Measurement of emittance in the Muon Ionization Cooling Experiment

Size: px
Start display at page:

Download "Measurement of emittance in the Muon Ionization Cooling Experiment"

Transcription

1 Measurement of emittance in the Muon Ionization Cooling Experiment François Drielsma on behalf of the MICE collaboration University of Geneva August 26, 216 François Drielsma (UniGe) Emittance in MICE August 26, / 24

2 The Muon Ionization Cooling Experiment (MICE) The need for MICE Ionization cooling is the only viable technique to reduce the emittance of a muon beam within their lifetime ( 2.2 µs) Cooled muons are essential to achieve the luminosity required by future muon facilities such as a Neutrino Factory or a Muon Collider MICE physics program Demonstrate the feasibility of ionization cooling Study and validate the cooling equation Energy loss and scattering of muons (material physics) François Drielsma (UniGe) Emittance in MICE August 26, / 24

3 Principle of ionization cooling Muon cooling can be characterised by the rate of change of the normalised emittance (phase space occupied by the beam), approximated by dε N ds ε N β 2 E µ de µ ds + β (.14) 2 2β 3 ; (1) E µ m µ X Energy loss, de µ /ds, reduces both p L and p T Scattering heats the beam as 1/X, must maximize X RF cavities restore p L only The absorber must be placed at a focus for best cooling performance François Drielsma (UniGe) Emittance in MICE August 26, / 24

4 MICE beam line François Drielsma (UniGe) Emittance in MICE August 26, / 24

5 MICE beam line François Drielsma (UniGe) Emittance in MICE August 26, / 24

6 Experimental apparatus at present (Step IV) All the detectors are in and working Three time-of-flight detector stations Two Cherenkov counters and a downstream calorimetry module Two scintillating-fibre trackers Part of the cooling channel (no RF yet) Two Spectrometer Solenoids (SS), each composed of 5 coils An Absorber Focus Coil (AFC) module, made of 2 coils MICE Muon Beam (MMB) Time-of-flight hodoscope 1 (ToF ) Variable thickness high-z diffuser Upstream spectrometer module Absorber/focus-coil module Downstream spectrometer module 7th February 215 Electron Muon Ranger (EMR) MICE Cherenkov counters (CKOV) ToF 1 Liquid-hydrogen absorber Scintillating-fibre trackers Pre-shower (KL) ToF 2 François Drielsma (UniGe) Emittance in MICE August 26, / 24

7 Single-particle experiment MICE is a single-particle experiment, i.e. There is no beam as such going down the beam line, particles go down the beam line one by one (f 2 khz for 1 ms every second) At each DAQ cycle, a single particle track is recorded Particle tracks are bunched at the analysis level to create an ensemble of which to compute the emittance First direct measurement of emittance of muon beams by a scintillating fibre-tracker François Drielsma (UniGe) Emittance in MICE August 26, / 24

8 Definition The emittance represents the volume occupied by the beam in phase-space. In 2D it is a simple ellipse. The 4D normalised RMS transverse emittance is defined as ɛ n = 1 m µ 4 det Σ (2) with m µ the muon mass and Σ the covariance matrix, i.e. σ xx σ xpx σ xy σ xpy Σ = σ pxx σ pxpx σ pxy σ pxpy σ yx σ ypx σ yy σ ypy (3) σ pyx σ pypx σ pyy σ pypy with σ αβ = αβ α β the covariance of α and β. François Drielsma (UniGe) Emittance in MICE August 26, / 24

9 MICE Scintillating-Fibre trackers Two SciFi trackers (US and DS), 5 stations per tracker, 3 planes per station, 214 fibres per plane Measured tracker resolution (cosmics): σx, σy = 467 ± 2 µm Franc ois Drielsma (UniGe) Emittance in MICE August 26, / 24

10 Tracker momentum reconstruction In a uniform solenoid magnetic field, a particle follows a helical path x = ρ cos (qbt/m) y = ρ sin (qbt/m) ρ = p T /qb (4) z = p L t/m Each tracker samples the helix in 5 points (x i, y i ) A circle fit in the (x, y) yields the radius ρ and hence p T The gradient of the arc-length, ds/dz, yields p L Resolutions from MC: σ pl 1.3 MeV/c, σ pt 4 MeV/c y x 2πp L /qb ρ x z François Drielsma (UniGe) Emittance in MICE August 26, / 24

