NONLINEAR QUARTER-PLANE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION

Size: px
Start display at page:

Download "NONLINEAR QUARTER-PLANE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION"

Transcription

1 Electronic Journal of Differential Equations, Vol ), No. 113, pp. 1. ISSN: URL: or ftp eje.math.txstate.eu NONLINEAR QUARTER-PLANE PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION NIKOLAI A. LARKIN, EDUARDO TRONCO Abstract. This article concerns an initial-bounary value problem in a quarter-plane for the Korteweg-e Vries KV) equation. For general nonlinear bounary conitions we prove the existence an uniqueness of a global regular solution. 1. Introuction This work concerns the existence an uniqueness of global solutions for the KV equation pose on the first quarter-plane with a general nonlinear bounary conition. Such initial-bounary value problems may serve as moels for waves generate by wavemakers in a channel, or for shallow water waves of the shore, 1,, 3]. There is a number of papers where initial value problems an initial-bounary value problems in a quarter-plane an in a boune omain for ispersive equations were stuie see, 3, 4, 6, 7, 18, 1, 11, 1, 16, 19]). As a rule, simple bounary conitions at x = such as u = for the KV equation or u = u x = for the Kawahara equation were impose. On the other han, general initial-bounary value problems for o-orer evolution equations attracte little attention. We must mention a classical paper of Volevich an Ginikin 14], where general mixe problems for linear b + 1)-hyperbolic equations were stuie by means of functional analysis methos. It is ifficult to apply their metho irectly to nonlinear ispersive equations ue to complexity of this theory. In 4, 5], Bubnov consiere general mixe problems for the KV equation pose on a boune interval an prove solvability results. In 18] also were consiere general mixe problems with linear bounary conitions for the KV equation on a boune interval an for small initial ata the existence an uniqueness of global solutions as well as the exponential ecay of L -norms of solutions while t + were prove. Here we stuy a mixe problem for the KV equation in a quarter plane with a general nonlinear nonhomogeneous conition: x =, xu, t) = ϕt, u, t), x u, t)) an prove the existence an uniqueness of global in t solutions as well as smoothing effect for the initial ata. The presence of a issipative nonlinear term in the Mathematics Subject Classification. 35Q53. Key wors an phrases. KV equation; global solution; semi-iscretization. c 11 Texas State University - San Marcos. Submitte June 18, 11. Publishe August 3, 11. 1

2 N. A. LARKIN, E. TRONCO EJDE-11/113 bounary conition guarantees the existence of global solutions without smallness conitions for the initial ata, whereas posing a general linear bounary conition we i not succee to prove a global existence result because general linear conitions i not imply the first estimate for the KV equation which is crucial for global solvability of a corresponing mixe problem as was pointe out in 3]. To prove our results, we use a linearization technique, semi-iscretization in t to solve the linear problem, the Banach fixe point theorem for local in t existence an uniqueness results an, finally, a priori estimates, inepenent of t, for the nonlinear problem. To prove solvability of a linearize problem with a nonhomogeneous bounary conition, we exploit the metho of semi-iscretization which is transparent an prove its universality, see 6, 7, 16, 17], instea of very popular in the theory of the KV equation with homogeneous bounary conitions semigroups technique, because it is ifficult to aapt this technique for mixe problems with nonhomogeneous an nonlinear bounary conitions. This article has the following structure: Section 1 is Introuction. In Section we formulate the principal problem an some useful known facts. In Section 3 the relate stationary problem is stuie. Section 4 is evote to regular solutions to the linear evolution problem which are obtaine by the metho of semi-iscretization with respect to t. In Section 5, using the contraction mapping arguments, we obtain a local in time regular solution to the nonlinear problem. Finally, in Section 6, necessary a priori estimates are prove which allow us to exten the local solution to the whole interval t, T ) with arbitrary finite T >.. Formulation of the problem an main results Denote R + = {x R : x > } an for a positive number T, Q T = {x, t) R : x R +, t, T )}. In Q T we consier the KV equation subject to initial an bounary conitions u t + Du + D 3 u + udu =.1) ux, ) = u x), x R +,.) D u, t) + αdu, t) + βu, t) + u, t) u, t) + gt) =, t, T );.3) where gt) is a given function, α an β are real coefficients such that β α 1 = a 1 >, 1 α = a >..4) Remark.1. From the technical reasons, we chose the simple nonlinearity in.3). Of course, more general issipative functions may be use. Bounary conitions.3) follow from more general conitions γd u, t) + αdu, t) + βu, t) + u, t) u, t) + gt) =, t, T ).5) when γ. Explicitly, the simple bounary conition u, t) = oes not follow from.3), but it is a singular case of.5): when γ =, in orer to get the first L R + ) estimate, which is crucial for solvability of.1)-.3), see 3], we must put α = an u, t) = that gives exactly the simple bounary conition. Here u : R +, T ) R, or u :, L), T ) R D j = j / x j ; D = D 1. In this article, we aopt the usual notation u, v)t) = + ux, t)vx, t)x, u t) = u, u)t),

3 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 3 u, v) = u, v) L = + L ux)vx)x, u = u, u), ux)vx)x, u L = u, u) L. Symbols C, C, C i, for i N, mean positive constants appearing uring the text. The main result of this article is the following theorem. Theorem.. Let u H 3 R + ), g H 1, T ), α an β satisfy.4) an for a real k = min{a /, a 1 )/} the following inequality hols: 3 e kx, D i u + u Du ]) <. i= Then for all finite T >, problem.1)-.3) has a unique regular solution: u L, T ; H 3 R + )) L, T ; H 4 R + )), u t L, T ; L R + )) L, T ; H 1 R + )) an the following estimate hols: { 3 sup e kx, D i u ) t) + e kx, u t )t) } t,t ) i= e kx, D i u )t) + e kx, D i u t )t) ] t + i= u, t) + Du, t) ) t + i= CT, k) 3 e kx, D i u ) + e kx, u Du ) + i= 3. Stationary problem u t, t) + Du t, t) ) t g + g t )t) t ]. Our purpose in this section is to solve the stationary bounary-value problem D 3 ux) + ux) = fx), x R +, 3.1) D u) + αdu) + βu) + q 1 =, 3.) where > an q 1 are real constants, α an β satisfy.4) an f is such that e kx/ f L R + ), k >. 3.3) Theorem 3.1. Let > k 3 an f satisfy 3.3). Then 3.1)-3.) amits a unique solution u H 3 R + ) such that 3 e kx, D i u ) Ce kx, f ) + q1]. i= Proof. Consier on an interval, L) the problem D 3 ux) + ux) = fx), x, L), 3.4) D u) + αdu) + βu) + q 1 =, 3.5) ul) = DuL) =, 3.6)

4 4 N. A. LARKIN, E. TRONCO EJDE-11/113 where L is an arbitrary finite positive number, fx) is a restriction on, L) of fx) : e kx/ f L R + ) CR + ). It is known see 8]) that 3.4)-3.6) has a unique classical solution if the corresponing homogeneous problem has only trivial solution. Proposition 3.. Let fx), q 1 = an α an β satisfy.4). Then 3.4)-3.6) has only the trivial solution. Proof. Multiplying 3.4) by u an using 3.5), 3.6), we come to the inequality u L + β α )u ) + 1 α ) Du). Taking into account.4), we obtain u L = which completes the proof. Corollary 3.3. For all finite L > there exists a unique classical solution of 3.4)-3.6). To prove Theorem 3.1, we must exten an interval, L) to R +. To o this, we nee a priori estimates of solutions to the problem 3.4)-3.6) inepenent of L >. These estimates provies the following result. Lemma 3.4. Let > k 3 an fx) : e kx/ f L R + ) CR + ). Then for all finite L > solutions of 3.4)-3.6) satisfy the inequality 3 e kx, D i u ) L C R e kx, f ) + q1], i= where the constant C R oes not epen on L. Proof. Multiplying 3.4) by u an integrating over, L), we obtain D 3 u, u) L + u L = f, u) L, 3.7) an I 1 = D 3 u, u) L 1 1 α ) Du) + β α 1 )u ) q 1 C 4 Du) + u )) q 1, where C 4 = min{ 1 α, β α 1 }. Since D3 u, u) L + q 1, then an u L D3 u, u) L + q 1 + u L 1 f L + u L + q 1 Returning to 3.7), we obtain which implies u L C) f + q 1). 3.8) u L + C 4 Du) + u )) C) f + q 1 Du) + u ) C) f + q 1). 3.9) Multiplying 3.4) by e kx u an integrating over, L), we obtain e kx, u ) L + D 3 u, e kx u) L = f, e kx u) L, 3.1)

