de Broglie Waves h p de Broglie argued Light exhibits both wave and particle properties

Size: px
Start display at page:

Download "de Broglie Waves h p de Broglie argued Light exhibits both wave and particle properties"

Transcription

1 de Broglie argued de Broglie Waves Light exhibits both wave and particle properties Wave interference, diffraction Particle photoelectric effect, Compton effect Then matter (particles) should exhibit both particle and wave properties He predicted the wavelength to be de Broglie wavelength λ h p 1

2 de Broglie Waves Consider the E, p relations for a photon E hf c f then λ hf pc h p h p and E pc Guided by this, de Broglie proposed the same relation for matter 2

3 de Broglie Waves 3

4 de Broglie Waves Let s apply de Broglie waves to the Bohr model If the electron is represented as a standing wave in an orbit about the proton 2πr L rp nλ nh 2π n h p nh This apparently justifies Bohr s assumption 4

5 de Broglie Waves de Broglie wavelength of a person running λ λ h p Js (65kg)(5m / s) 36 m de Broglie wavelength of a 50 ev electron λ h p hc pc hc 2mc 2 T 1240eVnm (2)( )(50) λ 0.17nm 5

6 X-ray Scattering Before examining electron scattering from a (large) crystal, let s first look at x-ray scattering from a crystal Spacing of atoms in a crystal ~ 1A Wavelength of hard x-rays ~ 0.1-1A Laue therefore expected that interference patterns should be observed And they were! Today, the Laue technique can be used to determine crystal orientation and assess crystal perfection from the size and shape of the spots 6

7 X-ray Scattering 7

8 X-ray Scattering Laue diffraction of salt 8

9 Whale myoglobin X-ray Scattering Of ~35,000 known protein structures, ~29,000 have been identified using x-ray diffraction 9

10 X-ray Scattering 10

11 Powder diffraction X-ray Scattering Sometimes single crystals are not available Sometimes materials naturally occur in a polycrystalline state Using many small crystals Their orientation will be random At least a few of the small crystals in the sample will be in the correct orientation to diffract for each of the possible planes The resulting rings are called the Debye-Scherrer pattern The powder diffraction method is frequently used to fingerprint crystals via a large database 11

12 X-ray Scattering 12

13 X-ray Scattering Debye-Scherrer pattern from powder diffraction for NaCl and KCL 13

14 X-ray Scattering Bragg simplified Laue s three dimensional analysis by considering x-ray scattering as the reflection of the incident beam from successive lattice planes in the crystal If the scattered angle incident angle (reflection), there is no phase change between the incident and reflected waves Waves scattered at equal angles from atoms in two different planes will constructively interfere if the path length difference is an integral number of wavelengths 14

15 X-ray Scattering Crystal structure of NaCl 15

16 X-ray Scattering Crystal structure of NaCl 16

17 Bragg condition X-ray Scattering 2d sinθ mλ The intensity pattern of the scattered waves of a known wavelength gives information about the structure of the crystal The intensity pattern of the scattered waves from a known crystal spacing gives information about the incoming wavelengths Laue and Bragg scattering effectively started the field of solid state physics 17

18 X-ray Scattering Crystal structure of NaCl 18

19 X-ray Scattering Crystal structure of NaCl 19

20 X-ray Scattering Bragg spectrum of NaCl Intensity 2θ 20

21 X-ray Scattering To determine d nλ 2d sinθ λ 0.073nm d 2sinθ 15 2sin 2 To determine n 0.28nm nλ 2d sinθ n 2d sinθ λ ( 2)( 0.28) sin

22 d d To check d molecules volume atoms volume X-ray Scattering The volume of one atom is d 3 for a face-centered cubic crystal nm 3 N Avρ At ( )( 2) 28 volume atom ( 23)( g / cm ) 58.5g / mol 6 10 cm 3 m atoms 3 m 22 molecules 3 cm 22

