Beyond Bohr Model. Wave-particle duality, Probabilistic formulation of quantum physics Chap. 28

Size: px
Start display at page:

Download "Beyond Bohr Model. Wave-particle duality, Probabilistic formulation of quantum physics Chap. 28"

Transcription

1 Lecture 22-1 Beyond Bohr Model Unfortunately, the classical visualization of the orbiting electron turns out to be wrong even though it still gives us a simple way to think of the atom. Quantum Mechanics is needed to truly understand and describe the atom. Wave-particle duality, Probabilistic formulation of quantum physics Chap. 28

2 Lecture 22-2 Electron Energy Levels in Solids When great many (order of Avogadro s number) atoms come together to form a solid, the individual atom s energy levels split up into dense groups of levels for the combined solid, called energy bands. These bands span essentially continuous range of energies.

3 Lecture 22-3 Energy Bands for Solids holes Dark regions are filled (i.e., there are electrons occupying there). Electrons can only move to available (unoccupied) states. There are many unoccupied states nearby in a conductor but there is none in an insulator. Small number of electrons can make a transition in semiconductors.

4 Lecture 22-4 Stimulated Emission of Light Incident photon with hf = ΔE stimulates emission of photon of the same frequency. So more photons come out as have gone in. Cascading effect can occur! Emitted photon in phase with incident photon. Coherent amplification. laser

5 Lecture 22-5 Laser Light amplification by stimulated emission of radiation Coherent, narrow, and intense Monochromatic (can be tunable as in liquid dye lasers) Can be continuous or pulsed Can be made using solid, liquid, gas, or even free electrons. Sustained population inversion is required.

6 Lecture 22-6 Examples of Lasers He-Ne Laser (continuous) Little populated, thus population inversion easy.

7 Lecture 22-7 Compton Scattering (Compton Effect) When X-ray strikes matter, EM radiation is found to scatter with longer wavelength than in the incident ray. Classically, the incident ray should vibrate charges in the target with the target reradiating with the same frequency/wavelength as in the incident ray. In quantum physics, we view this as the collision of a photon and an electron instead. Some of the energy of the incident photon is transferred to the electron. Thus the energy of the photon is reduced, or the frequency decreases.

8 Lecture 22-8 Compton Scattering (continued) c c Photon: In vacuum, always travels with speed c. Energy: hf = cp Momentum: p = hf/c = h/λ

9 Lecture 22-9 Compton Scattering with a free electron c c Energy conservation: E = K + E γi e γ f hf = K + hf i i e hc hc = Ke + λ λ f f Momentum conservation: p = p + p γ i e γ f h h = pe cosφ + cosθ λ λ i h 0= sinθ pe sinφ λ f f h λ f λi = θ mc K + mc = ( mc ) + ( cp ) ( 1 cos ) e e e e e Compton Wavelength 2.43 pm

10 Lecture Photoelectric Effect vs Compton Scattering Photoelectric effect An incident photon knocks out an electron. No photon comes out. Compton scattering (from an atom) An incident, high-energy photon scatters off of an electron, knocking it out of the atom as well as itself getting scattered into smaller frequency. The term Compton scattering is also used to describe more general photonelectron scattering events as well.

11 Lecture Physics 219 Question 1 April 06, Which of the following is a property of the photoelectric effect but not one of Compton scattering? A. Photon (EM radiation) is an incident particle. B. Photon of lower frequency comes out. C. Electron gains energy and emerges from atom(s). D. Photon of higher frequency comes out. E. Photon is completely absorbed.

12 Lecture Wave-Particle Duality 1 In quantum physics, the wave-nature and particle-nature of an object are closely linked. They turn out to be two aspects of the same reality. Consider again the two-slit interference pattern for light, where the part of the wave passing through one slit interferes with the part of the wave passing through the other slit, producing an interference pattern of intensity. Wave nature!