5 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 5 an e kx D 3 u, u) L K 1 u ) + K Du) + 3k ekx, Du ) L k3 ekx, u ) L 1 q 1, where K 1 = β 1 k α + k, K = 1 1 α + k ). With this, 3.1) becomes ekx, u ) L k3 ekx, u ) L + 3k ekx, Du ) L C 5 Du) + u ) ) + C)e kx, f ) + 1 q 1, where C 5 = max{ K 1, K, 1}. Using 3.9), we have e kx, u ) L + e kx, Du ) L C, k) e kx, f ) + q 1). 3.11) Now, multiplying 3.4) by e kx D 3 u an integrating over, L), we obtain e kx, D 3 u ) L C, k) e kx, f ) + q1 ) an multiplying 3.4) by e kx Du, we obtain 3.1) D u)du) + e kx, D u ) L + ke kx D u, Du) L e kx Du, u) L = e kx, fdu) L. Taking into account 3.), 3.9), 3.11), we fin that e kx, D u ) L C, k) e kx, f ) + q 1). Aing to this inequality 3.8), 3.1), we complete the proof. Since estimates of this Lemma o not epen on L, it allows us to exten an interval, L) to R + an by compactness arguments we can eliminate conition f CR + ). Uniqueness of a solution follows from 3.8). This completes the proof of Theorem Linear evolution problem Consier the linear initial-bounary value problem where e kx, u t + D 3 u = fx, t), x, t) Q T ; 4.1) D u, t) + αdu, t) + βu, t) + qt) =, t, T ); 4.) ux, ) = u x), x R + ; 4.3) u H 3 R + ), f, f t C, T ; L R + )), q H 1, T ); 4.4) 3 D i u ) + i= e kx, f )t) + e kx, f t )t)]t + Henceforth we will use the following Lemma see 9]). q t) + q t t))t <. 4.5)

6 6 N. A. LARKIN, E. TRONCO EJDE-11/113 Lemma 4.1 Discrete Gronwall Lemma). Let k n be a sequence of non-negative real numbers. Consier a sequence φ n such that n 1 n 1 φ g, φ n g + p s + k s φ s, n 1 s= s= with g an p s. Then for all n 1 it hols n 1 ) φ n g + p s exp { n 1 } k s. s= To stuy 4.1)-4.3), we use the metho of semi-iscretization with respect to t, 6, 15]. Define h = T >, N N, N u n x) = ux, nh), q n = qnh), f n x) = fx, nh), n = 1,..., N; s= u x) = ux, ) = u x); u n hx) = un x) u n 1 x), qh n = qn q n 1, n = 1,..., N; h h u h u t x, ) = fx, ) D 3 ux, ). We approximate 4.1)-4.3) with the system Lu n un h + D3 u n = un 1 h + f n 1, x R + ; 4.6) D u n ) + αdu n ) + βu n ) + q n 1 =, n = 1,..., N; 4.7) u x) = u x) H 3 R + ), x R ) By Theorem 3.1, given f n 1, q n 1 an u n 1 satisfying e kx, f n 1 x) + u n 1 x) ) + q n 1 C, there exists a unique solution u n x) H 3 R + ) of 4.6)-4.8) such that e kx, u n x) ) C. 4.9) Proposition 4.. Let u an fx, t) be such that for all t, T ) e kx, u x) + fx, t) ) C. Then for all n = 1,..., N an N > k 3 T problem 4.6)-4.8) amits a unique solution u n H 3 R + ) such that e kx, u n x) ) C. Proof. For n = 1 we have f x) = fx, ), u x) = u x), q = q) an 4.6)-4.8) becomes Due to 4.4)-4.5), u 1 x) + D 3 u 1 x) = fx, ) + u x) F 1 x), h h D u 1 ) + αdu 1 ) + βu 1 ) + q =. e kx, F 1 x) ) C.

7 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 7 Taking 1/h > k 3, by Theorem 3.1, there exists a unique solution u 1 H 3 R + ) of the above problem satisfying e kx, u 1 x) ) C. Repeating this proceure, the result follows. To prove solvability of 4.1)-4.3), it is sufficient to pass to the limit in 4.6)-4.8) as h. For this purpose we nee the following lemma. Lemma 4.3. Assume conition 4.5). Then for all h > sufficiently small an l = 1,..., N the solutions u n x) of 4.6)-4.8) satisfy { sup e kx, u l ) + e kx, u l h ) } + 1 l N C { 3 e kx, D i u ) + i= l { e kx, Du n )h + e kx, Du n h )h } e kx, f + f t )t) t + q t) + q t t)) t }, 4.1) where the constant C > oes not epen on h >. Proof. First we prove a priori estimates inepenent of h > for u n an u n h. Estimate I. Taking 1/h > k 3, multiplying 4.6) by e kx u n an integrating over R +, we obtain We estimate 1 h un u n 1, e kx u n ) + D 3 u n, e kx u n ) = f n 1, e kx u n ). 4.11) I 1 = 1 h un u n 1, e kx u n ) ekx, u n ) h ekx, u n 1 ) ; h I = D 3 u n, e kx u n ) K 1 u n ) + K Du n ) + 3k ekx, Du n ) k3 ekx, u n ) 1 qn 1, where K 1 = β 1 k α+k an K = 1 1 α + k ). I 3 = f n 1, e kx u n ) 1 ekx, u n ) + 1 ekx, f n 1 ). Substituting I 1, I, I 3 in 4.11), multiplying the result by h an summing from n = 1 to n = l N, we obtain l 3k e kx, Du n )h + e kx, u l ) e kx, u ) C 5 + l Du n ) + u n ) ) h ] + k 3 + 1) l e kx, f n 1 )h + l q n 1 h. l e kx, u n )h 4.1)

8 8 N. A. LARKIN, E. TRONCO EJDE-11/113 Making k = in 4.11), using I 1 I 3, multiplying the result by h an summing from n = 1 till n = l N, we obtain where hc 4 h l Du n ) + u n ) ) + u l u l l 1 l 1 u n + h f n + h q n, n= n= C 4 = min{ 1 α, β α 1 }. Consiering < h < 1/, we have u l l 1 l 1 l 1 u + h u n + h f n + h q n. Taking into account 4.4), an N N h f n = h n= n= n= n= f n x) x M l 1 h q n M q t) t, n= where the constants M an M o not epen on h. Using the Discrete Gronwall Lemma, we fin u l l 1 l 1 u + h f n + h q n ) expt ) u + M M 1 u + n= n= f x, t) x t + M f x, t) x t + q t) t with M 1 = max{e T, Me T, M e T }. Now, from 4.13), l Du n ) + u n ) ) h M u + n= f x, t) x t ) q t) t expt ) ), ] f x, t) x t + q t) t an M = 1 + M 1 T + M + M )/C 4 ). Consiering < h < 1 3k l e kx, Du n )h + e kx, u l ) e kx, u ) + CT, k) u ) an using 4.1), ] f x, t) x t + q t) t

9 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 9 + k 3 + 1) l l 1 l 1 e kx, u n )h + e kx, f n )h + h q n. n= Taking h such that < 1 + k 3 )h < 1/, we obtain l e kx, Du n )h + e kx, u l ) CT, k) e kx, u ) + l 1 + k 3 + 1) e kx, u n )h + h n= n= ] e kx f x, t) x t + q t) t l 1 n= q n l N. Applying Discrete Gronwall Lemma, we obtain e kx, u l ) Ck, T ) e kx, u ) + e kx f x, t) x t + Therefore, l e kx, Du n )h CT, k) e kx, u ) + ] e kx f x, t) x t + q t) t. Estimate II. Writing 4.6) as Lu n Lu n 1 )/h, we have L h u n h = un h un 1 h h ] q t) t. 4.14) 4.15) + D 3 u n h = f n 1 h, x R + ; 4.16) D u n h) + αdu n h) + βu n h) + q n 1 h =, n = 1,..., N; u h u t x, ) = fx, ) D 3 u x); f hx) f t x, ). Multiplying 4.16) by e kx u n h, integrating over R+ an acting as by proving the estimate I, we obtain e kx, u l h ) + l e kx, Du n h )h CT, k) e kx, u t x, )) + 3 CT, k) e kx, D i u ) + i= e kx, ft )t) t + This an 4.14), 4.15) completes the proof. e kx, f t + f )t) t + ] qt t) t ] qt t) t. 4.17) Theorem 4.4. Let u x), qt) an fx, t) satisfy 4.4), 4.5). Then there exists a unique solution of 4.1)-4.3), such that u L, T ; H 3 R + )), u t L, T ; L R + )) L, T ; H 1 R + )).

