Proceedings of the. Eighth Conference on Computational Natural Language Learning

Size: px
Start display at page:

Download "Proceedings of the. Eighth Conference on Computational Natural Language Learning"

Transcription

1 Proceedings of the Eighth Conference on Computational Natural Language Learning Hwee Tou Ng and Ellen Riloff (editors) Held in cooperation with HLT-NAACL 2004 May 6 7, 2004 Boston, Massachusetts

2 Proceedings of the Eighth Conference on Computational Natural Language Learning Hwee Tou Ng and Ellen Riloff (editors) Held in cooperation with HLT-NAACL 2004 May 6 7, 2004 Boston, Massachusetts

3 Copyright c 2004 The Association for Computational Linguistics ISBN: Order copies of this and other ACL proceedings from: Association for Computational Linguistics 3 Landmark Center East Stroudsburg, PA USA Phone: Fax: acl@aclweb.org

4 SIGNLL Computational Natural Language Learning (CoNLL-2004) May 6-7, 2004

5 INVITED SPEAKERS: Christopher Manning, Stanford University (USA) Martha Palmer, University of Pennsylvania (USA) PROGRAM COMMITTEE: Hwee Tou Ng, National University of Singapore (Singapore), Co-Chair Ellen Riloff, University of Utah (USA), Co-Chair Xavier Carreras, UPC (Spain), Shared Task Co-Chair Lluís Màrquez, UPC (Spain), Shared Task Co-Chair Steven Abney, University of Michigan (USA) Regina Barzilay, Massachusetts Institute of Technology (USA) Thorsten Brants, Google Inc (USA) Claire Cardie, Cornell University (USA) Eugene Charniak, Brown University (USA) James Cussens, University of York (UK) Walter Daelemans, University of Antwerp (Belgium) Ido Dagan, Bar Ilan University / LingoMotors (Israel) Radu Florian, IBM (USA) Ulf Hermjakob, USC Information Sciences Institute (USA) Hang Li, Microsoft Research Asia (China) Dekang Lin, University of Alberta (Canada) Diane Litman, University of Pittsburgh (USA) Yuji Matsumoto, Nara Institute of Science and Technology (Japan) Rada Mihalcea, University of North Texas (USA) Raymond Mooney, University of Texas at Austin (USA) John Nerbonne, University of Groningen (Netherlands) Grace Ngai, Hong Kong Polytechnic University (Hong Kong) Franz Josef Och, USC Information Sciences Institute (USA) Miles Osborne, University of Edinburgh (UK) Ted Pedersen, University of Minnesota, Duluth (USA) David Pierce, SUNY Buffalo (USA) David Powers, Flinders University (Australia) Dan Roth, University of Illinois at Urbana-Champaign (USA) Erik Tjong Kim Sang, University of Antwerp (Belgium) Anoop Sarkar, Simon Fraser University (Canada) Suzanne Stevenson, University of Toronto (Canada) Cynthia Thompson, University of Utah (USA) Antal van den Bosch, Tilburg University (Netherlands) Janyce Wiebe, University of Pittsburgh (USA) Additional Reviewers: Yunbo Cao, Microsoft Research Asia (China) Ruifang Ge, University of Texas at Austin (USA) Lluís Padró, Technical University of Catalonia (Spain) Mihai Surdeanu, Technical University of Catalonia (Spain) Yuk Wah Wong, University of Texas at Austin (USA)

6 SHARED TASK COORDINATORS: Xavier Carreras, UPC (Spain) Lluís Màrquez, UPC (Spain) CONFERENCE WEBSITE:

7 PREFACE The 2004 Conference on Computational Natural Language Learning (CoNLL-2004) is the eighth in a series of meetings organized by SIGNLL, the ACL special interest group on natural language learning. This year s CoNLL will be held in Boston, Massachusetts, USA on May 6 and 7, in conjunction with the HLT-NAACL 2004 Conference. This is the first time that CoNLL will be held in the USA. The annual CoNLL meeting is intended to address all aspects of computational natural language learning. We have an exciting program this year, thanks to the many good submissions that we received. In all, 23 papers were submitted to the main session, of which 11 were selected by the program committee to be presented at the conference. They represent cutting-edge research on computational natural language learning. In keeping with the unique tradition of CoNLL, we also have a shared task session this year, on semantic role labeling, which is a topic of growing interest in the field. The shared task was coordinated by Xavier Carreras and Lluís Màrquez. Common training and test data were made available to all participants, who had to build their learning system and test it on this task. We received enthusiastic responses from many research groups, and the shared task papers contain descriptions of the ten participating systems and their results. This year s CoNLL also features two invited presentations, one by Christopher Manning on what the future holds for computational language learning, and one by Martha Palmer on semantic role labeling, the topic of this year s shared task. Our program committee and additional reviewers have spent much time carefully reviewing the submitted papers, for which we are most grateful. We would also like to thank the HLT-NAACL 2004 conference organizers for helping us with the local organization. And a special thanks for the enthusiastic and capable work of Xavier Carreras and Lluís Màrquez in organizing and running the semantic role labeling shared task. We wish you an enjoyable time attending CoNLL-2004! Hwee Tou Ng & Ellen Riloff (editors) May 2004