23 Electron Scattering If x-rays of wavelength ~ 1A produce an diffraction pattern when scattered off a crystal so should matter waves of comparable wavelength For example, 50 ev electrons Davisson and Germer verified this (accidentally) 23

24 Electron Scattering Davisson-Germer experiment 24

25 Electron Scattering Davisson-Germer data 25

26 Electron Scattering 26

27 Electron Scattering Bragg s law applies for electrons too nλ 2d sinθ D - G measured φ 2α, not θ 2θ π 2α nλ 2d cosα and d Dsinα nλ 2D cosα sinα Dsin 2α nλ Dsinφ Dsinφ 27

28 λ Electron Scattering Analyzing the Davisson-Germer data Dsinφ λ 0.165nm h p hc 2mc ( 0.215nm)( sin50 ) The de Broglie wavelength for 54.4eV electron is λ 2 T 1240eV nm ( )( ev )( 54.4eV ) 0.167nm Experimental evidence that electrons behave as waves with the de Broglie wavelength 28

29 Electron Scattering Aside, these results hold true for even a low intensity electron beam This means that the interference pattern does not result from interference between waves from two electrons, but from waves associated with a single electron Aside, diffraction patterns are also observed using neutrons, H, and He atoms 29

30 Electron Scattering Thomson observes diffraction patterns in electron transmission experiments similar to Laue s in x-ray transmission experiments 30

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

PHYS 571 Radiation Physics

PHYS 571 Radiation Physics PHYS 571 Radiation Physics Prof. Gocha Khelashvili http://blackboard.iit.edu login Bohr s Theory of Hydrogen Atom Bohr s Theory of Hydrogen Atom Bohr s Theory of Hydrogen Atom Electrons can move on certain

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Wave properties of matter & Quantum mechanics I. Chapter 5

Wave properties of matter & Quantum mechanics I. Chapter 5 Wave properties of matter & Quantum mechanics I Chapter 5 X-ray diffraction Max von Laue suggested that if x-rays were a form of electromagnetic radiation, interference effects should be observed. Crystals

More information

PHYS 3313 Section 001 Lecture #16

PHYS 3313 Section 001 Lecture #16 PHYS 3313 Section 001 Lecture #16 Monday, Mar. 24, 2014 De Broglie Waves Bohr s Quantization Conditions Electron Scattering Wave Packets and Packet Envelops Superposition of Waves Electron Double Slit

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Wave nature of particles

Wave nature of particles Wave nature of particles We have thus far developed a model of atomic structure based on the particle nature of matter: Atoms have a dense nucleus of positive charge with electrons orbiting the nucleus

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Physics 2D Lecture Slides Feb 10. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Feb 10. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Feb 10 Vivek Sharma UCSD Physics Bohr s Explanation of Hydrogen like atoms Bohr s Semiclassical theory explained some spectroscopic data Nobel Prize : 1922 The hotch-potch of

More information

3.012 Fund of Mat Sci: Structure Lecture 18

3.012 Fund of Mat Sci: Structure Lecture 18 3.012 Fund of Mat Sci: Structure Lecture 18 X-RAYS AT WORK An X-ray diffraction image for the protein myoglobin. Source: Wikipedia. Model of helical domains in myoglobin. Image courtesy of Magnus Manske

More information

Quantum Physics Lecture 3

Quantum Physics Lecture 3 Quantum Physics Lecture 3 If light (waves) are particle-like, are particles wave-like? Electron diffraction - Davisson & Germer Experiment Particle in a box -Quantisation of energy Wave Particle?? Wave

More information

Quantum Interference and Duality

Quantum Interference and Duality Quantum Interference and Duality Kiyohide NOMURA Department of Physics December 21, 2016 1 / 49 Quantum Physics(Mechanics) Basic notion of Quantum Physics: Wave-Particle Duality Light (electromagnetic

More information

Wave Properties of Particles Louis debroglie:

Wave Properties of Particles Louis debroglie: Wave Properties of Particles Louis debroglie: If light is both a wave and a particle, why not electrons? In 194 Louis de Broglie suggested in his doctoral dissertation that there is a wave connected with