13 Lecture Wave-Particle Duality 2 From a particle-like point of view, the intensity is proportional to the number of photons. So the fringe pattern can be viewed as a map of how many photons landed where. (A photomultiplier can count them.) Now what if we turn down the light intensity enough so that one photon at a time leaves the source? (a) Initially, photons seem to land at random places. Not just at the places expected for ballistic trajectories but no apparent interference pattern. (b) Gradually, bands of preferred landing areas emerge. (c) Eventually, clear interference pattern forms. Interference pattern like one from waves! Somehow, ONE photon knows about BOTH slits and interferes with itself!?

14 Lecture Wave-Particle Duality 3 Even one photon evidently diffracts i.e., they do not always travel ballistically. Even one photon knows about both slits and interferes with itself. It is impossible to predict where a given photon will land, but there is evidently a well-defined pattern on average. Not only that, but also There is a well-defined probability for a photon to land at a place. ( wave function) 2 If we put a detector on each slit to find out which slit a photon has gone through, then no interference pattern any more!!

15 Lecture Wave-Particle Duality 4 If we place detectors on the slits, we can determine which slit each photon goes through. Then, no more interference. By measuring the location of the photon at the slits, we somehow make the photon act more like a particle and less like a wave. Measurements affect what is being measured. In this case, if we don t find out which slit the photon has gone through, then it is as if it has gone through both slits and the part which has gone through one slit interferes with itself which has gone through the other slit, so to speak. As soon as you try to find out which slit it really goes through, though, it really does go through one but not the other, and thus no interference!! I am going to tell you what nature behaves like. Do not keep saying to yourself, if you can possibly avoid it, but how can it be like that? Nobody knows how it can be like that. R. P. Feynman

16 Lecture De Broglie s Theory of Matter Waves If a photon can behave as either a particle or a wave, what about an electron, proton, atom, etc? Other particles, such as electrons, do have a wave nature also. The wavelength λ of a particle depends on its momentum p, and is called the de Broglie wavelength: λ = h p hc A photon: E = hf =, E = cp λ h λ = p de Broglie proposed that the same holds for any particle!

17 Lecture Examples What is the wavelength of an electron that is moving at a speed of 4 m/s? h λ = = p h m v e Js = = kg 4 m / s What is the wavelength of a 0.25 kg rock that is moving at 4 m/s? 4 m h h λ = = p m v rock Js = = kg 4 m / s 34 m Much maller than any known length!! No wave nature shows up.

18 Lecture Physics 219 Question 2 April 06, According to de Broglie s theory, every particle behaves also like a wave with a wavelength related to its momentum. Now consider a baseball thrown at a batter at 50 miles/hr. The batter hits the ball and it travels to the outfield at 100 miles/hr. If the de Broglie wavelength of the ball was λ just before being hit by the batter, what is it just afterward (when it is traveling with 100 miles/hr)? A λ B. 0.5 λ C. λ D. 1.5 λ E. 2 λ

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

It s a wave. It s a particle It s an electron It s a photon. It s light!

It s a wave. It s a particle It s an electron It s a photon. It s light! It s a wave It s a particle It s an electron It s a photon It s light! What they expected Young s famous experiment using a beam of electrons instead of a light beam. And, what they saw Wave-Particle Duality

More information

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes

Physics 116. Nov 21, Session 31 De Broglie, duality, and uncertainty. R. J. Wilkes Physics 116 Session 31 De Broglie, duality, and uncertainty Nov 21, 2011 R. J. Wilkes Email: ph116@u.washington.edu Announcements HW 6 due today Clicker scores have been updated on Webassign gradebook

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Place exam revisions in box at front of room either now or at end of lecture Physics 102: Lecture 23, Slide 1 Exam 3 Monday April 21! Material

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle

Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle 24-Nov-10 Birth of Quantum Theory There has been a long historical debate about the nature of light: Some believed it to be particle-like.

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3 1. A beam of light passes from air into water. Which is necessarily true? A) The frequency is unchanged and the wavelength increases. B) The frequency is unchanged and the wavelength decreases. C) The

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

Lecture 8: Wave-Particle Duality. Lecture 8, p 2 We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery.