8 ! ;$B ;DCBFE"%7835$*"%4GH"%I+.3J"K+LNMG"PO*QPO RTS,UNVXW.Y*ZNS.UG[]\_^ Ua`bY#S.cFdTe6Z f;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f fag h -i"%j789cj1bkl9cb). lm)%jo27b$23jc 7b9).!n(1 #".$2J/+T:#$*).-poJ4>"L?B 4> #qr".7s"=tk9" h.ubc 78$*"%4!TD"%4wvPO2xO Vye>^ zjcj{gw,ybs XUJ[aWf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf;f9} h ;-i"%g7b9c'~ ;$2D ;4,:;).$'&$* #q.9cb".7sjt$b+,35- J7Tl4>"PO#O2 C#"%789)% X 6^KƒBƒ*S,UJ[5 BW W/ƒ* #ZJe Y*Y*e1S,UJ[Nˆ W/ƒŠ e6uf T[5 Be6S,UN ^ŠŒŠS.UNf f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkfagp lm)%-i?;g/+ih *kl9c#"%4h".!q h v%g7s"lc;789ct0h #"%7835$*2O:;)%$ h 3 u ;$2tAxÖBq ŽN).$*q h aörxö "%-i?; +,3J"%789)% S.e> W,ZJS, isl[]s,uj[] H^K[N ^A[5^ #ƒš^ku f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f,, lm)% 78$*"%G/+F"%Dq h ;4:# 78$*".J/+T:;)%$šŽN).$*q h ;JO;Tr xö ".-? +.3J".7b9). VXS,[aS e6zjs, 6 ^KSf2f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fp, Ž )%$*q h aötrxö C;$2-!".7b9).œ? v l4w3io27s $2/+šlm)%G7sBkL79Ojž G #C 7s).$ "%!q h -4>"%$278v h,u "LCB ;O X *caybsi mcj BS,UJ[aS. B^TS,UJ[N 1^A[] ^A[5^ #ƒ*^ Uf2f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf f;f8ÿjg ;-i)%$2v% b T"PÖ #qr u ;Dq,!C v&y"%$#o2/+,w/s. Ie> e> I B^, J LW,ZGS.U] TS. 6 1S.UG[] L^ UJƒy e> xƒbƒšwlufkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf2ÿl} )KqL ;4 /+_lm"%7 s+l).$2v h 78$23JC;7835$* ;O 7«ªš"~ $2! 4!0 35!C 7b9). Ẍe6 *W% /S S. %S. ca #Sa /dmc%œ e1 S.YBƒ*ca W.YBWS,UJ[NẌe6 *W% /S,ƒ*cid S. isl[asf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf9 L lm)%- u ".$2xÖ )%±)Š: ".J3J"%4".!qšT357 )%-i"%789c_lm)%jo#78$23jc 7b9).aON)Š:_l".7ss+/)%$2v ²³9 $*".$*CBª5v=:;)%$_l4>"PO#O2 :#v%/+ H"%$b+/ lm)%$ u )%$*" µaca e6,wiµaca Ica W,Y*W=S.UG[=dmW/ƒŠZae6 e ca Kca Ie1f;fKf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f, L MDªa ;Ö "%35$23IÖ2Om:;).$'&$* u )%O27b9).!"%4 &mª5$*"pö ³T7b7 ",C#ªI-i J7 S. B K 1S.cG #Za 6S,U³f2f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkfb % lm"%4>c 354>".7bI+ h ;-i"%g7b9c'rxo#7 "%DC#?# ;78 # ;¹ŽN).$*q h ;JÖ '&$B),?#",? 4w78vr xo278$29?;35789)%jo ºe6 /exs.u yƒbs.ua»s.ug[ ca KS,UaUa^ Y*^K,^KUJƒŠWLUf;f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f 7 )i7«ªa lm) E'1 ½I¾,¾ h ªa".$* #qàmg"po*q,n h ;-i"%g7b9c'á).4>'h",?# 4w/+ ÂTSP Ie>^K ˆS. B *^K BSLƒ S,UJ[N 6c1Ã Ä ƒ ÆÅ S. #ÇLcJ^ f;f;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f#¼,} h -i"%j789c'á)%46 'H",?# 44w/+ÆŽF7ª l ª535IQ h #È 3J;DCB;O ÉX 6 *e6,^³ (S. x[5^ Ê^ e6u az³s.y* Be>UNËm B D ^ {JSLƒ YBe6S,UF SL[yà WS,UJ[NR^ Y* 6^; m B^KƒB #Za^ Hf#f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f fš},¼ ;-i)%$2v% Š?#"%O;#q=Ö ;-i"%g7b9c$*)%4646",?#;4 /+/nì u 7b->Í /+T:; #"%7835$*2O#Î ".4 +L).$27ª5-Îy"%Dq )%357 u 357 XU/YBS, %S.UN[5^ U WLƒB #Z S.UG[5^ TˆS,Uae6ƒ*e6cJƒ J\_S, YB^ XR'S.^ 6^ is,ujƒ 5Ï BexƒyẌ^ UG[5 *ex # /Ð]S.UG[]Ë *e6 Œ W,Ua»izje6 S.UJ»³f;f f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;f,gkñl ²³9 $*".$*CBª59C#"%4ÒÁ #C#)*+,J789)%À)Š:T&$*) u )%O27b9).!"%4 T$b+,35- J7bOT 7«ª &X;$*C# u 78$*)%JO ÂTSP Ie>^K ˆS. B *^K BSLƒ I 6c1Ã Ä ƒy Å S. #Ç/ca^ js.ug[nó' B ^K»,WL * ³ˆ Za *cjôjs.õ xsf;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f f;f*gkñ,

9 h -i"%j789c'á)%46 'H",?# 4w/+F?;vœMJ"K+K+,/+ h v%g7s"lc;789c=l1ª535iq%o z³s,[5 BeÒ S, e>wl», 6c S, ^K^ X BSL[5ZJS.U1 /\œsp IUa^j\_S, B[ J LS, ^Kƒ( fj šs. *Y*e6UNS,UJ[FRTS,Uae>^K 1 Lca BS. 9ƒŠ I yf2fkf;f f;fkf#g,gkñ 78$*"%JO«:;)%$2-i"%789)%J Š?#"%O; #qf" ulu $*)A",C#ªš7s)]"%$b+,35- J7 4>",?# 4w/+ R^K * Be6 # ]Ẍe6»,»,e6UJƒIf;f f f;fkf;f f;fkf;f f f f f f f;fkf;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf g,g Ÿ -).$2v% b "%O; #qi ulu $*)A",C#ª:;)%$ h ;-i"%g7b9c'á).4> 'H",?# 4w/+ ^AS%Y#SzjWLcJ #ZaUae6 f;f f;fkf;f f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkfig,gk¼ h -i"%j789c'á)%46 'H",?# 4w/+ 3IO2/+ "KkL-35- J78$*) u v )KqL ;4,WIW,Ua`s W 1e> N 5dmWLcaUa».` WIW, = ÊS,Ua»J W.`8dmW,caUa»i S, * is.ug[f TS.^ ` ˆ ZJS,Ua»Vye> Æf fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f fšga, M1 )% b&mªj"pö h -i"%j789c'á)%46th",?# ;4 /+N?#"PÖ #q )% h 3 ulu ).$27 G#C 7s).$ "LCBª5!;O zj /cjua».` e S. B D,dmWLcaUa»,` WIWL ẌÊ(S.Ua»S.UG[F TS.^ ` ˆ ZJS,Ua»Vye> f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f fjga. h -i"%j789c'á)%46 'H",?# 4w/+ 19"š<X ;D ;$*".4w>ÍA #q@;k:; $* ;DC# =Ì(t% ;$l4>"po#o2 $#O ºmS,ƒ*e>UN mcaui /S. %S.UaWL D IR'S.U VyW,Y*Z 5\_^ Ua`bY#S.cFdTe6Z JR'SP!e6 is. S,UJ[]dmcJS.UJ #ZJ^ Ua»i HcFfKf;f f f f f f f;fkf;f f;fkf;f fjgk,ñ HB".$2JI+_Ma$*"%JO«:;)%$2-i"%789)% Á35462O:;)%$ h ;-i"%g7b9ctá).4> 'H",?# 4w/+ zj^ UF\ e> 6 >exs. iƒk!ˆ Za Be6ƒŠY*WLÔaZa^K XRWL e6^ XS.UG[] UJ[5 B^ Ê Aˆ ca 6 6W,Zf f;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f fbgk.ÿ H"%/+,3J" +/j1 #"%$2G/+/ny v,)%dq_mdªi35dq, $*q,).- ˆ Za *exƒšy*w,ôjza^ XRfJ S,UaUae6Ua»f;f;fKf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fšgk,¼ &35787bI+ #"%G/+]J7 ) G).35$=Ma$* # ;O S. *Y*ZJS S, > ^ Òf2f f f;fkf;f fkf;f f;fkf;f f f f;fkf;f f;fkf;f fkf;f f f f;fkf;f f;fkf;f f f f;fkf f;fkf;f f;fkf;f f f f;fkf;f f;fkf f;fkf;f f f f;fkf;f f;fkf;f f f f f f2gk,}