11 Run 7469 In October 215, the upstream spectrometer was powered for the first time at its designed current. Run 7469 was taken that day: 2 MeV/c positive muon input beam 7 minutes of data taking 1976 good muon tracks acquired This run was used to characterise the MICE muon beam and validate the tracker reconstruction. Results follow. François Drielsma (UniGe) Emittance in MICE August 26, / 24

12 Event selection Selection criteria applied to clean up the beam Reject time-of-flights below threshold (e + ) Keep only particles that hit every TOF and tracker stations Remove particles that scraped the apparatus (magnet bore, diffuser) Time of flight (ns) MICE Preliminary ISIS Cycle 215/ P at Tracker (MeV/c) 12 Figure: time of flight between the first and second TOF stations as a function of the reconstructed total momentum tracker A single curve signifies a single particle species: muons. François Drielsma (UniGe) Emittance in MICE August 26, / 24

13 Position at the tracker reference plane The reference plane corresponds to the tracker station closest to the absorber The position distribution is the result of as many helical fits as particles The fiducial surface of each tracker plane is 3 mm in diameter y (mm) 15 MICE Preliminary ISIS Cycle 215/ x (mm) Visual representation of one of the covariance matrix elements, σ 2 xy François Drielsma (UniGe) Emittance in MICE August 26, / 24

14 2D beam ellipses Another two plots of the elements σ 2 xp x and σ 2 yp y of the covariance matrix Similar distribution in the two 2D subspaces In an uncoupled phase space, these would represent the horizontal and vertical 2D emittance of the beam, respectively Px (MeV/c) 1 MICE Preliminary ISIS Cycle 215/ Py (MeV/c) 1 MICE Preliminary ISIS Cycle 215/ x (mm) y (mm) François Drielsma (UniGe) Emittance in MICE August 26, / 24

15 Beam dispersion The second bending magnet (D2) has a large acceptance Large momentum spread and dispersion in the beam Mean position of the beam proportional to momentum/bending radius Need to bin the sample in p z to remove chromatic effects Pz (MeV/c) 3 MICE Preliminary ISIS Cycle 215/ Radius of beam centre (mm) 65 MICE Preliminary ISIS Cycle 215/ x (mm) <Pz> (MeV/c) François Drielsma (UniGe) Emittance in MICE August 26, / 24

16 Comparaison with Monte Carlo End-to-end Monte Carlo Pion production, target Transport with G4BL Custom MICE Analysis User Software MC Good agreement Accurately reproduces the tracker beam profiles (xp x, yp y ) Tool for systematic analysis Provides understanding of the beam dispersion Px (MeV/c) Py (MeV/c) 1 MICE Preliminary ISIS Cycle 215/ x (mm) 1 MICE Preliminary ISIS Cycle 215/ y (mm) Px (MeV/c) Py (MeV/c) 1 MICE Preliminary Simulation x (mm) 1 MICE Preliminary Simulation y (mm) François Drielsma (UniGe) Emittance in MICE August 26, / 24

17 ISIS Cycle 215/2 ISIS Cycle 215/2 ISIS Cycle 215/2 ISIS Cycle 215/2 ISIS Cycle 215/2 ISIS Cycle 215/2 Poincaré sections of the covariance matrix in data x p x y p y σ 2 xx Px (MeV/c) 1 MICE Preliminary y (mm) MICE Preliminary Py (MeV/c) 1 MICE Preliminary x x (mm) x (mm) x (mm) Px (MeV/c) 1 MICE Preliminary Py (MeV/c) 1 MICE Preliminary σ 2 p xp x px y (mm) Px (MeV/c) Figure: Visual representation of the off-diagonal elements of the covariance matrix used to compute the emittance σ 2 yy Py (MeV/c) 1 MICE Preliminary y y (mm) François Drielsma (UniGe) Emittance in MICE August 26, / 24

18 First direct measurement of emittance with MICE trackers Transverse normalised emittance (mm) 4.2 MICE Preliminary ISIS Cycle 215/ <Pz> (MeV/c) François Drielsma (UniGe) Emittance in MICE August 26, / 24