More information

Chapter 4: The Wave Nature of Matter

Chapter 4: The Wave Nature of Matter Chapter 4: The Wave Nature of Matter q We have seen in Chap. 3 that EM radiation displays both wave properties (classical description) and particle properties (quantum description) q Matter is described

More information

Crystal Structure and Electron Diffraction

Crystal Structure and Electron Diffraction Crystal Structure and Electron Diffraction References: Kittel C.: Introduction to Solid State Physics, 8 th ed. Wiley 005 University of Michigan, PHY441-44 (Advanced Physics Laboratory Experiments, Electron

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 AnNouncements Reading Assignment for Thursday, Sept 28th: Chapter

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics

PHY202 Quantum Mechanics. Topic 1. Introduction to Quantum Physics PHY202 Quantum Mechanics Topic 1 Introduction to Quantum Physics Outline of Topic 1 1. Dark clouds over classical physics 2. Brief chronology of quantum mechanics 3. Black body radiation 4. The photoelectric

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference?

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference? Course essay Friday, Nov 3: Due in class essay topic(review article, operating experiment, noble prize) short description - one paragraph http://www.hep.wisc.edu/~herndon/107-0609/essay.htm Friday, Nov

More information

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering Course Essay 500-750 word typed essay due Wed. Apr. 26 First deadline: Fri. this week (Mar. 24) turn in Topic and Paragraph Description Topic ideas: Nobel prize winner: work & importance Big science project:

More information

FROM DIFFRACTION TO STRUCTURE

FROM DIFFRACTION TO STRUCTURE 3.012 Fund of Mat Sci: Structure Lecture 19 FROM DIFFRACTION TO STRUCTURE Images removed for copyright reasons. 3-fold symmetry in silicon along the [111] direction. Forward (left) and backward (right)

More information

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg Quantum Mechanics Physics 102 18 April 2002 Lecture 9 Planck Bohr Schroedinger Heisenberg From: http://www.th.physik.uni-frankfurt.de/~jr/portraits.html 18 Apr 2002 Physics 102 Lecture 9 1 Blackbody radiation

More information

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS CHAPTER 29 PARTICLES AND WAVES CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION A monochromatic light source emits photons of a single frequency. According to Equation 29.2, the energy, E, of a single photon

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom

8.04 Spring 2013 February 13, 2013 Problem 1. (15 points) Radiative collapse of a classical atom Problem Set 1 Solutions 8.04 Spring 01 February 1, 01 Problem 1. (15 points) Radiative collapse of a classical atom (a) (5 points) We begin by assuming that the orbit is circular. This seems like circular

More information

Electron Diffraction

Electron Diffraction Exp-3-Electron Diffraction.doc (TJR) Physics Department, University of Windsor Introduction 64-311 Laboratory Experiment 3 Electron Diffraction In 1924 de Broglie predicted that the wavelength of matter

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

1240 ev nm nm. f < f 0 (5)

1240 ev nm nm. f < f 0 (5) Chapter 4 Example of Bragg Law The spacing of one set of crystal planes in NaCl (table salt) is d = 0.282 nm. A monochromatic beam of X-rays produces a Bragg maximum when its glancing angle with these

More information

WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL

WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL WHAT DOES THE ATOM REALLY LOOK LIKE? THE THOMSON MODEL RUTHERFORD SCATTERING RUTHERFORD SCATTERING: SOME DETAILS RUTHERFORD SCATTERING: FINAL RESULTS N() = no. scattered into interval to +d N i = total

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 Double-Slit Experiment Photons pass through the double-slit apparatus.