10 CONFERENCE PROGRAM Thursday, May 6 9:00-9:05 Welcome (Hwee Tou Ng and Ellen Riloff) Session 1: Inference and Semantics 9:05-9:35 A Linear Programming Formulation for Global Inference in Natural Language Tasks Dan Roth and Wen-tau Yih 9:35-10:05 Semantic Lexicon Construction: Learning from Unlabeled Data via Spectral Analysis Rie Kubota Ando 10:05-10:35 A Semantic Kernel for Predicate Argument Classification Alessandro Moschitti and Cosmin Adrian Bejan 10:35-11:00 Break Session 2: Word Sense Disambiguation 11:00-11:30 Combining Lexical and Syntactic Features for Supervised Word Sense Disambiguation Saif Mohammad and Ted Pedersen 11:30-12:00 Co-training and Self-training for Word Sense Disambiguation Rada Mihalcea 12:00-12:30 Word Sense Discrimination by Clustering Contexts in Vector and Similarity Spaces Amruta Purandare and Ted Pedersen 12:30-14:00 Lunch Session 3: Parsing 14:00-14:30 Memory-Based Dependency Parsing Joakim Nivre, Johan Hall and Jens Nilsson Invited Talk 14:30-15:30 Language Learning: Beyond Thunderdome Christopher D. Manning 15:30-16:00 Break

11 CONFERENCE PROGRAM Thursday, May 6 Session 4: Text Classification 16:00-16:30 Modeling Category Structures with a Kernel Function Hiroya Takamura, Yuji Matsumoto and Hiroyasu Yamada 16:30-17:00 A Comparison of Manual and Automatic Constructions of Category Hierarchy for Classifying Large Corpora Fumiyo Fukumoto and Yoshimi Suzuki 17:00-17:30 SIGNLL Business Meeting Friday, May 7 Session 5: Syntax and Semantics 9:30-10:00 Thesauruses for Prepositional Phrase Attachment Mark McLauchlan 10:00-10:30 Calculating Semantic Distance between Word Sense Probability Distributions Vivian Tsang and Suzanne Stevenson 10:30-11:00 Break Invited Talk 11:00-12:00 Putting Meaning into Your Trees Martha Palmer 12:00-13:30 Lunch Shared Task Session 13:30-14:00 Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling Xavier Carreras and Lluís Màrquez 14:00-14:10 Semantic Role Labelling With Chunk Sequences Ulrike Baldewein, Katrin Erk, Sebastian Padó and Detlef Prescher 14:10-14:20 Memory-based semantic role labeling: Optimizing features, algorithm, and output Antal van den Bosch, Sander Canisius, Walter Daelemans, Iris Hendrickx and Erik Tjong Kim Sang 14:20-14:30 Hierarchical Recognition of Propositional Arguments with Perceptrons Xavier Carreras, Lluís Màrquez and Grzegorz Chrupała 14:30-14:40 Semantic Role Labeling by Tagging Syntactic Chunks Kadri Hacioglu, Sameer Pradhan, Wayne Ward, James H. Martin and Daniel Jurafsky

12 CONFERENCE PROGRAM Friday, May 7 14:40-14:50 A transformation-based approach to argument labeling Derrick Higgins 14:50-15:00 A Memory-Based Approach for Semantic Role Labeling Beata Kouchnir 15:00-15:10 Semantic Role Labeling using Maximum Entropy Model Joon-Ho Lim, Young-Sook Hwang, So-Young Park and Hae-Chang Rim 15:10-15:20 Two-Phase Semantic Role Labeling based on Support Vector Machines Kyung-Mi Park, Young-Sook Hwang and Hae-Chang Rim 15:20-16:00 Break 16:00-16:10 Semantic Role Labeling Via Generalized Inference Over Classifiers Vasin Punyakanok, Dan Roth, Wen-tau Yih, Dav Zimak and Yuancheng Tu 16:10-16:20 Learning Transformation Rules for Semantic Role Labeling Ken Williams, Christopher Dozier and Andrew McCulloh 16:20-17:15 Summary and Discussion on Shared Task