19 Latest MICE field-on data taking In July 216, great progress was made with the cooling channel operation Both spectrometers ECE coil triples were powered at 14 A, which corresponds to 2 T in each tracker The focus coil was powered at 5 A together with the spectrometers A 3 mm-14 MeV/c input beam was used, empty absorber module First look at muons that made it through the entire MICE channel First focus coil transfer matrix measurements François Drielsma (UniGe) Emittance in MICE August 26, / 24

20 Beam profiles up and downstream the focus coil In two hours of data taking (run 8155 on July 27th 216) Upwards of 8 muon and pion tracks were recorded going through the entire MICE step IV magnet channel Both trackers were successful in the reconstruction of helical tracks at half the nominal spectrometer field TKD TKU François Drielsma (UniGe) Emittance in MICE August 26, / 24

21 Cooling in MICE Step IV The MICE collaboration intends to measure emittance change for 3 1 mm tunable emittance (tuned with the diffuser) 14, 2 and 24 MeV/c mean momentum Lithium hydride absorber (LiH) and liquid hydrogen (LH2) Two types of lattices: solenoid and flip mode A first cooling measurement is soon to be made in MICE Step IV Whole cooling channel will be powered in September, empty absorber The lithium hydride absorber will go in before the end of 216 The liquid hydrogen absorber will go in this winter François Drielsma (UniGe) Emittance in MICE August 26, / 24

22 Simulated emittance change 2 MeV/c sol. 2 MeV/c flip François Drielsma (UniGe) Emittance in MICE August 26, / 24

23 Alternative: Kernel Density Estimation method A Kernel Density Estimator (KDE) is a nonparametric PDF defined as f( r) = 1 h d N N ( ) r ri K h i=1 (5) with h an arbitrary bandwidth, K the kernel, a normalised dimension d Normal distribution. This allows to compute contours and see changes in the phase space density François Drielsma (UniGe) Emittance in MICE August 26, / 24

24 Conclusions The first direct measurement of emittance with the MICE trackers The trackers and PID detectors are fully operational The emittance was measured and chromatic effects were understood A technique paper is in preparation First emittance change measurement to come in the near future MICE will observe transverse muon beam emittance reduction The first set of LiH data will be taken in 216 More to come! Transverse normalised emittance (mm) 4.2 MICE Preliminary ISIS Cycle 215/ <Pz> (MeV/c) François Drielsma (UniGe) Emittance in MICE August 26, / 24

Emittance Measurement in the Muon Ionization Cooling Experiment

Emittance Measurement in the Muon Ionization Cooling Experiment Emittance Measurement in the Muon Ionization Cooling Experiment Department of Physics, Imperial College London E-mail: v.blackmore@imperial.ac.uk The Muon Ionization Cooling Experiment (MICE) collaboration

More information

Measurement of emittance with the MICE scintillating fibre trackers

Measurement of emittance with the MICE scintillating fibre trackers Measurement of emittance with the MICE scintillating fibre trackers F. Drielsma on behalf of the MICE collaboration Department of Nuclear and Particle Physics, University of Geneva, 24 Quai Ernest-Ansermet,

More information

PoS(EPS-HEP2015)522. The status of MICE Step IV

PoS(EPS-HEP2015)522. The status of MICE Step IV on behalf of the MICE collaboration University of Geneva E-mail: yordan.karadzhov@cern.ch Muon beams of low emittance provide the basis for the intense, well-characterized neutrino beams of a Neutrino

More information

Ionization Cooling Demonstration

Ionization Cooling Demonstration Ionization Cooling Demonstration Y. Karadzhov UNIGE - DPNC, Geneva, Switzerland on behalf of the MICE Collaboration Y. Karadzhov (UNIGE - DPNC) EPS-HEP 2013, Stockholm August 26, 2016 1 / 23 Motivation

More information

MICE: The Trackers and Magnets

MICE: The Trackers and Magnets MICE: The Trackers and Magnets M.A.Uchida Imperial College (Dated: April 5, 2016) 348 Abstract The Muon Ionization Cooling experiment (MICE) has been designed to demonstrate the reduction of the phase

More information

MEASUREMENT OF PHASE SPACE DENSITY EVOLUTION IN MICE

MEASUREMENT OF PHASE SPACE DENSITY EVOLUTION IN MICE MEASUREMENT OF PHASE SPACE DENSITY EVOLUTION IN MICE F. Drielsma, Université de Genève, Geneva, Switzerland D. Maletic, Institute of Physics Belgrade, Belgrade, Serbia Abstract The Muon Ionization Cooling