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS CHAPTER 29 PARTICLES AND WAVES CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION A monochromatic light source emits photons of a single frequency. According to Equation 29.2, the energy, E, of a single photon

More information

General Physics (PHY 2140) Lecture 15

General Physics (PHY 2140) Lecture 15 General Physics (PHY 2140) Lecture 15 Modern Physics Chapter 27 1. Quantum Physics The Compton Effect Photons and EM Waves Wave Properties of Particles Wave Functions The Uncertainty Principle http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Physics 1C Lecture 28C. "For those who are not shocked when they first come across quantum theory cannot possibly have understood it.

Physics 1C Lecture 28C. For those who are not shocked when they first come across quantum theory cannot possibly have understood it. Physics 1C Lecture 28C "For those who are not shocked when they first come across quantum theory cannot possibly have understood it." --Neils Bohr Outline CAPE and extra credit problems Wave-particle duality

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom The Quantum Gang Problems with Classical Physics Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom Why this shape? Why the drop? Blackbody Radiation A black body is an ideal system

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference?

Title / paragraph example Topic: Quantum Computers. Course essay. Photoelectric effect summary. From Last Time. Photon interference? Course essay Friday, Nov 3: Due in class essay topic(review article, operating experiment, noble prize) short description - one paragraph http://www.hep.wisc.edu/~herndon/107-0609/essay.htm Friday, Nov

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas:

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas: Blackbody Radiation A Blackbody is an ideal system that absorbs all radiation incident on it. Emission of radiation by a blackbody is independent of the properties of its wall, but depends only on its

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Physics 126 Practice Exam #4 Professor Siegel

Physics 126 Practice Exam #4 Professor Siegel Physics 126 Practice Exam #4 Professor Siegel Name: Lab Day: 1. Light is usually thought of as wave-like in nature and electrons as particle-like. In which one of the following instances does light behave

More information

Example of a Plane Wave LECTURE 22

Example of a Plane Wave LECTURE 22 Example of a Plane Wave http://www.acs.psu.edu/drussell/demos/evanescentwaves/plane-x.gif LECTURE 22 EM wave Intensity I, pressure P, energy density u av from chapter 30 Light: wave or particle? 1 Electromagnetic

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Quantum theory and models of the atom

Quantum theory and models of the atom Guess now. It has been found experimentally that: (a) light behaves as a wave; (b) light behaves as a particle; (c) electrons behave as particles; (d) electrons behave as waves; (e) all of the above are

More information

Chapter 27 Quantum Physics

Chapter 27 Quantum Physics Key Ideas Two Principles of Relativity: The laws of physics are the same for all uniformly moving observers. The speed of light is the same for all observers. Consequences: Different observers measure

More information

Sometimes light acts like a wave Reminder: Schedule changes (see web page)

Sometimes light acts like a wave Reminder: Schedule changes (see web page) Announcements Sometimes light acts like a wave Reminder: Schedule changes (see web page) No class on Thursday 3/18 Exam 2 pushed back to Tues. 3/30 Today: Quantum Mechanics (Ch.13/14) Bright: Constructive

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Quantum Theory of Light

Quantum Theory of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences Quantum Theory of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Definition

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

Chapter 38. Photons Light Waves Behaving as Particles

Chapter 38. Photons Light Waves Behaving as Particles Chapter 38 Photons Light Waves Behaving as Particles 38.1 The Photoelectric Effect The photoelectric effect was first discovered by Hertz in 1887, and was explained by Einstein in 1905. The photoelectric

More information

WAVE PARTICLE DUALITY

WAVE PARTICLE DUALITY WAVE PARTICLE DUALITY Evidence for wave-particle duality Photoelectric effect Compton effect Electron diffraction Interference of matter-waves Consequence: Heisenberg uncertainty principle PHOTOELECTRIC

More information

Light was recognised as a wave phenomenon well before its electromagnetic character became known.