13 "!$#&%')(+*-,.,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.1 2 *)34/56/7&893 :; <=>,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,?1A@ 2 CBD*AEF=GIHJ 9&:I4*)K,.,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,MLMN E6*)7GI #G/O*A0:&,.,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,CLQP=R E6*):;:;/:+*AG0=S-*MTU7/:,/,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.@A1&VLQPAW EFX&:;#&Y*AZ37*[-:I\0/]A=:I\>,+,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,ILQPAW ^ *)/37/H_*AG/à*)3 (I0:b,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,LQP=R ^ A\/7/:QEFX&:;7GD(I=Y&X&0:&,c,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,CLQd)e f :;<g&!h*i(;:i7,c,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,j1a@ k #<U#HKA(I k #&HJ7lAm,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,UW=n o *=p.7a]=3 #&!h*=:;v,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,&l=l0p o *A3 3jq=AX*A$,c,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,?e=1 o 0:;7p+<UrVs?:;7G,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,&LQP=R o 7]A]= G/ ^ /:;:I4p+<",c,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,iL=L/e o 5*)]utvA#&])wCOuuA<_,c,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,=LMRARVLMR)W q=#&:;*)xygd<ul= ^ *) 03,/,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,iL=L0P!$A#p+X&&7:0 2 0*)(;*6,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,cL=L0@ z 7Ḧ q=u=w o {,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,ILMRAR *A&&7&]EFX&:;4GC(;AY&X&0: ^,i,0,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,ilqda@ ~} *A:;U#&0\A z 37# G,c,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,j@A1&VLQPAW *A:D(; &qu*)hjqg o,h,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/l=l0p *)(;GI#&HJ)(Iutv#iBC,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,?n=N pmef#&3 37AX &:I05ƒ,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,LQd)e p z *)#p+x&37*a *A:I<m,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,uNid 7X*)34p.Q*&&*=&*6,c,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,?dAd =X*)HJH_*AVO&*) x>,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,aran UGIp+X& (D(; 370G;GI*A:;,c,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,;LMN 734GIGIA&q=/Gb,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,0,ie=1 7Tu:I=&qAU*)<u7H,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,Qe=1 ˆ *A &Ou/%*AGD(I4*),/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,)1A@ ˆ *)37HJ/:Q *):I(IX*Š,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,ULQdA1 ˆ *):;<g!$lu#&])w U,c,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,0LMR)W ˆ *):;<g&ou)wjtva#&],c,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,clmrar ˆ 0&/:+GD0 Qb,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,ŒRAn&eL ˆ :+*A&X*)&O*AHJ//:,/,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,iL=L0P ˆ :;0G;p+X&0:0 ^.(I37.xv,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,U1A@ ˆ #UlU*)<i*)A<g= v*=gd7m,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,=lqdap ˆ #:;*A&*):;A9HK:;#(+*,.,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,jeL b7ḧ o *A.wDEFX*)&]F,.,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,ILMRARVLMR)W ba(ix ^ *)J,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,iLALQdAP OU(;/TA0GIAOu#\0*)&,.,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,C@&L Ou#&\0#&<u &tv=gix& HJg,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,iW=n Ž*)<i*)HŠ#&:;* o 7:IilU*,0,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,An=N ŽBCA]J!$7H O&*)&] f :; <h,c,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,0,.,/,/,qlqp=r bg;*)&] 97TU4*),.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,M@&L >#tv#*ap+x&/],/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,lqdap Ti*)0 2 UGIp+X&9U(;*)3A,.,/,.,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,/,/,/,.,0,cL0P=R à*):+và*mlu,.,/,/,/,.,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,/,.,0,.,/,/,/,.,ilal0p ` *)H_G/!$/h,.,0,.,/,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,0L0d)e t *AHJ*=&*& o :;il=*=gd#k,c,.,0,.,/,.,0,.,/,0,.,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,/,.n=n t- X` 0w (+*)#_,0,.,/,.,0,.,/,/,/,/,/,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,0,.,AL=VL0dAP 7H_*)<g ^ *MT,0,/,.,0,.,/,.,0,.,/,/,/,.,0,.,/,.,0,/,.,0,.,/,/,/,.,0,.,/,.,0,.,'L0dAP

Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling

Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling Introduction to the CoNLL-2004 Shared Task: Semantic Role Labeling Xavier Carreras and Lluís Màrquez TALP Research Center Technical University of Catalonia Boston, May 7th, 2004 Outline Outline of the

More information

Semantic Role Labeling via Tree Kernel Joint Inference

Semantic Role Labeling via Tree Kernel Joint Inference Semantic Role Labeling via Tree Kernel Joint Inference Alessandro Moschitti, Daniele Pighin and Roberto Basili Department of Computer Science University of Rome Tor Vergata 00133 Rome, Italy {moschitti,basili}@info.uniroma2.it

More information

Fast Computing Grammar-driven Convolution Tree Kernel for Semantic Role Labeling

Fast Computing Grammar-driven Convolution Tree Kernel for Semantic Role Labeling Fast Computing Grammar-driven Convolution Tree Kernel for Semantic Role Labeling Wanxiang Che 1, Min Zhang 2, Ai Ti Aw 2, Chew Lim Tan 3, Ting Liu 1, Sheng Li 1 1 School of Computer Science and Technology

More information

Driving Semantic Parsing from the World s Response

Driving Semantic Parsing from the World s Response Driving Semantic Parsing from the World s Response James Clarke, Dan Goldwasser, Ming-Wei Chang, Dan Roth Cognitive Computation Group University of Illinois at Urbana-Champaign CoNLL 2010 Clarke, Goldwasser,

More information

Chunking with Support Vector Machines

Chunking with Support Vector Machines NAACL2001 Chunking with Support Vector Machines Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN Taku Kudo, Yuji Matsumoto {taku-ku,matsu}@is.aist-nara.ac.jp Chunking

More information

NAACL HLT Spatial Language Understanding (SpLU-2018) Proceedings of the First International Workshop

NAACL HLT Spatial Language Understanding (SpLU-2018) Proceedings of the First International Workshop NAACL HLT 2018 Spatial Language Understanding (SpLU-2018) Proceedings of the First International Workshop June 6, 2018 New Orleans, Louisiana c 2018 The Association for Computational Linguistics Order

More information

The Research on Syntactic Features in Semantic Role Labeling

The Research on Syntactic Features in Semantic Role Labeling 23 6 2009 11 J OU RNAL OF CH IN ESE IN FORMA TION PROCESSIN G Vol. 23, No. 6 Nov., 2009 : 100320077 (2009) 0620011208,,,, (, 215006) :,,,( NULL ),,,; CoNLL22005 Shared Task WSJ 77. 54 %78. 75 %F1, : ;;;;

More information

Learning and Inference over Constrained Output

Learning and Inference over Constrained Output Learning and Inference over Constrained Output Vasin Punyakanok Dan Roth Wen-tau Yih Dav Zimak Department of Computer Science University of Illinois at Urbana-Champaign {punyakan, danr, yih, davzimak}@uiuc.edu