10 1 N. A. LARKIN, E. TRONCO EJDE-11/113 Proof. Rewriting 4.6)-4.8) as D 3 u n x) + k 3 u n x) = k 3 u n x) u n hx) + f n 1 x) F x), x R + ; D u n ) + αdu n ) + βu n ) + q n 1 =, n = 1,..., N; u x) = u x), x R + ; an taking into account Theorem 3.1, we fin a solution u n H 3 R + ) such that Hence u n H 3 R + ) 3 e kx, D i u n ) C i= 3 e kx, D i u n ) i= e kx, F ) + q n 1 ). C e kx, u n h + u n + f n 1 ) + q n 1 ) C { 3 e kx, D i u ) + i= e kx, f + f t )t) + q t) + q t t)] t }, where the constant C for h > sufficiently small oes not epen on h. Because the estimates 4.14), 4.15), 4.17) an the inequality above are uniform in h >, the stanar arguments see 15]) imply that there exists a function ux, t) such that u n u weakly-* in L, T ; H 3 R + )), u n h u t weakly-* in L, T ; L R + )) L, T ; H 1 R + )). Here u n an u n h are interpolations of un an u n h, respectively, an ux, t) is a solution of 4.1)-4.3). For more etails, see 15]. 5. Nonlinear problem. Local solutions In this section we prove the existence of local regular solutions to the nonlinear problem u t + D 3 u = udu Du, x, t) Q T ; 5.1) D u, t) + αdu, t) + βu, t) + u, t) u, t) + gt) =, t, T ); 5.) ux, ) = u x), x R + ; 5.3) where gt) is a given function, α an β satisfy.4). The main result here is as follows. Theorem 5.1. Let α an β satisfy.4), u x) H 3 R + ), g H 1, T ) an for some k > 3 e kx, D i u ) + e kx, u Du ) <. i= Then there exists a positive number T such that 5.1)-5.3) possesses a unique regular solution in Q T such that u L, T ; H 3 R + )), u t L, T ; L R + )) L, T ; H 1 R + ))

11 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 11 an the following inequality hols: sup t,t ) + {e kx, u )t) + e kx, u t )t)} + u, t) + u t, t) ) t 3 CT, k) e kx, D i u ) + e kx, u Du ) + i= e kx, Du )t) + e kx, Du t )t)]t ] g t) + gt t)) t. Proof. We prove this theorem using the Banach fixe point theorem. Consier X = L, T ; H 3 R + )), Y = L, T ; L R + )) L, T ; H 1 R + )). Let V be the space with the norm V = {v : R +, T ] R : v X, v t Y, vx, ) = u x)} v V = sup t,t ) + + {e kx, v )t) + e kx, v t )t)} e kx, Dv )t) + e kx, Dv t )t)]t v, t) + v t, t) ) t. Obviously, V, ) is a Banach space. Define B R = {v V : v V R 1C }, C = max{1 + C 5 C 4, C 5δ C 4, δ}, with δ = 1/ min{1, k, C 5 }, an R > 1 is such that 3 e kx, D i u + u Du ) + i= For any vx, t) B R consier the linear problem 5.4) g t) + g t t)) t R. 5.5) u t + D 3 u = vdv Dv, x, t) Q T ; 5.6) D u, t) + αdu, t) + βu, t) + v, t) v, t) + gt) =, t, T ); 5.7) ux, ) = u x), x R + ; 5.8) where gt) H 1, T ), α an β satisfy.4). It is easy to verify that v, t) v, t) H 1, T ); fx, t) = vdv Dv satisfies conitions 4.4) an 4.5). Therefore, by Theorem 4.4, there exists a unique function ux, t) : u L, T ; H 3 R + )), u t L, T ; L R + )) L, T ; H 1 R + )) which solves 5.6)-5.8). Hence, one can efine an operator P relate to 5.6)-5.8) such that u = P v. Lemma 5.. There is a real T = T R) > such that an operator P : u = P v maps B R into itself. Proof. To prove this lemma it suffices to show the necessary a priori estimates:

12 1 N. A. LARKIN, E. TRONCO EJDE-11/113 Estimate I. Multiplying 5.6) by u, integrating over R + an repeating the calculations from Lemma 3.4, we fin t u t) + C 4 u, t) + Du, t) ) 5.9) u t) + vdv t) + Dv t) + C v, t) v, t) + g t). We estimate e kx Dvx, t) x = e kx Dvx, ) x + R + R + τ ekx, Dv )τ) τ e kx, Du ) + e kx Dv + Dv τ ) xτ R + an Moreover, v, t) sup v x, t) v t) Dv t) x R + ) 1/ e kx v x, t) x e kx Dvx, t) x R + R + R 1C ) R + 1R C ) 1/. vdv t) sup v x, t) Dvx, t) x x R + R + Hence 5.9) may be rewritten as ) 1/ R 1C ) R + 1R C ) 1/ R + 1R C ). t u t) + C 4 u, t) + Du, t) ) u t) + CR, C ) + g t). 5.1) Ignoring the secon term on the left sie of this inequality an applying Gronwall s lemma, we obtain u t) e T u + CR, C )T + Taking T > such that e T e CR, C )T R, we have u t) 6R, t, T ). g τ) τ ). Using this inequality an integrating 5.1) over, t), we obtain u, τ) + Du, τ) ]τ 1 C 4 CR, C )T + u + 1 C 4 CR, C )T + u + R ]. g τ) τ ] 5.11) Multiplying 5.6) by e kx u an integrating over R +, we fin t ekx, u )t) + 3ke kx, Du )t) C 5 u, t) + Du, t) ) + C 6 e kx, u )t) + e kx, vdv + Dv )t) + C v, t) v, t) ) + g t) C 5 u, t) + Du, t) ) + C 6 e kx, u )t) + CR, C ) + g t), 5.1)

13 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 13 where C 6 = 1 + k 3. Ignoring the secon term on the left sie of 5.1), using 5.11) an applying the Gronwall lemma, we obtain e kx, u )t) e C6T e kx, u ) + C 5 e C6T u, τ) + Du, τ) ]τ + e C6T CR, C )T + e C6T g τ) τ e C6T e kx, u ) 1 + C 5 ) + e C 6T C 5 CR, C ) + CR, C )]T C 4 C 4 + e C6T g τ) τ + e C6T C 5 C 4 R. Choosing T > such that e C6T an C5 C 4 CR, C ) + CR, C )]T R C, we obtain e kx, u )t) 6R C + R ; t, T ). Returning to 5.1), we rewrite it as t ekx, u )t) + 3ke kx, Du )t) + C 5 u, t) 3C 5 u, t) + 3C 5 Du, t) + CR, C, k) + CR, C ) + g t). Integrating 5.13) over, t) an using 5.11), we fin e kx, u )t) + e kx, Du )τ) τ + u, τ) τ 5.13) e kx, u ) + δ 3C 5 CR, C )T + e kx, u C ) + R ] + δt CR, C, k) + CR, C )] 4 + δ g τ) τ e kx, u )1 + 3δC 5 C 4 ] + δt 3C 5 C 4 CR, C ) + CR, C, k) + CR, C )] + R C, where δ = 1/ min{1, k, C 5 }. Choosing T > such that we obtain e kx, u )t)+ δt 3C 5 C 4 CR, C ) + CR, C, k) + CR, C )] 3R C, e kx, Du )τ) τ + u, τ) τ 6R C ; t, T ). 5.14) Estimate II. Differentiating 5.6) with respect to t, multiplying by u t, integrating over R + an acting as by proving 5.14), we have t u t t) + C 4 ut, t) + Du t, t) ) Cɛ ) u t t) + ɛ v t Dv t) + ɛ vdv t t) + ɛ Dv t t) + CR, C ) Dv t t) + g t t), where ɛ > will be chosen later. We estimate v t Dv t) sup x R + v t x, t) Dv t) 5.15)

14 14 N. A. LARKIN, E. TRONCO EJDE-11/113 an Then 5.15) becomes 4 v t t) Dv t t) Dv t) CR, C ) Dv t t) vdv t t) CR, C ) Dv t t). t u t t) + C 4 ut, t) + Du t, t) ) Cɛ ) u t t) + ɛ CR, C ) Dv t t) + ɛ CR, C ) Dv t t) + CR, C ) Dv t t) + g t t). By the Gronwall lemma, u t t) e Cɛ)T u t x, ) + ɛ CR, C ) + e Cɛ)T ɛ CR, C ) Due to 5.6), Dv τ τ) τ + Dv τ τ) τ + CR, C ) ) gτ τ) τ. 5.16) ) Dv τ τ)τ u t x, ) 3 u Du + D 3 u + Du ) 3R. 5.17) Since ) 1/ Dv τ τ) τ τ ) 1/ Dv τ 1/ τ) τ T R 1C, we can take T > an ɛ > such that e Cɛ)T an ɛ CR, C )T 1/ R 1C + ɛ CR, C ) + CR, C )T 1/ R 1C CR, C ) in orer to obtain u t t) CR, C ), t, T ). 5.18) Substituting 5.18) into 5.16) an integrating over, t), we obtain which implies u t t) + C 4 uτ, τ) + Du τ, τ) ) τ u t ) + CR, C, ɛ )T + CR, C, ɛ ) + ɛ CR, C ) Dv τ τ) τ + g τ τ) τ Dv τ τ) τ u t ) + CR, C, ɛ )T + CR, C, ɛ )T 1/ + ɛ CR, C ) + R uτ, τ) + Du τ, τ) ) τ 1 C 4 u t ) + CR, C, ɛ )T + CR, C, ɛ )T 1/ ] 5.19) + 1 C 4 ɛ CR, C ) + R ].