Light was recognised as a wave phenomenon well before its electromagnetic character became known. VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT WAVE or PARTICLE??? Light was recognised as a wave phenomenon well before its electromagnetic character became known. The problem of the nature of light is

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13

Chapter 28: Quantum Physics. Don t Copy This. Quantum Physics 3/16/13 Chapter 28: Quantum Physics Key Terms: Photoelectric effect Photons de Broglie wavelength Energy level diagram Wave-particle duality Don t Copy This Except for relativity, everything we have studied up

More information

The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in

The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in Chapter 6 Electronic Structure of Atoms The Wave Nature of Light Made up of. Waves of fields at right angles to each other. Wavelength = Frequency =, measured in Kinds of EM Waves There are many different

More information

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova Exam 4 P202 Spring 2004 Instructor: Prof. Sinova Name: Date: 4/22/04 Section: All work must be shown to get credit for the answer marked. You must show or state your reasoning. If the answer marked does

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg Quantum Mechanics Physics 102 18 April 2002 Lecture 9 Planck Bohr Schroedinger Heisenberg From: http://www.th.physik.uni-frankfurt.de/~jr/portraits.html 18 Apr 2002 Physics 102 Lecture 9 1 Blackbody radiation

More information

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( ) Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 AnNouncements Reading Assignment for Thursday, Sept 28th: Chapter

More information

Chapter 27 Lecture Notes

Chapter 27 Lecture Notes Chapter 27 Lecture Notes Physics 2424 - Strauss Formulas: λ P T = 2.80 10-3 m K E = nhf = nhc/λ fλ = c hf = K max + W 0 λ = h/p λ - λ = (h/mc)(1 - cosθ) 1/λ = R(1/n 2 f - 1/n 2 i ) Lyman Series n f = 1,

More information

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1) NAME: August 2009--------------------------------------------------------------------------------------------------------------------------------- 11 41.

More information

Modern Physics. Overview

Modern Physics. Overview Modern Physics Overview History ~1850s Classical (Newtonian) mechanics could not explain the new area of investigation atomic physics Macro vs Micro New field of Quantum Mechanics, focused on explaining

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 15: QUANTUM THEORY This lecture will help you understand: The Photoelectric Effect Absorption Spectra Fluorescence Incandescence Lasers Wave-Particle Duality Particles

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

The Photoelectric Effect

The Photoelectric Effect Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Intro to Quantum Physics

Intro to Quantum Physics Physics 256: Lecture Q5 Intro to Quantum Physics Agenda for Today De Broglie Waves Electron Diffraction Wave-Particle Duality Complex Numbers Physics 201: Lecture 1, Pg 1 Are photons Waves or Particles?

More information

Complete nomenclature for electron orbitals

Complete nomenclature for electron orbitals Complete nomenclature for electron orbitals Bohr s model worked but it lacked a satisfactory reason why. De Broglie suggested that all particles have a wave nature. u l=h/p Enter de Broglie again It was

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Chapter 38 Quantum Mechanics

Chapter 38 Quantum Mechanics Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the Double-Slit Experiment 38-3 The Heisenberg Uncertainty Principle

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31)

Today: Finish Color (Ch. 27) Intro to Quantum Theory (Ch.31) Final exam: Dec 20, 11.30am -1.30pm, here, cumulative Chs: 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27, 31 Review Session Tue Dec 13 Today: Finish Color (Ch. 27) Intro to Quantum

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Alan Mortimer PhD. Ideas of Modern Physics

Alan Mortimer PhD. Ideas of Modern Physics Alan Mortimer PhD Ideas of Modern Physics Electromagnetic Waves Last Week Special Relativity General Relativity The Quantum World Index Planck s Law Atomic Structure and emission lines Matter waves Uncertainty

More information

Recitation on the Compton effect Solution

Recitation on the Compton effect Solution Recitation on the Compton effect Solution 1. Show that a photon cannot transfer all of its energy to a free electron. (Hint: Energy and momentum must be conserved.) Answer 1: If all the photon s energy