More information

arxiv: v2 [cs.cl] 20 Apr 2017

arxiv: v2 [cs.cl] 20 Apr 2017 Syntax Aware LSM Model for Chinese Semantic Role Labeling Feng Qian 2, Lei Sha 1, Baobao Chang 1, Lu-chen Liu 2, Ming Zhang 2 1 Key Laboratory of Computational Linguistics, Ministry of Education, Peking

More information

Tuning as Linear Regression

Tuning as Linear Regression Tuning as Linear Regression Marzieh Bazrafshan, Tagyoung Chung and Daniel Gildea Department of Computer Science University of Rochester Rochester, NY 14627 Abstract We propose a tuning method for statistical

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: Maximum Entropy Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 24 Introduction Classification = supervised

More information

Margin-based Decomposed Amortized Inference

Margin-based Decomposed Amortized Inference Margin-based Decomposed Amortized Inference Gourab Kundu and Vivek Srikumar and Dan Roth University of Illinois, Urbana-Champaign Urbana, IL. 61801 {kundu2, vsrikum2, danr}@illinois.edu Abstract Given

More information

TALP at GeoQuery 2007: Linguistic and Geographical Analysis for Query Parsing

TALP at GeoQuery 2007: Linguistic and Geographical Analysis for Query Parsing TALP at GeoQuery 2007: Linguistic and Geographical Analysis for Query Parsing Daniel Ferrés and Horacio Rodríguez TALP Research Center Software Department Universitat Politècnica de Catalunya {dferres,horacio}@lsi.upc.edu

More information

arxiv: v2 [cs.cl] 20 Aug 2016

arxiv: v2 [cs.cl] 20 Aug 2016 Solving General Arithmetic Word Problems Subhro Roy and Dan Roth University of Illinois, Urbana Champaign {sroy9, danr}@illinois.edu arxiv:1608.01413v2 [cs.cl] 20 Aug 2016 Abstract This paper presents

More information

ALGORITHMS AND ANALYSIS FOR MULTI-CATEGORY CLASSIFICATION

ALGORITHMS AND ANALYSIS FOR MULTI-CATEGORY CLASSIFICATION i ALGORITHMS AND ANALYSIS FOR MULTI-CATEGORY CLASSIFICATION Dav Arthur Zimak, Ph.D. Department of Computer Science University of Illinois at Urbana-Champaign, 2006 Dan Roth, Adviser Classification problems

More information

Redoing the Foundations of Decision Theory

Redoing the Foundations of Decision Theory Redoing the Foundations of Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Redoing the Foundations of Decision Theory p. 1/21 Decision Making:

More information

Distributional Semantics and Word Embeddings. Chase Geigle

Distributional Semantics and Word Embeddings. Chase Geigle Distributional Semantics and Word Embeddings Chase Geigle 2016-10-14 1 What is a word? dog 2 What is a word? dog canine 2 What is a word? dog canine 3 2 What is a word? dog 3 canine 399,999 2 What is a

More information

Capturing Argument Relationships for Chinese Semantic Role Labeling

Capturing Argument Relationships for Chinese Semantic Role Labeling Capturing Argument Relationships for Chinese Semantic Role abeling ei Sha, Tingsong Jiang, Sujian i, Baobao Chang, Zhifang Sui Key aboratory of Computational inguistics, Ministry of Education School of

More information

Information Extraction from Text

Information Extraction from Text Information Extraction from Text Jing Jiang Chapter 2 from Mining Text Data (2012) Presented by Andrew Landgraf, September 13, 2013 1 What is Information Extraction? Goal is to discover structured information

More information

Utilizing Portion of Patent Families with No Parallel Sentences Extracted in Estimating Translation of Technical Terms

Utilizing Portion of Patent Families with No Parallel Sentences Extracted in Estimating Translation of Technical Terms 1 1 1 2 2 30% 70% 70% NTCIR-7 13% 90% 1,000 Utilizing Portion of Patent Families with No Parallel Sentences Extracted in Estimating Translation of Technical Terms Itsuki Toyota 1 Yusuke Takahashi 1 Kensaku

More information

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging Stephen Clark Natural Language and Information Processing (NLIP) Group sc609@cam.ac.uk The POS Tagging Problem 2 England NNP s POS fencers

More information

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator E. D. Held eheld@cc.usu.edu Utah State University General Neoclassical Closure Theory:Diagonalizing the Drift Kinetic Operator

More information

Deep Learning for NLP

Deep Learning for NLP Deep Learning for NLP CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) Machine Learning and NLP NER WordNet Usually machine learning

More information

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister A Syntax-based Statistical Machine Translation Model Alexander Friedl, Georg Teichtmeister 4.12.2006 Introduction The model Experiment Conclusion Statistical Translation Model (STM): - mathematical model

More information

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Cross-Lingual Language Modeling for Automatic Speech Recogntion GBO Presentation Cross-Lingual Language Modeling for Automatic Speech Recogntion November 14, 2003 Woosung Kim woosung@cs.jhu.edu Center for Language and Speech Processing Dept. of Computer Science The

More information

Encoding Tree Pair-based Graphs in Learning Algorithms: the Textual Entailment Recognition Case

Encoding Tree Pair-based Graphs in Learning Algorithms: the Textual Entailment Recognition Case Encoding Tree Pair-based Graphs in Learning Algorithms: the Textual Entailment Recognition Case Alessandro Moschitti DII University of Trento Via ommarive 14 38100 POVO (T) - Italy moschitti@dit.unitn.it

More information

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 REDCLIFF MUNICIPAL PLANNING COMMISSION FOR COMMENT/DISCUSSION DATE: TOPIC: April 27 th, 2018 Bylaw 1860/2018, proposed amendments to the Land Use Bylaw regarding cannabis

More information

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1)

11/3/15. Deep Learning for NLP. Deep Learning and its Architectures. What is Deep Learning? Advantages of Deep Learning (Part 1) 11/3/15 Machine Learning and NLP Deep Learning for NLP Usually machine learning works well because of human-designed representations and input features CS224N WordNet SRL Parser Machine learning becomes

More information

Bringing machine learning & compositional semantics together: central concepts

Bringing machine learning & compositional semantics together: central concepts Bringing machine learning & compositional semantics together: central concepts https://githubcom/cgpotts/annualreview-complearning Chris Potts Stanford Linguistics CS 244U: Natural language understanding