15 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 15 Differentiating 5.6) with respect to t, multiplying by e kx u t, integrating over R + an acting as earlier, we fin t ekx, u t )t) + 3ke kx, Du t )t) C 5 ut, t) + Du t, t) ) + k 3 e kx, u t )t) e kx, vdv) t u t )t) 5.) We estimate e kx, Dv t u t )t) + CR, C ) Dv t t) + g t t). e kx, Dv t u t )t) ɛ 1 e kx, Dv t )t) + Cɛ 1 )e kx, u t )t), where ɛ 1 > will be chosen later, an e kx, vdv) t u t )t) = e kx, vv t ) x u t )t) = v, t)v t, t)u t, t) + vv t, e kx Du t + ku t ])t) v, t)v t, t)u t, t) + ke kx, vv t + u t )t) + ke kx, Du t )t) + 1 k ekx, vv t )t). Since v, t)v t, t)u t, t) CR, C ) Dv t 1/ t) Du t 1/ t), by the Young inequality, v, t)v t, t)u t, t) CR, C, k) Dv t /3 t) + k Du t t). Then 5.) becomes t ekx, u t )t) + ke kx, Du t )t) C 5 ut, t) + Du t, t) ) + Ck, ɛ 1 )e kx, u t )t) + Ck)e kx, vv t )t) + ɛ 1 e kx, Dv t + CR, C ) Dv t /3 t) + CR, C ) Dv t t) + g t t). 5.1) Ignoring the secon term on the left-han sie an applying the Gronwall lemma, we obtain e kx, u t )t) e Ck,ɛ1)T e kx, u t )) + C 5 uτ, τ) + Du τ, τ) ) τ ] + e Ck,ɛ1)T Ck) + e CR, Ck,ɛ1)T C ) + T 1/ e kx, vv τ )τ) τ + ɛ 1 e kx, Dv τ )τ) τ ] T /3 Dv τ τ) τ Dv τ τ) τ ) 1/ ]] + e Ck,ɛ1)T ) 1/3 g τ τ) τ ]. Using 5.17), 5.19), 5.5) an 5.4) together with the choice of B R, we have e kx, u t )t) e Ck,ɛ1)T 3R + C 5 C 4 CR, C, ɛ )T + CR, C, ɛ )T 1/ + ɛ CR, C ) + 4R ] ] + e Ck,ɛ1)T Ck, R)T + ɛ 1 1R C + CR, C )T /3 + T 1/ ) + R ].

16 16 N. A. LARKIN, E. TRONCO EJDE-11/113 Choose T >, ɛ > an ɛ 1 > sufficiently small to obtain Returning to 5.1), it gives e kx, u t )t) CR, C ). 5.) t ekx, u t )t) + ke kx, Du t )t) + C 5 u t, t) 3C 5 ut, t) + Du t, t) ) + Ck, R, C, ɛ 1 ) + Ck)e kx, vv t )t) + ɛ 1 e kx, Dv t )t) + CR, C ) Dv t /3 t) + CR, C ) Dv t t) + g t t). Integration over, t) yiels e kx, u t )t) + e kx, Du τ )τ) τ + u τ, τ) τ e kx, u t )) + δ 3C 5 uτ, τ) + Du τ, τ) ) ] τ + Ck, R, C, ɛ 1 )T + δ Ck) + CR, C ) e kx, vv τ )τ) τ + ɛ 1 e kx, Dv τ )τ) τ ] Dv τ /3 τ) τ + δ CR, C ) Dv τ τ) τ + where δ = 1/ min{1, k, C 5 }. Taking into account 5.17) an 5.19), we fin e kx, u t )t) + e kx, Du τ )τ) τ + u τ, τ) τ ] gτ τ) τ, e kx, u t )) 1 + 3δ C 5 ) C 5 + 3δ CR, C, ɛ )T + CR, C, ɛ )T 1/ C 4 C 4 + ɛ CR, C ) + R ] + δck, R, C, ɛ 1 )T + δ CR, C, k)t + ɛ 1 1R C + CR, C )T /3 + CR, C )T 1/ + R ]. Choose T >, ɛ > an ɛ 1 > sufficiently small in orer to obtain e kx, u t )t) + e kx, Du τ )τ) τ + This inequality an 5.14) completes the proof. u τ, τ) τ 6R C, t, T ). Lemma 5.3. For T > sufficiently small, the operator P is a contraction mapping. Proof. For arbitrary v 1, v B R we enote u i = P v i, i = 1,, s = v 1 v an z = u 1 u. Then zx, t) satisfies the initial bounary value problem z t x, t) + D 3 zx, t) = 1 Dv 1 v ) Ds, x, t) Q T ; 5.3) D z, t) + αdz, t) + βz, t) + v 1, t) v 1, t) v, t) v, t) =, 5.4) Define zx, ) =, x R ) ρ v 1, v ) = ρ s) = supe kx, s )t) + t> e kx, Ds )t) t. 5.6)

17 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 17 Estimate III. Multiplying 5.3) by z an integrating over R +, we obtain We estimate an t z t) + C 4 z, t) + Dz, t) ) v 1, t) v 1, t) v, t) v, t) z, t) Dv 1 v ), z)t) Ds, z)t). I 1 = Dv 1 v ), z)t) Dv 1 v ) t) z t) CR, C ) s t) + Ds t) ) z t) CR, C ) s t) + ɛ 4 Ds t) + CR, C, ɛ 4 ) z t), I = Ds, z)t) Ds t) z t) ɛ 4 Ds t) + Cɛ 4 ) z t), where ɛ 4 > will be chosen later; v 1, t) v 1, t) v, t) v, t) z, t) z, = v 1, t) s, t) + v, t) v 1, t) v, t) ) t) ) v 1, t) s, t) + v, t) v 1, t) v, t) z, t) ) = v 1, t) s, t) + v, t) s, t) z, t) ) CR, C ) s 1/ t) Ds 1/ t) z, t) CR, C, ɛ) s t) Ds t) ɛ z, t) CR, C, ɛ, ɛ 4 ) s t) ɛ 4 Ds t) ɛ z, t), where ɛ = 1 β α ) 1. Then 5.7) becomes t z t) + C 4 z, t) + Dz, t) ) 3ɛ 4 Ds t) + CR, C, ɛ, ɛ 4 ) s t) + CR, C, ɛ 4 ) z t). 5.7) 5.8) Ignoring the secon term on the left-han sie of 5.8) an applying the Gronwall lemma, we fin ] z t) e CR,C,ɛ 4)T 3ɛ 4 Ds τ) τ + CR, C, ɛ, ɛ 4 ) s τ) τ. Taking T > for a fixe ɛ 4 > such that e CR,C,ɛ 4)T, we have ) z t) 6ɛ 4 + CR, C, ɛ, ɛ 4 )T ρ s). The choice of T > such that CR, C, ɛ, ɛ 4 )T 4ɛ 4 yiels Integrating 5.8) over, t) an using 5.9), we obtain z t) 1ɛ 4 ρ s). 5.9) z, τ) + Dz, τ) ) τ 3ɛ 4 + CR, C, ɛ, ɛ 4 )T ) C 4 ρ s). 5.3)

18 18 N. A. LARKIN, E. TRONCO EJDE-11/113 Multiplying 5.3) by e kx z, we fin t ekx, z )t) + 3ke kx, Dz )t) C 5 z, t) + Dz, t) ) + CR, C, k, ɛ 4 )e kx, z )t) + CR, C, ɛ 4, ɛ)e kx, s )t) + 3ɛ 4 e kx, Ds )t). Due to the Gronwall lemma an 5.3), e kx, z )t) e CR,C,k,ɛ 4)T 3ɛ 4 + CR, C, ɛ, ɛ 4 )T )] C5 ρ s) C 4 + e CR,C,k,ɛ 4)T CR, C, ɛ 4 )T + 3ɛ 4 ]ρ s). Choose T > an ɛ 4 > sufficiently small to obtain 5.31) e kx, z )t) 1 4 ρ s). 5.3) Integrating 5.31) over, t) an using 5.3) an 5.3), we obtain e kx, z )t) + e kx, Dz )τ) τ C 5 δ 3ɛ 4 + CR, C, ɛ, ɛ 4 )T ) ρ s) + δcr, C, k, ɛ 4 )T ρ s) C 4 + δcr, C, ɛ 4, ɛ)t supe kx, s )t) + 3δɛ 4 e kx, Ds )τ) τ. t> Finally, we choose T > an ɛ 4 > sufficiently small to obtain ρ z) γρ s), < γ < 1, with ρ = ρs) efine in 5.6). This competes the proof. Lemmas 5. an 5.3 an the contraction mapping arguments imply the existence an uniqueness of a generalize solution u B R of 5.1)-5.3): u, u t L, T ; L R + )) L, T ; H 1 R + )). It is easy to verify that udu + Du H 1, T ; L R + )). Hence, by Theorem 3.1, u L, T ; H 3 R + )). This completes the proof of Theorem 5.1. Remark 5.4. One can observe that to prove the existence of local solutions, we o not pose any restrictions on k while in conitions of Theorem. the value of k epens on coefficients a 1, a. 6. Global solutions To prove Theorem., we must exten the obtaine local solution to the whole, T ) with an arbitrary fixe T >. For this purpose, we nee a priori estimates of local solutions uniform in t, T ). Estimate I. Multiplying 5.1) by u, we obtain t u t) + D 3 u, u)t) + Du, u )t) + Du, u)t) =. 6.1) We calculate I 1 = D 3 u, u)t)

