 1: Propositional Logic

15414/614 Optional Lecture 1: Propositional Logic 15414/614 Optional Lecture 1: Propositional Logic Qinsi Wang Logic is the study of information encoded in the form of logical sentences. We use the language of Logic to state observations, to define concepts,

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Module - 2 Lecture - 4 Introduction to Fuzzy Logic Control In this lecture today, we will be discussing fuzzy

More information

ACCURATE SYNTHESIS FORMULAS OBTAINED BY USING A DIFFERENTIAL EVOLUTION ALGORITHM FOR CONDUCTOR-BACKED COPLANAR WAVEG- UIDES

ACCURATE SYNTHESIS FORMULAS OBTAINED BY USING A DIFFERENTIAL EVOLUTION ALGORITHM FOR CONDUCTOR-BACKED COPLANAR WAVEG- UIDES Progress In Electromagnetics Researc M, Vol. 10, 71 81, 2009 ACCURATE SYNTHESIS FORMULAS OBTAINED BY USING A DIFFERENTIAL EVOLUTION ALGORITHM FOR CONDUCTOR-BACKED COPLANAR WAVEG- UIDES S. Kaya, K. Guney,

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if Computational Aspects of its. Keeping te simple simple. Recall by elementary functions we mean :Polynomials (including linear and quadratic equations) Eponentials Logaritms Trig Functions Rational Functions

More information

The Basics of Vacuum Technology

The Basics of Vacuum Technology Te Basics of Vacuum Tecnology Grolik Benno, Kopp Joacim January 2, 2003 Basics Many scientific and industrial processes are so sensitive tat is is necessary to omit te disturbing influence of air. For

More information

Revision: Fuzzy logic

Revision: Fuzzy logic Fuzzy Logic 1 Revision: Fuzzy logic Fuzzy logic can be conceptualized as a generalization of classical logic. Modern fuzzy logic aims to model those problems in which imprecise data must be used or in

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Research Article New Results on Multiple Solutions for Nth-Order Fuzzy Differential Equations under Generalized Differentiability

Research Article New Results on Multiple Solutions for Nth-Order Fuzzy Differential Equations under Generalized Differentiability Hindawi Publising Corporation Boundary Value Problems Volume 009, Article ID 395714, 13 pages doi:10.1155/009/395714 Researc Article New Results on Multiple Solutions for Nt-Order Fuzzy Differential Equations

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions

A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions Fernando Bobillo Miguel Delgado Juan Gómez-Romero Department of Computer Science and Artificial Intelligence University

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Approximation Capability of SISO Fuzzy Relational Inference Systems Based on Fuzzy Implications

Approximation Capability of SISO Fuzzy Relational Inference Systems Based on Fuzzy Implications Approximation Capability of SISO Fuzzy Relational Inference Systems Based on Fuzzy Implications Sayantan Mandal and Balasubramaniam Jayaram Department of Mathematics Indian Institute of Technology Hyderabad

More information

Fuzzy Systems. Introduction

Fuzzy Systems. Introduction Fuzzy Systems Introduction Prof. Dr. Rudolf Kruse Christoph Doell {kruse,doell}@iws.cs.uni-magdeburg.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Department of Knowledge Processing

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Section 1.2: Propositional Logic

Section 1.2: Propositional Logic Section 1.2: Propositional Logic January 17, 2017 Abstract Now we re going to use the tools of formal logic to reach logical conclusions ( prove theorems ) based on wffs formed by some given statements.

More information

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Sangeetha Bindiganavile Nagesh

Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Sangeetha Bindiganavile Nagesh Adaptive fuzzy observer and robust controller for a 2-DOF robot arm Delft Center for Systems and Control Adaptive fuzzy observer and robust controller for a 2-DOF robot arm For the degree of Master of

More information

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER*

ERROR BOUNDS FOR THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BRADLEY J. LUCIER* EO BOUNDS FO THE METHODS OF GLIMM, GODUNOV AND LEVEQUE BADLEY J. LUCIE* Abstract. Te expected error in L ) attimet for Glimm s sceme wen applied to a scalar conservation law is bounded by + 2 ) ) /2 T

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

ME 534. Mechanical Engineering University of Gaziantep. Dr. A. Tolga Bozdana Assistant Professor

ME 534. Mechanical Engineering University of Gaziantep. Dr. A. Tolga Bozdana Assistant Professor ME 534 Intelligent Manufacturing Systems Chp 4 Fuzzy Logic Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana Assistant Professor Motivation and Definition Fuzzy Logic was initiated by

More information

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B

n Empty Set:, or { }, subset of all sets n Cardinality: V = {a, e, i, o, u}, so V = 5 n Subset: A B, all elements in A are in B Discrete Math Review Discrete Math Review (Rosen, Chapter 1.1 1.7, 5.5) TOPICS Sets and Functions Propositional and Predicate Logic Logical Operators and Truth Tables Logical Equivalences and Inference

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible.

1. Which one of the following expressions is not equal to all the others? 1 C. 1 D. 25x. 2. Simplify this expression as much as possible. 004 Algebra Pretest answers and scoring Part A. Multiple coice questions. Directions: Circle te letter ( A, B, C, D, or E ) net to te correct answer. points eac, no partial credit. Wic one of te following

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information