More information

Lecture 35 (de Broglie & Matter Waves) Physics Fall 2018 Douglas Fields

Lecture 35 (de Broglie & Matter Waves) Physics Fall 2018 Douglas Fields Lecture 35 (de Broglie & Matter Waves) Physics 6-01 Fall 018 Douglas Fields Clicker Quiz For a certain metal, the work function is 4eV. If light at frequency 1.9x10 15 Hz strikes the metal, what is the

More information

MYcsvtu Notes UNIT-5 QUANTUM PHYSICS

MYcsvtu Notes UNIT-5 QUANTUM PHYSICS UNIT-5 QUANTUM PHYSICS Quantum or Wave Mechanics Light has both wave & particle properties de Broglie (1924) proposed that all moving objects have wave properties. For light: E = hn = hc / l For particles:

More information

I. Interference Effect for Light

I. Interference Effect for Light Moern Physics Unit 2: Schröinger Equation in 1 Dimension Lecture 2.1: Wave-Particle Duality Ron Reifenberger Professor of Physics Purue University 1 I. Interference Effect for Light Sie view! Not to scale!

More information

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to :

λ = h = h p mv λ = h mv FXA 2008 Candidates should be able to : 1 Candidates should be able to : Explain electron diffraction as evidence for the wave nature of particles like electrons. Explain that electrons travelling through polycrystalline graphite will be diffracted

More information

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( ) " = h mv

( ) # velocity. Wavelengths of massive objects. From Last Time. Wavelength of electron. Wavelength of 1 ev electron. A little complicated ( )  = h mv From Last Time Wavelengths of massive objects Light shows both particle and wavelike properties Matter shows both particle and wavelike properties. How can we make sense of this? debroglie wavelength =

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomic and Nuclear Physics Introductory experiments ualism of wave and particle L Physics Leaflets P6.1.5.1 iffraction of electrons in a polycrystalline lattice (ebye-scherrer diffraction) Objects of the

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

Wave function and Quantum Physics

Wave function and Quantum Physics Wave function and Quantum Physics Properties of matter Consists of discreet particles Atoms, Molecules etc. Matter has momentum (mass) A well defined trajectory Does not diffract or interfere 1 particle

More information

Physics 1C Lecture 28C. "For those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Physics 1C Lecture 28C. For those who are not shocked when they first come across quantum theory cannot possibly have understood it. Physics 1C Lecture 28C "For those who are not shocked when they first come across quantum theory cannot possibly have understood it." --Neils Bohr Outline CAPE and extra credit problems Wave-particle duality

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Beyond Bohr Model. Wave-particle duality, Probabilistic formulation of quantum physics Chap. 28

Beyond Bohr Model. Wave-particle duality, Probabilistic formulation of quantum physics Chap. 28 Lecture 22-1 Beyond Bohr Model Unfortunately, the classical visualization of the orbiting electron turns out to be wrong even though it still gives us a simple way to think of the atom. Quantum Mechanics

More information

Chemistry 1B-01, Fall 2012 Lectures 1-2. Chemistry 1B. Fall lectures 1-2. (ch 12 pp ) 6th [ch 12 pp ] 7th

Chemistry 1B-01, Fall 2012 Lectures 1-2. Chemistry 1B. Fall lectures 1-2. (ch 12 pp ) 6th [ch 12 pp ] 7th Chemistry 1B Fall 2012 lectures 1-2 (ch 12 pp 522-536) 6th [ch 12 pp 522-537] 7th 20 goals of lectures 1-2 The laws of nature in 1900 (successful for describing large objects) describe particles AND describe

More information

1 Photoelectric effect - Classical treatment. 2 Photoelectric effect - Quantum treatment

1 Photoelectric effect - Classical treatment. 2 Photoelectric effect - Quantum treatment 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM Tuesday, 10 May. 1 Photoelectric effect - Classical treatment A laser beam with an

More information

Evidence that x-rays are wave-like

Evidence that x-rays are wave-like Evidence that x-rays are wave-like After their discovery in 1895 by Roentgen, their spectrum (including characteristic x-rays) was probed and their penetrating ability was exploited, but it was difficult

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Intro to Quantum Physics

Intro to Quantum Physics Physics 256: Lecture Q5 Intro to Quantum Physics Agenda for Today De Broglie Waves Electron Diffraction Wave-Particle Duality Complex Numbers Physics 201: Lecture 1, Pg 1 Are photons Waves or Particles?