More information

PoS(NuFact2017)099. Measurement of Phase Space Density Evolution in MICE. François Drielsma. MICE Collaboration

PoS(NuFact2017)099. Measurement of Phase Space Density Evolution in MICE. François Drielsma. MICE Collaboration Measurement of Phase Space Density Evolution in MICE MICE Collaboration E-mail: francois.drielsma@unige.ch The Muon Ionization Cooling Experiment (MICE) collaboration will demonstrate the feasibility of

More information

Measurements of the Multiple Coulomb Scattering of Muons by MICE

Measurements of the Multiple Coulomb Scattering of Muons by MICE Measurements of the Multiple Coulomb Scattering of Muons by MICE Ryan Bayes on behalf of the MICE collaboration School of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow, U.K.,

More information

Demonstrating 6D Cooling. Guggenheim Channel Simulations

Demonstrating 6D Cooling. Guggenheim Channel Simulations Demonstrating 6D Cooling. Guggenheim Channel Simulations Pavel Snopok IIT/Fermilab March 1, 2011 1 1 Introduction 2 Wedge absorber in MICE 3 Tapered Guggenheim simulation 4 6D cooling demonstration strategy

More information

Recent results from MICE on multiple Coulomb scattering and energy loss

Recent results from MICE on multiple Coulomb scattering and energy loss Recent results from MICE on multiple Coulomb scattering and energy loss John Nugent on behalf of the MICE Collaboration University of Glasgow john.nugent@glasgow.ac.uk 13/8/2018 John Nugent (UGlas) MCS

More information

RECENT RESULTS FROM MICE ON MULTIPLE COULOMB SCATTERING AND ENERGY LOSS

RECENT RESULTS FROM MICE ON MULTIPLE COULOMB SCATTERING AND ENERGY LOSS RECENT RESULTS FROM MICE ON MULTIPLE COULOMB SCATTERING AND ENERGY LOSS J. C. Nugent, P. Soler, University of Glasgow, Glasgow, United Kingdom R. Bayes 1, Laurentian University, Sudbury, Canada Abstract

More information

High Precision Track Reconstruction and First Emittance Measurements in the MICE Step IV Cooling Channel

High Precision Track Reconstruction and First Emittance Measurements in the MICE Step IV Cooling Channel High Precision Track Reconstruction and First Emittance Measurements in the MICE Step IV Cooling Channel Christopher J Hunt Supervised by Jaroslaw Pasternak Physics Department Imperial College London 31

More information

The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers

The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers Journal of Physics: Conference Series OPEN ACCESS The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers To cite this article: A Dobbs et al 214 J. Phys.: Conf. Ser. 513 228 Related

More information

WEDGE ABSORBER DESIGN FOR THE MUON IONISATION COOLING EXPERIMENT

WEDGE ABSORBER DESIGN FOR THE MUON IONISATION COOLING EXPERIMENT WEDGE ABSORBER DESIGN FOR THE MUON IONISATION COOLING EXPERIMENT Abstract In the Muon Ionisation Cooling Experiment (MICE), muons are cooled by ionisation cooling. Muons are passed through material, reducing

More information

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 Results from HARP Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 The HAdRon Production Experiment 124 physicists 24 institutes2 Physics Goals Input for precise calculation

More information

State Machine Operation of the MICE Cooling Channel

State Machine Operation of the MICE Cooling Channel Journal of Physics: Conference Series OPEN ACCESS State Machine Operation of the MICE Cooling Channel To cite this article: Pierrick Hanlet and the Mice collaboration 2014 J. Phys.: Conf. Ser. 513 012011

More information

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration The HARP Experiment (INFN-Ferrara) on behalf of the HARP Collaboration New Views in Particle Physics Outline Goals for a HAdRon Production experiment Example: KEK PS Neutrino beam-line Detector layout

More information

Recent results from MICE on multiple Coulomb scattering and energy loss

Recent results from MICE on multiple Coulomb scattering and energy loss Recent results from MICE on multiple Coulomb scattering and energy loss University of Glasgow E-mail: john.nugent@glasgow.ac.uk Paul Soler University of Glasgow E-mail: paul.soler@glasgow.ac.uk Ryan Bayes