19 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 19 β α ɛ ) u, t) + 1 α ) Du, t) + u, t) 3 1 ɛ gt), where ɛ is an arbitrary positive number; I = Du, u)t) = u, t), I 3 = Du, u )t) = 3 u3, t) 3 u, t) 3. Since β α 1 = a 1 > an 1 α = a >, choosing ɛ = a 1 an substituting I 1 I 3 into 6.1), we obtain This implies t u t) + a 1 u, t) + a Du, t) u, t) 3 1 a 1 gt). 6.) u t) + a 1 u, τ) + a Du, τ) u, τ) 3) τ u ) + 1 gτ) τ. a 1 Estimate II. Multiplying 5.1) by e kx u, we obtain t ekx, u )t) + 3ke kx, Du )t) + u, t) 3 + β 1 α k + k a 1 4 ] u, t) + 1 α k) Du, t) k + k 3 )e kx, u )t) e kx u, Du)t) + a 1 gt). 6.3) 6.4) The conitions of Theorem. imply which transforms 6.4) into k + k a 1 4, k a t ekx, u )t) + 3ke kx, Du )t) + u, t) 3 + a 1 u, t) + a Du, t) k + k 3 )e kx, u )t) e kx u, Du)t) + a 1 gt). 6.5) We estimate I 1 = e kx u, Du)t) ke kx, Du )t) + 1 k ekx, u 4 )t) ke kx, Du )t) + 1 k sup x R + e kx u x, t) u t). Taking into account 6.3), we have I 1 ke kx, Du )t) + u ) + 1 ) gτ) τ e kx/ u t) De kx/ u) t) k a 1 ke kx, Du )t) + u ) + 1 ) { gτ) k τ k a 1 ekx/ u t) } + u ) + 1 { e gτ) τ) kx/ u t) e kx/ Du t) }. k a 1

20 N. A. LARKIN, E. TRONCO EJDE-11/113 Using the Young inequality, we obtain I 1 ke kx, Du )t) + C u, g L,T ), k)ekx, u )t). 6.6) Substituting I 1 into 6.5), we obtain t ekx, u )t) + k ekx, Du )t) C u, g L,T ), k)ekx, u )t) + g t)]. Due to the Gronwall lemma an 6.3), ] e kx, u )t) C u, g L,T ) e, k, T ) kx, u ) + g τ) τ. 6.7) Hence e kx, u )t)+ e kx, Du )τ) τ C e kx, u )+ ] g τ) τ, t, T ); 6.8) where C epens on k >, T >, g L,T ) an u. Estimate III. Differentiate 5.1) with respect to t, multiply by e kx u t an acting as by proving Estimate II, we obtain We efine t ekx, u t )t) + 3ke kx, Du t )t) + e kx u ) xt, u t )t) + 4 u, t) u t, t) + a 1 u t, t) + a Du t, t) k + k 3 )e kx, u t )t) + a 1 g t t). I 1 = e kx u ) xt, u t )t) = u, t)u t, t) ke kx u, u t )t) + e kx Du, u t )t) which we estimate as follows: an I 11 = ke kx u, u t )t) k sup x R + ux, t) e kx, u t )t) k 1 + u t) + e kx, Du )t) ) e kx, u t )t), I 1 = e kx Du, u t )t) sup x R + u t x, t) e kx Du, u t )t) u t 1/ t) Du t 1/ t) e kx/ Du t) e kx/ u t t) ke kx, Du t )t) + 1 k 1 + ekx, Du )t)]e kx, u t )t). Substituting I 1 into 6.9) an using 6.3), we come to the inequality t ekx, u t )t) + ke kx, Du t )t) + a 1 u t, t) + a Du t, t) + 3 u, t) u t, t) Ck)1 + u t) + Du t)]e kx, u t )t) + a 1 g t t). Taking into account 6.8), it is easy to see that 1 + u t) + Du t) L 1, T ). 6.9)

21 EJDE-11/113 NONLINEAR QUARTER-PLANE PROBLEM 1 Hence, by the Gronwall lemma, we obtain e kx, u t )t) + e kx, Du τ )τ) τ 3 ] C e kx, D i u ) + e kx, u Du ) i= + C g H 1,T ), t, T ); where C epens on k >, T >, g L,T ) an u. Returning to 5.1), we can write it as D 3 u + u = u u t udu Du. 6.1) By Theorem 3.1, 3 e kx, D i u )t) C e kx, D i u ) + e kx, u Du ) + g H 1,T )] ). i= On the other han, i= D 4 u = Du t D u Du ud u L, T ; L R + )) 6.11) an e kx, D 4 u )τ) τ 3 This gives 3 e kx, D 4 u )τ) τ e kx, D 4 u )τ) τ + 3 e kx, D 4 u )τ) τ + 3 e kx, D u )τ) τ + 3 e kx, ud u )τ) τ. e kx, Du τ )τ) τ e kx, D u )τ) τ + 3 Du t) D u t) + 3 u t) Du t) This an 6.11) imply e kx, D 4 u )τ) τ e kx, D u )τ) τ. e kx, Du τ )τ) τ e kx, Du 4 )τ) τ e kx, Du )τ) τ C e kx, D i u ) + e kx, u Du ) + g H 1,T )] ). i= Hence, u L, T ; H 4 R + )). Estimates I, II, III complete Section 6. Uniqueness of the obtaine regular solution follows from the contraction mapping principle. The proof of Theorem. is complete.

22 N. A. LARKIN, E. TRONCO EJDE-11/113 Acknowlegements. The authors appreciate very much the etaile an constructive remarks mae by the anonymous referee. References 1] T. B. Benjamin; Lectures on Nonlinear Wave Motion, Lecture Notes in Applie Mathematics ), ] J. L. Bona, V. A. Dougalis; An Initial an Bounary-Value Problem for a Moel Equation for Propagation of Long Waves, J. Math. Anal. Appl ), ] J. L. Bona, S. M. Sun, B. Y. Zhang; A Non-Homogeneous Bounary-Value Problem for the Korteweg-e Vries Equation in a Quarter Plane, Trans. Amer. Math. Soc. 354 ), no., electronic). 4] B. A. Bubnov; General Bounary-Value Problems for the Korteweg-e Vries Equation in a Boune Domain, Differentsial nye Uravneniya 151) 1979), Translation in: Differ. Equ ), ] B. A. Bubnov; Solvability in the large of nonlinear bounary value problems for the Kortewege Vries equation in a boune omain, Differential Equations ), no 1, ] G. G. Doronin, N. A. Larkin; Kawahara equation in a boune omain, Discrete an Continuous Dynamic Systems, Serie B, 1 8), ] G. G. Doronin, N. A. Larkin; KV Equation in Domains with Moving Bounaries, J. Math. Anal. Appl. 38 7), ] C. N. Dorny; A vector space approach to moels an applications, New York, Wiley 1975). 9] E. Emmrich; Discrete versions of Gronwall s lemma an their applications to the numerical analysis of parabolic problems, Prepint No 637, July 1999, Prepint Reihe Mathematik Techniche Universitat Berlin, Fachbereich Mathematik. 1] A. V. Faminskii; An initial bounary-value problem in a half-strip for the Korteweg-e Vries equation in fractional orer Sobolev spaces, Comm. Partial Differential Equations ) 4) ] A. V. Faminskii, N. A. Larkin; Initial-bounary value problems for quasilinear ispersive equations pose on a boune interval, Electron. J. Differential Equations, v.1 1), No. 1, pp ] A.v. Faminskii, N. A. Larkin; O-orer quasilinear evolution equations pose on a boune interval, Bol. Soc. Paranaense e Mat., 35) v. 8, 1 1), ] A. V. Faminskii; On an Initial Bounary Value Problem in a Boune Domain for the Generalize Korteweg-De Vries Equation, Functional Differential Equations, v. 8 1), ] S. Ginikin, L. Volevich; Mixe problem for partial ifferential with quasihomogeneous principal part, Translations of Mathematical Monographs, 147, Amer. Math. Soc., Provience, RI, ] O. A. Layzhenskaya; The Bounary Value Problems of Mathematical Physics, Applie mathematical sciences, New York, ] N. A. Larkin; Correct initial bounary value problems for ispersive equations, J. Math. Anal. Appl., 344 8), ] N. A. Larkin; Korteweg-e Vries an Kuramoto-Sivashinsky Equations in Boune Domains, J. Math. Anal. Appl. 971) 4), ] N. A. Larkin, J. Luchesi; General mixe problems for the KV equations on boune intervals, Electron. J. of Differential Equations, vol. 1 1), No. 168, ] F. Linares, G. Ponce; Introuction to nonlinear Dispersive Equations, Eitora IMPA, 6. Nikolai A. Larkin Departamento e Matemática, Universiae Estaual e Maringá, Av. Colombo 579: Agência UEM, 87-9, Maringá, PR, Brazil aress: nlarkine@uem.br Euaro Tronco Departamento e Matemática, Universiae Estaual e Maringá, Av. Colombo 579: Agência UEM, 87-9, Maringá, PR, Brazil aress: etronco@uem.br

Kawahara equation in a quarter-plane and in a finite domain

Kawahara equation in a quarter-plane and in a finite domain Bol. Soc. Paran. Mat. (3s.) v. 25 1-2 (27): 9 16. c SPM ISNN-378712 Kawahara equation in a quarter-plane and in a finite domain Nikolai A. Larkin and Gleb G. Doronin abstract: This work is concerned with

More information

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION

INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN INTEGRAL OVERDETERMINATION CONDITION Electronic Journal of Differential Equations, Vol. 216 (216), No. 138, pp. 1 7. ISSN: 172-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu INVERSE PROBLEM OF A HYPERBOLIC EQUATION WITH AN