More information

The Discovery of the Wave Nature of the Electron

The Discovery of the Wave Nature of the Electron The Discovery of the Wave Nature of the Electron de Broglie s Theory of Matter Waves Luis Suarez University of South Carolina Louis de Broglie 1892-1987 2 A brief history of light Is it a stream of particles

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

PROBING CRYSTAL STRUCTURE

PROBING CRYSTAL STRUCTURE PROBING CRYSTAL STRUCTURE Andrew Baczewski PHY 491, October 10th, 2011 OVERVIEW First - we ll briefly discuss Friday s quiz. Today, we will answer the following questions: How do we experimentally probe

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Place exam revisions in box at front of room either now or at end of lecture Physics 102: Lecture 23, Slide 1 Exam 3 Monday April 21! Material

More information

General Physics (PHY 2140) Lecture 15

General Physics (PHY 2140) Lecture 15 General Physics (PHY 2140) Lecture 15 Modern Physics Chapter 27 1. Quantum Physics The Compton Effect Photons and EM Waves Wave Properties of Particles Wave Functions The Uncertainty Principle http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

normalized spectral amplitude R(λ)

normalized spectral amplitude R(λ) Mid-Term Exam 2 Physics 23 Modern Physics Tuesday October 23, 2 Point distribution: All questions are worth points 5 points. Questions # - #6 are multiple choice and answers should be bubbled onto the

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Recitation on the Compton effect Solution

Recitation on the Compton effect Solution Recitation on the Compton effect Solution 1. Show that a photon cannot transfer all of its energy to a free electron. (Hint: Energy and momentum must be conserved.) Answer 1: If all the photon s energy

More information

Incident wave. Scattered wave

Incident wave. Scattered wave Incident wave Scattered wave Dipole Antenna The Movies + - + - + - - + http://www.ee.iastate.edu/~hsiu/movies/dipole.mov link gone Oscillating (Accelerating) Charge The Movies Dr. Rod Cole, UCD-- http://maxwell.ucdavis.edu/~electro/

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Physics 111 Homework Solutions Week #9 - Friday

Physics 111 Homework Solutions Week #9 - Friday Physics 111 Homework Solutions Week #9 - Friday Tuesday, March 1, 2011 Chapter 24 Questions 246 The Compton shift in wavelength for the proton and the electron are given by Δλ p = h ( 1 cosφ) and Δλ e

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

3.012 Structure An Introduction to X-ray Diffraction

3.012 Structure An Introduction to X-ray Diffraction 3.012 Structure An Introduction to X-ray Diffraction This handout summarizes some topics that are important for understanding x-ray diffraction. The following references provide a thorough explanation

More information

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6 6.1. Summary In this Lecture we cover the theory of x-ray diffraction, which gives direct information about the atomic structure of crystals. In these experiments, the wavelength of the incident beam must

More information

Episode 506: Particles as waves

Episode 506: Particles as waves Episode 506: Particles as waves This episode introduces an important phenomenon: wave - particle duality. In studying the photoelectric effect, students have learned that light, which we think of as waves,

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton

Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton Light: II. ELECTRICITY & MAGNETISM Maxwell's Equations III. THERMODYNAMICS Gibbs Helmholz

More information

Chemistry 1B-01, Fall 2013 Lectures 1-2

Chemistry 1B-01, Fall 2013 Lectures 1-2 goals of lectures 1-2 Chemistry 1B Fall 2013 30 Nature of light and matter. Wave-particle duality chap.12 p524-531 lectures 1-2 (ch 12 pp 522-536) 6th [ch 12 pp 522-537] 7th The laws of nature in 1900