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

Full-Acceptance Detector Integration at MEIC

Full-Acceptance Detector Integration at MEIC Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27, 2014 Lattice design of geometrically-matched collider

More information

Measurement of the pion contamination in the MICE beam

Measurement of the pion contamination in the MICE beam MICE-NOTE-DET-416 June 26, 2013 Preprint typeset in JINST style - HYPER VERSION Measurement of the pion contamination in the MICE beam M. Bogomilov Department of Atomic Physics, St. Kliment Ohridski University

More information

Polyethylene Wedge Absorber in MICE

Polyethylene Wedge Absorber in MICE Polyethylene Wedge Absorber in MICE Pavel Snopok, Tanaz Mohayai, Illinois Institute of Technology David Neuffer, Fermi National Accelerator Laboratory Chris Rogers, Rutherford Appleton Laboratory Don Summers,

More information

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC WDS'12 Proceedings of Contributed Papers, Part III, 142 146, 212. ISBN 978-8-7378-226-9 MATFYZPRESS Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC I. Chalupková, Z.

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC LCC-7 August 21 Linear Collider Collaboration Tech Notes Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz,John C. Sheppard Stanford Linear Accelerator

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

arxiv:hep-ex/ v1 19 Jun 2004

arxiv:hep-ex/ v1 19 Jun 2004 arxiv:hep-ex/4653v 9 Jun 24 First physics results from the HARP experiment at CERN A. Cervera Villanueva University of Geneva, Switzerland The first physics results of the HARP experiment are presented.

More information

MICE-NOTE-DET-388. Geant4 Simulation of the EMR Detector Response Study

MICE-NOTE-DET-388. Geant4 Simulation of the EMR Detector Response Study MICE-NOTE-DET-388 Geant4 Simulation of the EMR Detector Response Study Ruslan Asfandiyarov, Leïla Haegel, Alain Blondel DPNC, University of Geneva, Switzerland October 14, 2012 Abstract The Electron-Muon

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title The Mechanical and Thermal Design for the MICE Focusing Solenoid Magnet System Permalink https://escholarship.org/uc/item/7652n8md

More information

High Pressure, High Gradient RF Cavities for Muon Beam Cooling

High Pressure, High Gradient RF Cavities for Muon Beam Cooling High Pressure, High Gradient RF Cavities for Muon Beam Cooling R. P. Johnson, R. E. Hartline, M. Kuchnir, T. J. Roberts Muons, Inc. C. M. Ankenbrandt, A. Moretti, M. Popovic Fermilab D. M. Kaplan, K. Yonehara

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings CERN Accelerator School Intermediate Accelerator Physics Course Chios, Greece, September 2011 Low Emittance Rings Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Polarized muon decay asymmetry measurement: status and challenges

Polarized muon decay asymmetry measurement: status and challenges Polarized muon decay asymmetry measurement: status and challenges Glen Marshall, for the TWIST Collaboration Muon Physics in the LHC Era Symposium at the Institute of Nuclear Theory Seattle, October 008

More information

Particle Identification Algorithms for the Medium Energy ( GeV) MINERνA Test Beam Experiment

Particle Identification Algorithms for the Medium Energy ( GeV) MINERνA Test Beam Experiment Particle Identification Algorithms for the Medium Energy ( 1.5-8 GeV) MINERνA Test Beam Experiment Tesista: Antonio Federico Zegarra Borrero Asesor: Dr. Carlos Javier Solano Salinas UNI, March 04, 2016

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85. Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG 2018 @ Würzburg (.03.22, T85.1) Mu3e Experiment Mu3e Experiment: Search for Lepton Flavor Violation

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Early physics with the LHCb detector

Early physics with the LHCb detector XXVIII PHYSICS IN COLLISION - Perugia, Italy, June, 25-28, 2008 Early physics with the LHCb detector Dirk Wiedner CERN for the LHCb collaboration 27 June 2008 Dirk Wiedner at PIC2008 Perugia 1 Outline

More information

The Reconstruction Software for the MICE Scintillating Fibre Trackers

The Reconstruction Software for the MICE Scintillating Fibre Trackers Preprint typeset in JINST style - HYPER VERSION The Reconstruction Software for the MICE Scintillating Fibre Trackers A. Dobbs a, C. Hunt a, K. Long a, E. Santos a and C. Heidt b a Imperial College London,