More information

The effect of dissipation on solutions of the complex KdV equation

The effect of dissipation on solutions of the complex KdV equation Mathematics an Computers in Simulation 69 (25) 589 599 The effect of issipation on solutions of the complex KV equation Jiahong Wu a,, Juan-Ming Yuan a,b a Department of Mathematics, Oklahoma State University,

More information

DISSIPATIVE INITIAL BOUNDARY VALUE PROBLEM FOR THE BBM-EQUATION

DISSIPATIVE INITIAL BOUNDARY VALUE PROBLEM FOR THE BBM-EQUATION Electronic Journal of Differential Equations, Vol. 8(8), No. 149, pp. 1 1. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) DISSIPATIVE

More information

WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES

WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES Electronic Journal of Differential Equations, Vol. 017 (017), No. 38, pp. 1 7. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL

More information

LOCAL SOLVABILITY AND BLOW-UP FOR BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY EQUATIONS

LOCAL SOLVABILITY AND BLOW-UP FOR BENJAMIN-BONA-MAHONY-BURGERS, ROSENAU-BURGERS AND KORTEWEG-DE VRIES-BENJAMIN-BONA-MAHONY EQUATIONS Electronic Journal of Differential Equations, Vol. 14 (14), No. 69, pp. 1 16. ISSN: 17-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu LOCAL SOLVABILITY AND BLOW-UP

More information

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS

GLOBAL SOLUTIONS FOR 2D COUPLED BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS Electronic Journal of Differential Equations, Vol. 015 015), No. 99, pp. 1 14. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu GLOBAL SOLUTIONS FOR D COUPLED

More information

A COMBUSTION MODEL WITH UNBOUNDED THERMAL CONDUCTIVITY AND REACTANT DIFFUSIVITY IN NON-SMOOTH DOMAINS

A COMBUSTION MODEL WITH UNBOUNDED THERMAL CONDUCTIVITY AND REACTANT DIFFUSIVITY IN NON-SMOOTH DOMAINS Electronic Journal of Differential Equations, Vol. 2929, No. 6, pp. 1 14. ISSN: 172-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu A COMBUSTION MODEL WITH UNBOUNDED

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Abstract A nonlinear partial differential equation of the following form is considered:

Abstract A nonlinear partial differential equation of the following form is considered: M P E J Mathematical Physics Electronic Journal ISSN 86-6655 Volume 2, 26 Paper 5 Receive: May 3, 25, Revise: Sep, 26, Accepte: Oct 6, 26 Eitor: C.E. Wayne A Nonlinear Heat Equation with Temperature-Depenent

More information

A transmission problem for the Timoshenko system

A transmission problem for the Timoshenko system Volume 6, N., pp. 5 34, 7 Copyright 7 SBMAC ISSN -85 www.scielo.br/cam A transmission problem for the Timoshenko system C.A. RAPOSO, W.D. BASTOS an M.L. SANTOS 3 Department of Mathematics, UFSJ, Praça

More information

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ

MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ GENERALIZED UNIFORMLY CONTINUOUS SEMIGROUPS AND SEMILINEAR HYPERBOLIC SYSTEMS WITH REGULARIZED DERIVATIVES MARKO NEDELJKOV, DANIJELA RAJTER-ĆIRIĆ Abstract. We aopt the theory of uniformly continuous operator

More information

2 GUANGYU LI AND FABIO A. MILNER The coefficient a will be assume to be positive, boune, boune away from zero, an inepenent of t; c will be assume con

2 GUANGYU LI AND FABIO A. MILNER The coefficient a will be assume to be positive, boune, boune away from zero, an inepenent of t; c will be assume con A MIXED FINITE ELEMENT METHOD FOR A THIRD ORDER PARTIAL DIFFERENTIAL EQUATION G. Li 1 an F. A. Milner 2 A mixe finite element metho is escribe for a thir orer partial ifferential equation. The metho can

More information

Existence and Uniqueness of Solution for Caginalp Hyperbolic Phase Field System with Polynomial Growth Potential

Existence and Uniqueness of Solution for Caginalp Hyperbolic Phase Field System with Polynomial Growth Potential International Mathematical Forum, Vol. 0, 205, no. 0, 477-486 HIKARI Lt, www.m-hikari.com http://x.oi.org/0.2988/imf.205.5757 Existence an Uniqueness of Solution for Caginalp Hyperbolic Phase Fiel System

More information

ASYMPTOTICS TOWARD THE PLANAR RAREFACTION WAVE FOR VISCOUS CONSERVATION LAW IN TWO SPACE DIMENSIONS

ASYMPTOTICS TOWARD THE PLANAR RAREFACTION WAVE FOR VISCOUS CONSERVATION LAW IN TWO SPACE DIMENSIONS TANSACTIONS OF THE AMEICAN MATHEMATICAL SOCIETY Volume 35, Number 3, Pages 13 115 S -9947(999-4 Article electronically publishe on September, 1999 ASYMPTOTICS TOWAD THE PLANA AEFACTION WAVE FO VISCOUS

More information

A nonlinear inverse problem of the Korteweg-de Vries equation

A nonlinear inverse problem of the Korteweg-de Vries equation Bull. Math. Sci. https://oi.org/0.007/s3373-08-025- A nonlinear inverse problem of the Korteweg-e Vries equation Shengqi Lu Miaochao Chen 2 Qilin Liu 3 Receive: 0 March 207 / Revise: 30 April 208 / Accepte:

More information

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential Avances in Applie Mathematics an Mechanics Av. Appl. Math. Mech. Vol. 1 No. 4 pp. 573-580 DOI: 10.4208/aamm.09-m0946 August 2009 A Note on Exact Solutions to Linear Differential Equations by the Matrix

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

ARBITRARY NUMBER OF LIMIT CYCLES FOR PLANAR DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO ZONES

ARBITRARY NUMBER OF LIMIT CYCLES FOR PLANAR DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS WITH TWO ZONES Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 228, pp. 1 12. ISSN: 1072-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu ARBITRARY NUMBER OF

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Martin Luther Universität Halle Wittenberg Institut für Mathematik

Martin Luther Universität Halle Wittenberg Institut für Mathematik Martin Luther Universität alle Wittenberg Institut für Mathematik Weak solutions of abstract evolutionary integro-ifferential equations in ilbert spaces Rico Zacher Report No. 1 28 Eitors: Professors of

More information

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE Electronic Journal of Differential Equations, Vol. 016 (016, No. 176, pp. 1 1. ISSN: 107-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION

More information

A REMARK ON THE DAMPED WAVE EQUATION. Vittorino Pata. Sergey Zelik. (Communicated by Alain Miranville)

A REMARK ON THE DAMPED WAVE EQUATION. Vittorino Pata. Sergey Zelik. (Communicated by Alain Miranville) COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume 5, Number 3, September 2006 pp. 6 66 A REMARK ON THE DAMPED WAVE EQUATION Vittorino Pata Dipartimento i Matematica F.Brioschi,

More information

A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING. G. G. Doronin, N. A. Lar kin, & A. J. Souza

A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING. G. G. Doronin, N. A. Lar kin, & A. J. Souza Electronic Journal of Differential Equations, Vol. 1998(1998), No. 28, pp. 1 1. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp 147.26.13.11 or 129.12.3.113 (login: ftp) A

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

On some parabolic systems arising from a nuclear reactor model

On some parabolic systems arising from a nuclear reactor model On some parabolic systems arising from a nuclear reactor moel Kosuke Kita Grauate School of Avance Science an Engineering, Wasea University Introuction NR We stuy the following initial-bounary value problem

More information

Agmon Kolmogorov Inequalities on l 2 (Z d )

Agmon Kolmogorov Inequalities on l 2 (Z d ) Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Publishe by Canaian Center of Science an Eucation Agmon Kolmogorov Inequalities on l (Z ) Arman Sahovic Mathematics Department,

More information

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena

Chaos, Solitons and Fractals Nonlinear Science, and Nonequilibrium and Complex Phenomena Chaos, Solitons an Fractals (7 64 73 Contents lists available at ScienceDirect Chaos, Solitons an Fractals onlinear Science, an onequilibrium an Complex Phenomena journal homepage: www.elsevier.com/locate/chaos

More information

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp

. ISSN (print), (online) International Journal of Nonlinear Science Vol.6(2008) No.3,pp . ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.6(8) No.3,pp.195-1 A Bouneness Criterion for Fourth Orer Nonlinear Orinary Differential Equations with Delay

More information

Research Article Global and Blow-Up Solutions for Nonlinear Hyperbolic Equations with Initial-Boundary Conditions

Research Article Global and Blow-Up Solutions for Nonlinear Hyperbolic Equations with Initial-Boundary Conditions International Differential Equations Volume 24, Article ID 724837, 5 pages http://x.oi.org/.55/24/724837 Research Article Global an Blow-Up Solutions for Nonlinear Hyperbolic Equations with Initial-Bounary

More information

On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates

On a class of nonlinear viscoelastic Kirchhoff plates: well-posedness and general decay rates On a class of nonlinear viscoelastic Kirchhoff plates: well-poseness an general ecay rates M. A. Jorge Silva Department of Mathematics, State University of Lonrina, 8657-97 Lonrina, PR, Brazil. J. E. Muñoz

More information

Dissipative numerical methods for the Hunter-Saxton equation

Dissipative numerical methods for the Hunter-Saxton equation Dissipative numerical methos for the Hunter-Saton equation Yan Xu an Chi-Wang Shu Abstract In this paper, we present further evelopment of the local iscontinuous Galerkin (LDG) metho esigne in [] an a

More information

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC

More information

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES Communications on Stochastic Analysis Vol. 2, No. 2 (28) 289-36 Serials Publications www.serialspublications.com SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

More information

PDE Notes, Lecture #11

PDE Notes, Lecture #11 PDE Notes, Lecture # from Professor Jalal Shatah s Lectures Febuary 9th, 2009 Sobolev Spaces Recall that for u L loc we can efine the weak erivative Du by Du, φ := udφ φ C0 If v L loc such that Du, φ =

More information

Regularity of Attractor for 3D Derivative Ginzburg-Landau Equation

Regularity of Attractor for 3D Derivative Ginzburg-Landau Equation Dynamics of PDE, Vol.11, No.1, 89-108, 2014 Regularity of Attractor for 3D Derivative Ginzburg-Lanau Equation Shujuan Lü an Zhaosheng Feng Communicate by Y. Charles Li, receive November 26, 2013. Abstract.