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Electron Diffraction

Electron Diffraction Electron iffraction o moving electrons display wave nature? To answer this question you will direct a beam of electrons through a thin layer of carbon and analyze the resulting pattern. Theory Louis de

More information

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu LECTURE 6 QUANTUM PHYSICS II Instructor: Shih-Chieh Hsu Development of Quantum Mechanics 2 In 1862, Kirchhoff coined black body radiation or known as cavity radiation The experiments raised the question

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

Physics 390: Homework set #2 Solutions

Physics 390: Homework set #2 Solutions January 6, 007 Physics 390: Homework set # Solutions Reading: Tipler & Llewellyn, Chapters 4, 5 Questions:. Suppose we cover one slit in the two-slit electron experiment with a very thin sheet of fluorescent

More information

Complementi di Fisica Lectures 7-9

Complementi di Fisica Lectures 7-9 Complementi di Fisica Lectures 7-9 Livio Lanceri Università di Trieste Trieste, 07/09-10-2012 Course Outline - Reminder Quantum Mechanics: an introduction Waves as particles and particles as waves (the

More information

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th

Chemistry 1B-01, Fall 2016 Sessions 1-2. Chemistry 1B. Fall lectures topics 1-2. [ch 12 pp ] 7th Chemistry 1B Fall 2016 lectures topics 1-2 [ch 12 pp 522-537] 7th 1 goals of lectures 1-2 The laws of nature in 1900 (successful for describing large objects) describe particles AND describe waves Experiments

More information

Exercise 1 Atomic line spectra 1/9

Exercise 1 Atomic line spectra 1/9 Exercise 1 Atomic line spectra 1/9 The energy-level scheme for the hypothetical one-electron element Juliettium is shown in the figure on the left. The potential energy is taken to be zero for an electron

More information

Bohr s Correspondence Principle

Bohr s Correspondence Principle Bohr s Correspondence Principle In limit that n, quantum mechanics must agree with classical physics E photon = 13.6 ev 1 n f n 1 i = hf photon In this limit, n i n f, and then f photon electron s frequency

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 1 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles 5.6 Uncertainty Principle Topics 5.7

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Wavelength of 1 ev electron

Wavelength of 1 ev electron HW8: M Chap 15: Question B, Exercises 2, 6 M Chap 16: Question B, Exercises 1 M Chap 17: Questions C, D From Last Time Essay topic and paragraph due Friday, Mar. 24 Light waves are particles and matter

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

General Physics (PHY 2140) Lecture 14

General Physics (PHY 2140) Lecture 14 General Physics (PHY 2140) Lecture 14 Modern Physics 1. Relativity Einstein s General Relativity 2. Quantum Physics Blackbody Radiation Photoelectric Effect X-Rays Diffraction by Crystals The Compton Effect

More information

An object capable of emitting/absorbing all frequencies of radiation uniformly

An object capable of emitting/absorbing all frequencies of radiation uniformly 1 IIT Delhi - CML 100:1 The shortfalls of classical mechanics Classical Physics 1) precise trajectories for particles simultaneous specification of position and momentum 2) any amount of energy can be

More information

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006

arxiv:physics/ v3 [physics.gen-ph] 2 Jan 2006 A Wave Interpretation of the Compton Effect As a Further Demonstration of the Postulates of de Broglie arxiv:physics/0506211v3 [physics.gen-ph] 2 Jan 2006 Ching-Chuan Su Department of Electrical Engineering

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

The New Electromagnetics from Matter Waves

The New Electromagnetics from Matter Waves The New Electromagnetics from Matter Waves Michael Harney E-mail: mharney1268@yahoo.com It is well known that Maxwell s equations describe electromagnetics at an abstract level no knowledge about atomic

More information

The Bohr Model of Hydrogen, a Summary, Review

The Bohr Model of Hydrogen, a Summary, Review The Bohr Model of Hydrogen, a Summary, Review Allowed electron orbital radii and speeds: Allowed electron energy levels: Problems with the Bohr Model Bohr s model for the atom was a huge success in that

More information