More information

arxiv:hep-ex/ v1 15 Oct 2004

arxiv:hep-ex/ v1 15 Oct 2004 arxiv:hep-ex/443v 5 Oct 24 Initial results from the HARP experiment at CERN J.J. Gomez-Cadenas a a IFIC and Departamento de Fisica, Atómica y Nuclear, P.O. Box 2285, E-467 Valencia, Spain Initial results

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 4 Particle Detectors Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Oct 01 Page 1 Outline 1. Introduction. Bubble Chambers

More information

HARP (Hadron Production) Experiment at CERN

HARP (Hadron Production) Experiment at CERN HARP (Hadron Production) Experiment at CERN 2nd Summer School On Particle Accelerators And Detectors 18-24 Sep 2006, Bodrum, Turkey Aysel Kayιş Topaksu Çukurova Üniversitesi, ADANA Outline The Physics

More information

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Tracking properties of the ATLAS Transition Radiation Tracker (TRT) 2 racking properties of the ALAS ransition Radiation racker (R) 3 4 5 6 D V Krasnopevtsev on behalf of ALAS R collaboration National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),

More information

arxiv: v4 [physics.acc-ph] 12 Jun 2018

arxiv: v4 [physics.acc-ph] 12 Jun 2018 Prepared for submission to JINST Special issue on Muon Accelerators for Particle Physics Hybrid methods for Muon Accelerator Simulations with Ionization Cooling arxiv:1803.10582v4 [physics.acc-ph] 12 Jun

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron Outline of the presentation: 1. Introduction to LHCb physics and LHCb detector 2. RIVET plug-in for Z e+e- channel

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector Available on CMS information server CMS CR -2009/113 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 15 May 2009 Commissioning of the CMS

More information

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration 102 Congresso della Società Italiana di Fisica Padova, 26-30 settembre 2016 Outline Heavy flavour physics in ALICE The

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS Available on CMS information server CMS CR -2009/034 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 04 February 2009 First Physics at CMS

More information

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Motivation Measurements of the total and inelastic cross sections and their energy evolution probe the non-perturbative

More information

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV Trần Minh Tâm minh-tam.tran@epfl.ch on behalf of the LHCb Collaboration LHCb-CONF-2014-001 EPFL, Laboratoire de Physique

More information

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Latest Results from the OPERA Experiment (and new Charge Reconstruction) Latest Results from the OPERA Experiment (and new Charge Reconstruction) on behalf of the OPERA Collaboration University of Hamburg Institute for Experimental Physics Overview The OPERA Experiment Oscillation

More information

Baby MIND: A magnetised spectrometer for the WAGASCI experiment

Baby MIND: A magnetised spectrometer for the WAGASCI experiment : A magnetised spectrometer for the WAGASCI experiment University of Glasgow, School of Physics and Astronomy, Glasgow, UK E-mail: p.hallsjo.1@research.gla.ac.uk on behalf of the Baby MIND Collaboration

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Absolute D Hadronic Branching Fractions at CLEO-c

Absolute D Hadronic Branching Fractions at CLEO-c Absolute D Hadronic Branching Fractions at CLEO-c Xin Shi Cornell University CLEO Collaboration Lake Louise Winter Institute 24 February 2011 Xin Shi (Cornell University) Absolute D Hadronic BFs at CLEO-c

More information

arxiv: v1 [physics.ins-det] 1 Sep 2009

arxiv: v1 [physics.ins-det] 1 Sep 2009 The MEG Spectrometer at PSI Paolo Walter Cattaneo on behalf of the MEG collaboration INFN Pavia, Via Bassi 6, Pavia, I-27100, Italy arxiv:0909.0199v1 [physics.ins-det] 1 Sep 2009 The MEG experiment is

More information

MiniBooNE Progress and Little Muon Counter Overview

MiniBooNE Progress and Little Muon Counter Overview MiniBooNE Progress and Little Muon Counter Overview Neutrino Introduction and MiniBooNE Motivation MiniBooNE Detector and LMC Calibration and Performance Progress Toward Physics Results Terry Hart, University

More information

The Mu2e Transport Solenoid

The Mu2e Transport Solenoid The Mu2e Transport Solenoid J. Miller Boston University for the Mu2e Collaboration 23 January 2009 1 Mu2e Muon Beamline Requirements Pulsed beam Deliver high flux µ beam to stopping target At FNAL, high