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering

Title / paragraph example Topic: Quantum Computers. Course Essay. Photoelectric effect summary. From Last Time. Compton scattering Course Essay 500-750 word typed essay due Wed. Apr. 26 First deadline: Fri. this week (Mar. 24) turn in Topic and Paragraph Description Topic ideas: Nobel prize winner: work & importance Big science project:

More information

Chapter 4: The Wave Nature of Matter

Chapter 4: The Wave Nature of Matter Chapter 4: The Wave Nature of Matter q We have seen in Chap. 3 that EM radiation displays both wave properties (classical description) and particle properties (quantum description) q Matter is described

More information

What is the "truth" about light? Is it a wave or is it a particle?

What is the truth about light? Is it a wave or is it a particle? Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Matter as Waves (Ch. 3.6,4.1-4.2) SteveSekula, 4 February 2010 (created 13 December 2009) Review of Last Lecture tags: lecture

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 6: The Periodic Table and Atomic Structure Electromagnetic Radiation Atomic Spectra The Bohr Atom Quantum Mechanical Model of the Atom Wave Mechanics Quantum Numbers and Electron Orbitals Interpreting

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

The Compton Effect and Photon Momentum

The Compton Effect and Photon Momentum Section 5: The Compton Effect and Photon Momentum In this lesson you will Describe the Compton Effect experiment carried out by A.H. Compton Define the term scattering Express an understanding of Compton's

More information

Lecture 11 Atomic Structure

Lecture 11 Atomic Structure Lecture 11 Atomic Structure Earlier in the semester, you read about the discoveries that lead to the proposal of the nuclear atom, an atom of atomic number Z, composed of a positively charged nucleus surrounded

More information

Physics 1C. Modern Physics Lecture

Physics 1C. Modern Physics Lecture Physics 1C Modern Physics Lecture "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

CHM 111 Unit 7 Sample Questions

CHM 111 Unit 7 Sample Questions Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

More information

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova MIDTERM 3 REVIEW SESSION Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 Double-Slit Experiment Photons pass through the double-slit apparatus.

More information

Wave Nature of Matter

Wave Nature of Matter Wave Nature of Matter Wave-Particle Duality de Broglie proposed that particles with momentum could have an associated wavelength (converse of photons having momentum) de Broglie wavelength h λ = p or p

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Energy Level, Definitions The valence band is the highest filled band The conduction band is the next higher empty band The energy gap has

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

LECTURE # 17 Modern Optics Matter Waves

LECTURE # 17 Modern Optics Matter Waves PHYS 270-SPRING 2011 LECTURE # 17 Modern Optics Matter Waves April 5, 2011 1 Spectroscopy: Unlocking the Structure of Atoms There are two types of spectra, continuous spectra and discrete spectra: Hot,

More information

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS CHAPTER 2: POSTULATES OF QUANTUM MECHANICS Basics of Quantum Mechanics - Why Quantum Physics? - Classical mechanics (Newton's mechanics) and Maxwell's equations (electromagnetics theory) can explain MACROSCOPIC

More information

37-6 Watching the electrons (matter waves)

37-6 Watching the electrons (matter waves) 37-6 Watching the electrons (matter waves) 1 testing our proposition: the electrons go either through hole 1 or hole 2 add a very strong light source behind walls between two holes, electrons will scatter

More information

End-of-Chapter Exercises

End-of-Chapter Exercises Wave-particle duality Light is not the only thing that exhibits both a wave nature and a particle nature everything exhibits such wave-particle duality. The wavelength of an object is inversely proportional

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Physics 111 Homework Solutions Week #9 - Friday

Physics 111 Homework Solutions Week #9 - Friday Physics 111 Homework Solutions Week #9 - Friday Tuesday, March 1, 2011 Chapter 24 Questions 246 The Compton shift in wavelength for the proton and the electron are given by Δλ p = h ( 1 cosφ) and Δλ e

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information