More information

REVERSIBILITY FOR DIFFUSIONS VIA QUASI-INVARIANCE. 1. Introduction We look at the problem of reversibility for operators of the form

REVERSIBILITY FOR DIFFUSIONS VIA QUASI-INVARIANCE. 1. Introduction We look at the problem of reversibility for operators of the form REVERSIBILITY FOR DIFFUSIONS VIA QUASI-INVARIANCE OMAR RIVASPLATA, JAN RYCHTÁŘ, AND BYRON SCHMULAND Abstract. Why is the rift coefficient b associate with a reversible iffusion on R given by a graient?

More information

Global Solutions to the Coupled Chemotaxis-Fluid Equations

Global Solutions to the Coupled Chemotaxis-Fluid Equations Global Solutions to the Couple Chemotaxis-Flui Equations Renjun Duan Johann Raon Institute for Computational an Applie Mathematics Austrian Acaemy of Sciences Altenbergerstrasse 69, A-44 Linz, Austria

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Exponential asymptotic property of a parallel repairable system with warm standby under common-cause failure

Exponential asymptotic property of a parallel repairable system with warm standby under common-cause failure J. Math. Anal. Appl. 341 (28) 457 466 www.elsevier.com/locate/jmaa Exponential asymptotic property of a parallel repairable system with warm stanby uner common-cause failure Zifei Shen, Xiaoxiao Hu, Weifeng

More information

Problem set 2: Solutions Math 207B, Winter 2016

Problem set 2: Solutions Math 207B, Winter 2016 Problem set : Solutions Math 07B, Winter 016 1. A particle of mass m with position x(t) at time t has potential energy V ( x) an kinetic energy T = 1 m x t. The action of the particle over times t t 1

More information

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS Electronic Journal of Differential Equations, Vol. 2014 (2014), o. 28, pp. 1 10. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF SOLUTIOS

More information

Discrete Operators in Canonical Domains

Discrete Operators in Canonical Domains Discrete Operators in Canonical Domains VLADIMIR VASILYEV Belgoro National Research University Chair of Differential Equations Stuencheskaya 14/1, 308007 Belgoro RUSSIA vlaimir.b.vasilyev@gmail.com Abstract:

More information

Stable and compact finite difference schemes

Stable and compact finite difference schemes Center for Turbulence Research Annual Research Briefs 2006 2 Stable an compact finite ifference schemes By K. Mattsson, M. Svär AND M. Shoeybi. Motivation an objectives Compact secon erivatives have long

More information

arxiv: v1 [math-ph] 5 May 2014

arxiv: v1 [math-ph] 5 May 2014 DIFFERENTIAL-ALGEBRAIC SOLUTIONS OF THE HEAT EQUATION VICTOR M. BUCHSTABER, ELENA YU. NETAY arxiv:1405.0926v1 [math-ph] 5 May 2014 Abstract. In this work we introuce the notion of ifferential-algebraic

More information

Stability of solutions to linear differential equations of neutral type

Stability of solutions to linear differential equations of neutral type Journal of Analysis an Applications Vol. 7 (2009), No.3, pp.119-130 c SAS International Publications URL : www.sasip.net Stability of solutions to linear ifferential equations of neutral type G.V. Demienko

More information

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS

COUPLING REQUIREMENTS FOR WELL POSED AND STABLE MULTI-PHYSICS PROBLEMS VI International Conference on Computational Methos for Couple Problems in Science an Engineering COUPLED PROBLEMS 15 B. Schrefler, E. Oñate an M. Paparakakis(Es) COUPLING REQUIREMENTS FOR WELL POSED AND

More information

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS

ON TAUBERIAN CONDITIONS FOR (C, 1) SUMMABILITY OF INTEGRALS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No. 2, 213, Pages 59 65 Publishe online: December 8, 213 ON TAUBERIAN CONDITIONS FOR C, 1 SUMMABILITY OF INTEGRALS Abstract. We investigate some Tauberian

More information

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM Abstract. In this paper we establish an upper boun for the

More information

OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 27 (27, No. 6, pp. 2. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu OBSERVABILITY INEQUALITY AND DECAY RATE FOR WAVE EQUATIONS

More information

FORCED OSCILLATIONS OF A CLASS OF NONLINEAR DISPERSIVE WAVE EQUATIONS AND THEIR STABILITY

FORCED OSCILLATIONS OF A CLASS OF NONLINEAR DISPERSIVE WAVE EQUATIONS AND THEIR STABILITY Jrl Syst Sci & Complexity (2007) 20: 284 292 FORCED OSCILLATIONS OF A CLASS OF NONLINEAR DISPERSIVE WAVE EQUATIONS AND THEIR STABILITY Muhammad USMAN Bingyu ZHANG Received: 14 January 2007 Abstract It

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

NONLINEAR DECAY AND SCATTERING OF SOLUTIONS TO A BRETHERTON EQUATION IN SEVERAL SPACE DIMENSIONS

NONLINEAR DECAY AND SCATTERING OF SOLUTIONS TO A BRETHERTON EQUATION IN SEVERAL SPACE DIMENSIONS Electronic Journal of Differential Equations, Vol. 5(5), No. 4, pp. 7. ISSN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) NONLINEAR DECAY

More information

NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY CAUCHY PROBLEMS

NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY CAUCHY PROBLEMS 25-Ouja International Conerence on Nonlinear Analysis. Electronic Journal o Dierential Equations, Conerence 14, 26, pp. 191 25. ISSN: 172-6691. URL: http://eje.math.tstate.eu or http://eje.math.unt.eu

More information

On the Cauchy Problem for Von Neumann-Landau Wave Equation

On the Cauchy Problem for Von Neumann-Landau Wave Equation Journal of Applie Mathematics an Physics 4 4-3 Publishe Online December 4 in SciRes http://wwwscirporg/journal/jamp http://xoiorg/436/jamp4343 On the Cauchy Problem for Von Neumann-anau Wave Equation Chuangye

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions Working Paper 2013:5 Department of Statistics Computing Exact Confience Coefficients of Simultaneous Confience Intervals for Multinomial Proportions an their Functions Shaobo Jin Working Paper 2013:5

More information

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 ) Electronic Journal of Differential Equations, Vol. 2006(2006), No. 5, pp. 6. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A COUNTEREXAMPLE

More information

GLOBAL REGULARITY, AND WAVE BREAKING PHENOMENA IN A CLASS OF NONLOCAL DISPERSIVE EQUATIONS

GLOBAL REGULARITY, AND WAVE BREAKING PHENOMENA IN A CLASS OF NONLOCAL DISPERSIVE EQUATIONS GLOBAL EGULAITY, AND WAVE BEAKING PHENOMENA IN A CLASS OF NONLOCAL DISPESIVE EQUATIONS HAILIANG LIU AND ZHAOYANG YIN Abstract. This paper is concerne with a class of nonlocal ispersive moels the θ-equation

More information

arxiv: v1 [math.ap] 6 Jul 2017

arxiv: v1 [math.ap] 6 Jul 2017 Local an global time ecay for parabolic equations with super linear first orer terms arxiv:177.1761v1 [math.ap] 6 Jul 17 Martina Magliocca an Alessio Porretta ABSTRACT. We stuy a class of parabolic equations

More information

Generalized Tractability for Multivariate Problems

Generalized Tractability for Multivariate Problems Generalize Tractability for Multivariate Problems Part II: Linear Tensor Prouct Problems, Linear Information, an Unrestricte Tractability Michael Gnewuch Department of Computer Science, University of Kiel,

More information

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS Electronic Journal of Differential Equations, Vol. 16 16, No. 7, pp. 1 11. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIFORM DECAY OF SOLUTIONS

More information

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces

The Generalized Incompressible Navier-Stokes Equations in Besov Spaces Dynamics of PDE, Vol1, No4, 381-400, 2004 The Generalize Incompressible Navier-Stokes Equations in Besov Spaces Jiahong Wu Communicate by Charles Li, receive July 21, 2004 Abstract This paper is concerne

More information

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE YING-CHIEH LIN, C. H. ARTHUR CHENG, JOHN M. HONG, JIAHONG WU, AND JUAN-MING YUAN Abstract. This paper

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM Electronic Journal of Differential Equations, Vol. 211 (211), No. 78, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N.