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration HARP a hadron production experiment Emilio Radicioni, INFN for the HARP collaboration HARP motivations provide data for neutrino factory / muon collider design. reduce the uncertainties in the atmospheric

More information

MuSIC- RCNP at Osaka University

MuSIC- RCNP at Osaka University Commissioning of new DC muon beam line, MuSIC- RCNP at Osaka University Dai Tomono Research Center for Nuclear Physics (RCNP), Osaka University On behalf of the MuSIC- RCNP collaboration tomono@rcnp.osaka-

More information

Analysis of muon and electron neutrino charged current interactions in the T2K near detectors

Analysis of muon and electron neutrino charged current interactions in the T2K near detectors Nuclear Physics B Proceedings Supplement (14) 1 6 Nuclear Physics B Proceedings Supplement Analysis of muon and electron neutrino charged current interactions in the TK near detectors A. Hillairet (On

More information

Study of Baryon Form factor and Collins effect at BESIII

Study of Baryon Form factor and Collins effect at BESIII Study of Baryon Form factor and Collins effect at BESIII Wenbiao Yan On behalf of BESIII Collaboration INT Program INT-17-3 Hadron imaging at Jefferson Lab and at a future EIC 1 Bird s View of BEPCII &

More information

General Considerations

General Considerations Advantages of Muons Advantages of leptons over hadrons Energetic Interaction simplicity Minimal synchrotron radiation at high energies Can bend: not forced to linac like e Reuse accelerating structures

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

LHCb: From the detector to the first physics results

LHCb: From the detector to the first physics results LHCb: From the detector to the first physics results Olivier Callot Laboratoire de l Accélérateur Linéaire, IN2P3/CNRS and Université Paris XI, Orsay, France On behalf of the LHCb collaboration In this

More information

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009 Physics with Tagged Forward Protons using the STAR Detector at RHIC The Relativistic Heavy Ion Collider The pp2pp Experiment 2002 2003 STAR 2009 Elastic and Diffractive Processes Elastic scattering Detect

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Kaon Identification at NA62 Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Francis Newson April 2015 Kaon Identification at NA62 K πνν NA48 and NA62 K + π + νν

More information

Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field Preprint FERMILAB-TM-2467-TP. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field GennadyRomanov, Vladimir Kashikhin Abstract. In order to produce muon beam of high enough quality

More information

New Hadroproduction results from the HARP/PS214 experiment at CERN PS

New Hadroproduction results from the HARP/PS214 experiment at CERN PS New Hadroproduction results from the HARP/PS214 experiment at CERN PS Sezione INFN Milano Bicocca E-mail: maurizio.bonesini@mib.infn.it The HARP experiment at the CERN Proton Synchroton has collected data

More information

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Lectures and Exercise Summer Semester 2016 1 Organization Language:

More information

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration The LHCb detector Eddy Jans (Nikhef) on behalf of the LHCb collaboration design of sub-detectors, trigger and DAQ performance: resolutions and PID-properties commissioning with cosmics and beam induced

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

Lecture LHC How to measure cross sections...

Lecture LHC How to measure cross sections... Lecture 5b:Luminosity @ LHC How to measure cross sections... Cross Section & Luminosity Luminosities in run-i @ LHC How to measure luminosity Cross Section & Luminosity Methods for Luminosity Measurement

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

Muon commissioning and Exclusive B production at CMS with the first LHC data

Muon commissioning and Exclusive B production at CMS with the first LHC data Muon commissioning and Exclusive B production at CMS with the first LHC data Silvia Taroni INFN Milano Bicocca On the behalf of the CMS collaboration Outline Introduction CMS detector Muon detection in

More information

COMET muon conversion experiment in J-PARC

COMET muon conversion experiment in J-PARC Institute for Basic Science, Daejeon, Korea E-mail: myeongjaelee@ibs.re.kr COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of

More information

Neutrinos Induced Pion Production in MINERvA

Neutrinos Induced Pion Production in MINERvA Neutrinos Induced Pion Production in MINERvA Aaron Higuera Universidad de Guanajuato, Mexico On behalf of the MINERvA collaboration Outline Neutrinos Induced Pion Production MINERvA Experiment E-938 CC