More information

Learning Features from Co-occurrences: A Theoretical Analysis

Learning Features from Co-occurrences: A Theoretical Analysis Learning Features from Co-occurrences: A Theoretical Analysis Yanpeng Li IBM T. J. Watson Research Center Yorktown Heights, New York 10598 liyanpeng.lyp@gmail.com Abstract Representing a word by its co-occurrences

More information

Statistical Methods for NLP

Statistical Methods for NLP Statistical Methods for NLP Sequence Models Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Methods for NLP 1(21) Introduction Structured

More information

Classification, Linear Models, Naïve Bayes

Classification, Linear Models, Naïve Bayes Classification, Linear Models, Naïve Bayes CMSC 470 Marine Carpuat Slides credit: Dan Jurafsky & James Martin, Jacob Eisenstein Today Text classification problems and their evaluation Linear classifiers

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

The Noisy Channel Model and Markov Models

The Noisy Channel Model and Markov Models 1/24 The Noisy Channel Model and Markov Models Mark Johnson September 3, 2014 2/24 The big ideas The story so far: machine learning classifiers learn a function that maps a data item X to a label Y handle

More information

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Natural Language Processing CS Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Natural Language Processing CS 6840 Lecture 06 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Statistical Parsing Define a probabilistic model of syntax P(T S):

More information

Annotation tasks and solutions in CLARIN-PL

Annotation tasks and solutions in CLARIN-PL Annotation tasks and solutions in CLARIN-PL Marcin Oleksy, Ewa Rudnicka Wrocław University of Technology marcin.oleksy@pwr.edu.pl ewa.rudnicka@pwr.edu.pl CLARIN ERIC Common Language Resources and Technology

More information

Natural Language Processing

Natural Language Processing SFU NatLangLab Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class Simon Fraser University October 9, 2018 0 Natural Language Processing Anoop Sarkar anoopsarkar.github.io/nlp-class

More information

Modern Information Retrieval

Modern Information Retrieval Text Classification, Modern Information Retrieval, Addison Wesley, 2009 p. 1/141 Modern Information Retrieval Chapter 5 Text Classification Introduction A Characterization of Text Classification Algorithms

More information

Joint Inference for Event Timeline Construction

Joint Inference for Event Timeline Construction Joint Inference for Event Timeline Construction Quang Xuan Do Wei Lu Dan Roth Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL 61801, USA {quangdo2,luwei,danr}@illinois.edu

More information

A Discriminative Model for Semantics-to-String Translation

A Discriminative Model for Semantics-to-String Translation A Discriminative Model for Semantics-to-String Translation Aleš Tamchyna 1 and Chris Quirk 2 and Michel Galley 2 1 Charles University in Prague 2 Microsoft Research July 30, 2015 Tamchyna, Quirk, Galley

More information

Structure and Complexity of Grammar-Based Machine Translation

Structure and Complexity of Grammar-Based Machine Translation Structure and of Grammar-Based Machine Translation University of Padua, Italy New York, June 9th, 2006 1 2 Synchronous context-free grammars Definitions Computational problems 3 problem SCFG projection

More information

Proposition Knowledge Graphs. Gabriel Stanovsky Omer Levy Ido Dagan Bar-Ilan University Israel

Proposition Knowledge Graphs. Gabriel Stanovsky Omer Levy Ido Dagan Bar-Ilan University Israel Proposition Knowledge Graphs Gabriel Stanovsky Omer Levy Ido Dagan Bar-Ilan University Israel 1 Problem End User 2 Case Study: Curiosity (Mars Rover) Curiosity is a fully equipped lab. Curiosity is a rover.

More information

High-Order Low-Rank Tensors for Semantic Role Labeling

High-Order Low-Rank Tensors for Semantic Role Labeling High-Order Low-Rank Tensors for Semantic Role Labeling Tao Lei 1, Yuan Zhang 1, Lluís Màrquez 2, Alessandro Moschitti 2, and Regina Barzilay 1 1 Computer Science and Artificial Intelligence Laboratory,

More information

2003 National Name Exchange Annual Report

2003 National Name Exchange Annual Report 2003 National Name Exchange Annual Report Executive Summary 28 th annual meeting Hilton, University of Florida Conference Center April 16, 2004 Hosted by the University of Florida http://www.grad.washington.edu/nameexch/national/

More information

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM

a) b) (Natural Language Processing; NLP) (Deep Learning) Bag of words White House RGB [1] IBM c 1. (Natural Language Processing; NLP) (Deep Learning) RGB IBM 135 8511 5 6 52 yutat@jp.ibm.com a) b) 2. 1 0 2 1 Bag of words White House 2 [1] 2015 4 Copyright c by ORSJ. Unauthorized reproduction of

More information

Categorial Grammar. Larry Moss NASSLLI. Indiana University

Categorial Grammar. Larry Moss NASSLLI. Indiana University 1/37 Categorial Grammar Larry Moss Indiana University NASSLLI 2/37 Categorial Grammar (CG) CG is the tradition in grammar that is closest to the work that we ll do in this course. Reason: In CG, syntax

More information

Learning to translate with neural networks. Michael Auli

Learning to translate with neural networks. Michael Auli Learning to translate with neural networks Michael Auli 1 Neural networks for text processing Similar words near each other France Spain dog cat Neural networks for text processing Similar words near each

More information

Spatial Role Labeling CS365 Course Project

Spatial Role Labeling CS365 Course Project Spatial Role Labeling CS365 Course Project Amit Kumar, akkumar@iitk.ac.in Chandra Sekhar, gchandra@iitk.ac.in Supervisor : Dr.Amitabha Mukerjee ABSTRACT In natural language processing one of the important

More information

A Deterministic Word Dependency Analyzer Enhanced With Preference Learning

A Deterministic Word Dependency Analyzer Enhanced With Preference Learning A Deterministic Word Dependency Analyzer Enhanced With Preference Learning Hideki Isozaki and Hideto Kazawa and Tsutomu Hirao NTT Communication Science Laboratories NTT Corporation 2-4 Hikaridai, Seikacho,

More information

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^ ! #" $%! & ' ( ) ) (, -. / ( 0 1#2 ' ( ) ) (, -3 / 0 4, 5 6/ 6 7, 6 8 9/ 5 :/ 5 ;=? @ A BDC EF G H I EJ KL M @C N G H I OPQ ;=R F L EI E G H A S T U S V@C N G H IDW G Q G XYU Z A [ H R C \ G ] ^ _ `