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N. ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS Emerson A. M. de Abreu Alexandre N. Carvalho Abstract Under fairly general conditions one can prove that

More information

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH

TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH English NUMERICAL MATHEMATICS Vol14, No1 Series A Journal of Chinese Universities Feb 2005 TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH He Ming( Λ) Michael K Ng(Ξ ) Abstract We

More information

A NONLINEAR DIFFERENTIAL EQUATION INVOLVING REFLECTION OF THE ARGUMENT

A NONLINEAR DIFFERENTIAL EQUATION INVOLVING REFLECTION OF THE ARGUMENT ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 63 68 A NONLINEAR DIFFERENTIAL EQUATION INVOLVING REFLECTION OF THE ARGUMENT T. F. MA, E. S. MIRANDA AND M. B. DE SOUZA CORTES Abstract. We study the nonlinear

More information

ON ISENTROPIC APPROXIMATIONS FOR COMPRESSIBLE EULER EQUATIONS

ON ISENTROPIC APPROXIMATIONS FOR COMPRESSIBLE EULER EQUATIONS ON ISENTROPIC APPROXIMATIONS FOR COMPRESSILE EULER EQUATIONS JUNXIONG JIA AND RONGHUA PAN Abstract. In this paper, we first generalize the classical results on Cauchy problem for positive symmetric quasilinear

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

On the number of isolated eigenvalues of a pair of particles in a quantum wire

On the number of isolated eigenvalues of a pair of particles in a quantum wire On the number of isolate eigenvalues of a pair of particles in a quantum wire arxiv:1812.11804v1 [math-ph] 31 Dec 2018 Joachim Kerner 1 Department of Mathematics an Computer Science FernUniversität in

More information

Multiplicity Results of Positive Solutions for Nonlinear Three-Point Boundary Value Problems on Time Scales

Multiplicity Results of Positive Solutions for Nonlinear Three-Point Boundary Value Problems on Time Scales Avances in Dynamical Systems an Applications ISSN 973-532, Volume 4, Number 2, pp. 243 253 (29) http://campus.mst.eu/asa Multiplicity Results of Positive Solutions for Nonlinear Three-Point Bounary Value

More information

On the stability of Mindlin-Timoshenko plates

On the stability of Mindlin-Timoshenko plates Universität Konstanz On the stability of Minlin-Timoshenko plates Hugo D. Fernánez Sare Konstanzer Schriften in Mathematik un Informatik Nr. 37, Oktober 007 ISSN 1430-3558 Fachbereich Mathematik un Statistik

More information

RAM U. VERMA International Publications 1206 Coed Drive. Orlando, Florida 32826, USA ABSTRACT. TE n $R, (1) K

RAM U. VERMA International Publications 1206 Coed Drive. Orlando, Florida 32826, USA ABSTRACT. TE n $R, (1) K Journal of Applie Mathematics an Stochastic Analysis 8, Number 4, 1995, 405-413 STABLE DISCRETIZATION METHODS WITH EXTERNAL APPROXIMATION SCHEMES RAM U. VERMA International Publications 1206 Coe Drive

More information

DECAY RATES OF MAGNETOELASTIC WAVES IN AN UNBOUNDED CONDUCTIVE MEDIUM

DECAY RATES OF MAGNETOELASTIC WAVES IN AN UNBOUNDED CONDUCTIVE MEDIUM Electronic Journal of Differential Equations, Vol. 11 (11), No. 17, pp. 1 14. ISSN: 17-6691. URL: http://eje.math.txstate.eu or http://eje.math.unt.eu ftp eje.math.txstate.eu (login: ftp) DECAY RATES OF

More information

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE Electronic Journal of Differential Equations, Vol. 22 (22), No. 89, pp. 3. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GENERATORS WITH INTERIOR

More information

LOCAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES

LOCAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES LOCAL WELL-POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES ÁRPÁD BÉNYI AND KASSO A. OKOUDJOU Abstract. By using tools of time-frequency analysis, we obtain some improve local well-poseness

More information

GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS

GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS GLOBAL EXISTENCE FOR THE ONE-DIMENSIONAL SEMILINEAR TRICOMI-TYPE EQUATIONS ANAHIT GALSTYAN The Tricomi equation u tt tu xx = 0 is a linear partial differential operator of mixed type. (For t > 0, the Tricomi

More information

GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL DIFFERENCE EQUATIONS

GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL DIFFERENCE EQUATIONS Electronic Journal of Mathematical Analysis an Applications Vol. 7(2) July 209, pp. 256-266 ISSN: 2090-729X(online) http://math-frac.org/journals/ejmaa/ GLOBAL DYNAMICS OF THE SYSTEM OF TWO EXPONENTIAL

More information

GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS WITH NONREGULAR FORCE

GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS WITH NONREGULAR FORCE Electronic Journal of Differential Equations, Vol. 2(2), No. 78, pp. 1 8. ISSN: 172-6691. UR: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) GENERIC SOVABIITY

More information

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 2006(2006), No. 37, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) MULTIPLE

More information

Sturm-Liouville Theory

Sturm-Liouville Theory LECTURE 5 Sturm-Liouville Theory In the three preceing lectures I emonstrate the utility of Fourier series in solving PDE/BVPs. As we ll now see, Fourier series are just the tip of the iceberg of the theory

More information

Parameter Dependent Quasi-Linear Parabolic Equations

Parameter Dependent Quasi-Linear Parabolic Equations CADERNOS DE MATEMÁTICA 4, 39 33 October (23) ARTIGO NÚMERO SMA#79 Parameter Dependent Quasi-Linear Parabolic Equations Cláudia Buttarello Gentile Departamento de Matemática, Universidade Federal de São

More information

ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS

ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS ANALYSIS OF A GENERAL FAMILY OF REGULARIZED NAVIER-STOKES AND MHD MODELS MICHAEL HOLST, EVELYN LUNASIN, AND GANTUMUR TSOGTGEREL ABSTRACT. We consier a general family of regularize Navier-Stokes an Magnetohyroynamics

More information

1. Introduction. In this paper we consider the nonlinear Hamilton Jacobi equations. u (x, 0) = ϕ (x) inω, ϕ L (Ω),

1. Introduction. In this paper we consider the nonlinear Hamilton Jacobi equations. u (x, 0) = ϕ (x) inω, ϕ L (Ω), SIAM J. UMER. AAL. Vol. 38, o. 5, pp. 1439 1453 c 000 Society for Inustrial an Applie Mathematics SPECTRAL VISCOSITY APPROXIMATIOS TO HAMILTO JACOBI SOLUTIOS OLGA LEPSKY Abstract. The spectral viscosity

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

Well-posedness of hyperbolic Initial Boundary Value Problems

Well-posedness of hyperbolic Initial Boundary Value Problems Well-poseness of hyperbolic Initial Bounary Value Problems Jean-François Coulombel CNRS & Université Lille 1 Laboratoire e mathématiques Paul Painlevé Cité scientifique 59655 VILLENEUVE D ASCQ CEDEX, France

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 210, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian

More information

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback

An Optimal Algorithm for Bandit and Zero-Order Convex Optimization with Two-Point Feedback Journal of Machine Learning Research 8 07) - Submitte /6; Publishe 5/7 An Optimal Algorithm for Banit an Zero-Orer Convex Optimization with wo-point Feeback Oha Shamir Department of Computer Science an

More information

Comparison Results for Nonlinear Parabolic Equations with Monotone Principal Part

Comparison Results for Nonlinear Parabolic Equations with Monotone Principal Part CADERNOS DE MATEMÁTICA 1, 167 184 April (2) ARTIGO NÚMERO SMA#82 Comparison Results for Nonlinear Parabolic Equations with Monotone Principal Part Alexanre N. Carvalho * Departamento e Matemática, Instituto

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

Boundary Control of the Korteweg de Vries Burgers Equation: Further Results on Stabilization and Well Posedness, with Numerical Demonstration

Boundary Control of the Korteweg de Vries Burgers Equation: Further Results on Stabilization and Well Posedness, with Numerical Demonstration ounary Control of the Korteweg e Vries urgers Equation: Further Results on Stabilization an Well Poseness, with Numerical Demonstration Anras alogh an Miroslav Krstic Department of MAE University of California

More information

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions

Math 300 Winter 2011 Advanced Boundary Value Problems I. Bessel s Equation and Bessel Functions Math 3 Winter 2 Avance Bounary Value Problems I Bessel s Equation an Bessel Functions Department of Mathematical an Statistical Sciences University of Alberta Bessel s Equation an Bessel Functions We use

More information

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES Electronic Journal of Differential Equations, Vol. 213 (213), No. 172, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu ULAM-HYERS-RASSIAS

More information

ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE EQUATIONS IN SEMI-INFINITE DOMAINS

ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE EQUATIONS IN SEMI-INFINITE DOMAINS Electronic Journal of Differential Equations, Vol. 004(004), No. 07, pp. 8. ISSN: 07-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) ASYMPTOTIC

More information