More information

MC6 - MC7 simulation for Time-of-Flight LAPPD detectors

MC6 - MC7 simulation for Time-of-Flight LAPPD detectors Livio Verra Fermilab Italians Summer Student Test Beam Facility September 26, 217 MC6 - MC7 simulation for Time-of-Flight LAPPD detectors 1 Introduction Goal of Large Area Picosecond Photodetector (LAPPD)

More information

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN Status of the ALICE Experiment CERN E-mail: Werner.Riegler@cern.ch For the ALICE Collaboration ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter

More information

Gaseous Hydrogen in Muon Accelerators

Gaseous Hydrogen in Muon Accelerators Gaseous Hydrogen in Muon Accelerators R. P. Johnson, R. E. Hartline Muons, Inc., Batavia, IL 60510 C. M. Ankenbrandt, M. Kuchnir, A. Moretti, M. Popovic Fermi National Accelerator Lab., Batavia, IL 60510

More information

Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF

Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF Maria Żurek Research Center Jülich University of Cologne on behalf of the CDF Collaboration XLV International Symposium on Multiparticle

More information

PoS(ICHEP2016)293. The LArIAT experiment and the charged pion total interaction cross section results on liquid argon. Animesh Chatterjee

PoS(ICHEP2016)293. The LArIAT experiment and the charged pion total interaction cross section results on liquid argon. Animesh Chatterjee The LArIAT experiment and the charged pion total interaction cross section results on liquid argon University of Texas at Arlington, Arlington, TX 76019, USA E-mail: animesh.chatterjee@uta.edu We present

More information

Introduction to polarimetry at HERA

Introduction to polarimetry at HERA Introduction to polarimetry at HERA Alex Tapper Electron polarisation at HERA The LPOL The TPOL The LPOL cavity Electron polarisation in storage rings Electron beam deflected around a ring with B field

More information

Neutrino Detectors for future facilities - III

Neutrino Detectors for future facilities - III Neutrino Detectors for future facilities - III Mark Messier Indiana University NUFACT Summer school Benasque, Spain June 16-18, 2008 1 Neutrino detectors optimized for muons reconstruction νμ νμ and the

More information

Simulation Results for CLAS12 From gemc

Simulation Results for CLAS12 From gemc CLAS12 Software Workshop - May 25, 20 p. 1/2 Simulation Results for CLAS12 From gemc G.P.Gilfoyle, M.Ungaro et al. CLAS12 Software Group Outline: 1. gemc Overview 2. Neutron efficiency in first TOF panel.

More information

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group

PoS(TIPP2014)093. Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS. K. Matsuoka, For the Belle II PID group Performance study of the TOP counter with the 2 GeV/c positron beam at LEPS, For the Belle II PID group KMI, Nagoya University E-mail: matsuoka@hepl.phys.nagoya-u.ac.jp The TOP (Time-Of-Propagation) counter

More information

A Search for Excess Dimuon Production in the Radial Region (1.6 < r < 10) cm at the DØ Experiment

A Search for Excess Dimuon Production in the Radial Region (1.6 < r < 10) cm at the DØ Experiment 1 A Search for Excess Dimuon Production in the Radial Region (1.6 < r < 10) cm at the DØ Experiment Fermilab International Fellow Lancaster University On behalf of the DØ Collaboration 2 Introduction I

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4. Hall C - 12 GeV pcdr Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.4 msr Momentum Acceptance 40% Target Length Acceptance

More information

Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University

Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University First Run II Measurement of the W Boson Mass by CDF Oliver Stelzer-Chilton University of Oxford High Energy Physics Seminar Michigan State University April 3 rd, 2007 1. Motivation Outline 2. W Production

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl Introduction - Purpose of CPV: veto Kl decay modes with a real or apparent π and a pair of charged particles - Examples of background modes: (i) K l π π + π (ii) K l π π ± eν there are always (iii) K l

More information

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration Recent CMS results on heavy quarks and hadrons Alice Bean Univ. of Kansas for the CMS Collaboration July 25, 2013 Outline CMS at the Large Hadron Collider Cross section measurements Search for state decaying

More information

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology

Novel Features of Computational EM and Particle-in-Cell Simulations. Shahid Ahmed. Illinois Institute of Technology Novel Features of Computational EM and Particle-in-Cell Simulations Shahid Ahmed Illinois Institute of Technology Outline Part-I EM Structure Motivation Method Modes, Radiation Leakage and HOM Damper Conclusions

More information