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Classification: k nearest neighbors Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 28 Introduction Classification = supervised method

More information

TnT Part of Speech Tagger

TnT Part of Speech Tagger TnT Part of Speech Tagger By Thorsten Brants Presented By Arghya Roy Chaudhuri Kevin Patel Satyam July 29, 2014 1 / 31 Outline 1 Why Then? Why Now? 2 Underlying Model Other technicalities 3 Evaluation

More information

Hierachical Name Entity Recognition

Hierachical Name Entity Recognition Hierachical Name Entity Recognition Dakan Wang, Yu Wu Mentor: David Mcclosky, Mihai Surdeanu March 10, 2011 1 Introduction In this project, we investigte the hierarchical name entity recognition problem

More information

Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word Problems

Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word Problems Annotating Derivations: A New Evaluation Strategy and Dataset for Algebra Word Problems Shyam Upadhyay 1 Ming-Wei Chang 2 1 University of Illinois at Urbana-Champaign, IL, USA 2 Microsoft Research, Redmond,

More information

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur. Spatial Role Labeling

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur. Spatial Role Labeling Department of Computer Science and Engineering Indian Institute of Technology, Kanpur CS 365 Artificial Intelligence Project Report Spatial Role Labeling Submitted by Satvik Gupta (12633) and Garvit Pahal

More information

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003

Lecture 3. Jan C. Willems. University of Leuven, Belgium. Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem Jan C. Willems University of Leuven, Belgium Minicourse ECC 2003 Cambridge, UK, September 2, 2003 Lecture 3 The ELIMINATION Problem p.1/22 Problematique Develop a theory

More information

Fast and Effective Kernels for Relational Learning from Texts

Fast and Effective Kernels for Relational Learning from Texts Fast and Effective Kernels for Relational Learning from Texts Alessandro Moschitti MOCHITTI@DIT.UNITN.IT Department of Information and Communication Technology, University of Trento, 38050 Povo di Trento,

More information

A Boosting-based Algorithm for Classification of Semi-Structured Text using Frequency of Substructures

A Boosting-based Algorithm for Classification of Semi-Structured Text using Frequency of Substructures A Boosting-based Algorithm for Classification of Semi-Structured Text using Frequency of Substructures Tomoya Iwakura Fujitsu Laboratories Ltd iwakura.tomoya@jp.fujitsu.com Abstract Research in text classification

More information

Maxent Models and Discriminative Estimation

Maxent Models and Discriminative Estimation Maxent Models and Discriminative Estimation Generative vs. Discriminative models (Reading: J+M Ch6) Introduction So far we ve looked at generative models Language models, Naive Bayes But there is now much

More information

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields

Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Statistical NLP for the Web Log Linear Models, MEMM, Conditional Random Fields Sameer Maskey Week 13, Nov 28, 2012 1 Announcements Next lecture is the last lecture Wrap up of the semester 2 Final Project

More information

Domain Adaptation for Word Sense Disambiguation under the Problem of Covariate Shift

Domain Adaptation for Word Sense Disambiguation under the Problem of Covariate Shift Domain Adaptation for Word Sense Disambiguation under the Problem of Covariate Shift HIRONORI KIKUCHI 1,a) HIROYUKI SHINNOU 1,b) Abstract: Word sense disambiguation(wsd) is the task of identifying the

More information

Multi-Component Word Sense Disambiguation

Multi-Component Word Sense Disambiguation Multi-Component Word Sense Disambiguation Massimiliano Ciaramita and Mark Johnson Brown University BLLIP: http://www.cog.brown.edu/research/nlp Ciaramita and Johnson 1 Outline Pattern classification for

More information

Constructive Decision Theory

Constructive Decision Theory Constructive Decision Theory Joe Halpern Cornell University Joint work with Larry Blume and David Easley Economics Cornell Constructive Decision Theory p. 1/2 Savage s Approach Savage s approach to decision

More information

Word Alignment by Thresholded Two-Dimensional Normalization

Word Alignment by Thresholded Two-Dimensional Normalization Word Alignment by Thresholded Two-Dimensional Normalization Hamidreza Kobdani, Alexander Fraser, Hinrich Schütze Institute for Natural Language Processing University of Stuttgart Germany {kobdani,fraser}@ims.uni-stuttgart.de

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson eight What are characteristics of chemical reactions? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading

More information

SemEval-2013 Task 3: Spatial Role Labeling

SemEval-2013 Task 3: Spatial Role Labeling SemEval-2013 Task 3: Spatial Role Labeling Oleksandr Kolomiyets, Parisa Kordjamshidi, Steven Bethard and Marie-Francine Moens KU Leuven, Celestijnenlaan 200A, Heverlee 3001, Belgium University of Colorado,

More information

Inducing Value Sparsity for Parallel Inference in Tree-shaped Models

Inducing Value Sparsity for Parallel Inference in Tree-shaped Models Inducing Value Sparsity for Parallel Inference in Tree-shaped Models Sameer Singh Brian Martin Andrew McCallum Department of Computer Science, University of Massachusetts, Amherst, MA 0003 {sameer, martin,

More information

Transition-based Dependency Parsing with Selectional Branching

Transition-based Dependency Parsing with Selectional Branching Transition-based Dependency Parsing with Selectional Branching Jinho D. Choi Department of Computer Science University of Massachusetts Amherst Amherst, MA, 01003, USA jdchoi@cs.umass.edu Andrew McCallum

More information

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287

Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Part-of-Speech Tagging + Neural Networks 3: Word Embeddings CS 287 Review: Neural Networks One-layer multi-layer perceptron architecture, NN MLP1 (x) = g(xw 1 + b 1 )W 2 + b 2 xw + b; perceptron x is the

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

Machine Learning for natural language processing

Machine Learning for natural language processing Machine Learning for natural language processing Hidden Markov Models Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 33 Introduction So far, we have classified texts/observations

More information

Multiword Expression Identification with Tree Substitution Grammars

Multiword Expression Identification with Tree Substitution Grammars Multiword Expression Identification with Tree Substitution Grammars Spence Green, Marie-Catherine de Marneffe, John Bauer, and Christopher D. Manning Stanford University EMNLP 2011 Main Idea Use syntactic

More information

Multi-View Learning of Word Embeddings via CCA

Multi-View Learning of Word Embeddings via CCA Multi-View Learning of Word Embeddings via CCA Paramveer S. Dhillon Dean Foster Lyle Ungar Computer & Information Science Statistics Computer & Information Science University of Pennsylvania, Philadelphia,

More information

Deep Learning for NLP Part 2

Deep Learning for NLP Part 2 Deep Learning for NLP Part 2 CS224N Christopher Manning (Many slides borrowed from ACL 2012/NAACL 2013 Tutorials by me, Richard Socher and Yoshua Bengio) 2 Part 1.3: The Basics Word Representations The

More information

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning

Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Large-scale Image Annotation by Efficient and Robust Kernel Metric Learning Supplementary Material Zheyun Feng Rong Jin Anil Jain Department of Computer Science and Engineering, Michigan State University,

More information

Manifold Regularization

Manifold Regularization Manifold Regularization Vikas Sindhwani Department of Computer Science University of Chicago Joint Work with Mikhail Belkin and Partha Niyogi TTI-C Talk September 14, 24 p.1 The Problem of Learning is

More information

Determining Word Sense Dominance Using a Thesaurus

Determining Word Sense Dominance Using a Thesaurus Determining Word Sense Dominance Using a Thesaurus Saif Mohammad and Graeme Hirst Department of Computer Science University of Toronto EACL, Trento, Italy (5th April, 2006) Copyright cfl2006, Saif Mohammad

More information

Sample Copy. Not For Distribution.

Sample Copy. Not For Distribution. A Text Book of 'Logic and Sets' (Skill Enhancement Course) CBCS Pattern i Publishing-in-support-of, EDUCREATION PUBLISHING RZ 94, Sector - 6, Dwarka, New Delhi - 110075 Shubham Vihar, Mangla, Bilaspur,

More information

A Markov Logic Approach to Bio-Molecular Event Extraction

A Markov Logic Approach to Bio-Molecular Event Extraction A Markov Logic Approach to Bio-Molecular Event Extraction Sebastian Riedel Hong-Woo Chun Toshihisa Takagi Jun'ichi Tsujii Database Center for Life Science, Research Organization of Information and System,

More information

Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania (T) Michigan State University

Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania (T) Michigan State University Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania 4 1 2 0 2 4 0 9 22 2(T) Michigan State University 2 0 0 9 1 0 0 4 16 University of Michigan 3 0 2 5 2 0 0 4 16 4 Harvard

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015

Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch. COMP-599 Oct 1, 2015 Part of Speech Tagging: Viterbi, Forward, Backward, Forward- Backward, Baum-Welch COMP-599 Oct 1, 2015 Announcements Research skills workshop today 3pm-4:30pm Schulich Library room 313 Start thinking about

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson seven What is a chemical reaction? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading Informational Text,

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Topics in Natural Language Processing

Topics in Natural Language Processing Topics in Natural Language Processing Shay Cohen Institute for Language, Cognition and Computation University of Edinburgh Lecture 9 Administrativia Next class will be a summary Please email me questions

More information

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions Wei Lu and Hwee Tou Ng National University of Singapore 1/26 The Task (Logical Form) λx 0.state(x 0

More information

Planning for Reactive Behaviors in Hide and Seek

Planning for Reactive Behaviors in Hide and Seek University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science May 1995 Planning for Reactive Behaviors in Hide and Seek Michael B. Moore

More information

Vectors. Teaching Learning Point. Ç, where OP. l m n

Vectors. Teaching Learning Point. Ç, where OP. l m n Vectors 9 Teaching Learning Point l A quantity that has magnitude as well as direction is called is called a vector. l A directed line segment represents a vector and is denoted y AB Å or a Æ. l Position

More information

Multilingual Semantic Role Labelling with Markov Logic

Multilingual Semantic Role Labelling with Markov Logic Multilingual Semantic Role Labelling with Markov Logic Ivan Meza-Ruiz Sebastian Riedel School of Informatics, University of Edinburgh, UK Department of Computer Science, University of Tokyo, Japan Database

More information

17 th Annual GeoElections User s Conference

17 th Annual GeoElections User s Conference 17 th Annual GeoElections User s Conference When: December 12 th, December 13 th, and December 14 th, 2018 Where: Embassy Suites Hotel Tampa-Brandon 10220 Palm River Road Tampa, FL 33619 Tel: 813-653-1905

More information

A Multi-Modal Combinatory Categorial Grammar. A MMCCG Analysis of Japanese Nonconstituent Clefting

A Multi-Modal Combinatory Categorial Grammar. A MMCCG Analysis of Japanese Nonconstituent Clefting A Multi-Modal Combinatory Categorial Grammar Analysis of Japanese Nonconstituent Clefting Department of Linguistics The Ohio State University {kubota,esmith}@ling.osu.edu A basic cleft sentence Data Clefting

More information

Examination paper for TFY4240 Electromagnetic theory

Examination paper for TFY4240 Electromagnetic theory Department of Physics Examination paper for TFY4240 Electromagnetic theory Academic contact during examination: Associate Professor John Ove Fjærestad Phone: 97 94 00 36 Examination date: 16 December 2015

More information

Linking people in videos with their names using coreference resolution (Supplementary Material)

Linking people in videos with their names using coreference resolution (Supplementary Material) Linking people in videos with their names using coreference resolution (Supplementary Material) Vignesh Ramanathan, Armand Joulin, Percy Liang, Li Fei-Fei Department of Electrical Engineering, Stanford

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

Notation. Pattern Recognition II. Michal Haindl. Outline - PR Basic Concepts. Pattern Recognition Notions

Notation. Pattern Recognition II. Michal Haindl. Outline - PR Basic Concepts. Pattern Recognition Notions Notation S pattern space X feature vector X = [x 1,...,x l ] l = dim{x} number of features X feature space K number of classes ω i class indicator Ω = {ω 1,...,ω K } g(x) discriminant function H decision

More information

Cross-Entropy and Estimation of Probabilistic Context-Free Grammars

Cross-Entropy and Estimation of Probabilistic Context-Free Grammars Cross-Entropy and Estimation of Probabilistic Context-Free Grammars Anna Corazza Department of Physics University Federico II via Cinthia I-8026 Napoli, Italy corazza@na.infn.it Giorgio Satta Department

More information

Council on East Asian Libraries Statistics For North American Institutions

Council on East Asian Libraries Statistics For North American Institutions Council on East Asian Libraries Statistics 2006-2007 For North American Institutions Collected and Compiled by the CEAL Statistics Committee, 2006-2007 Vickie Fu Doll, Chair

More information