Méthodes de Galerkine Discontinues pour l imagerie sismique en domaine fréquentiel

Size: px
Start display at page:

Download "Méthodes de Galerkine Discontinues pour l imagerie sismique en domaine fréquentiel"

Transcription

1 Méthodes de Galerkine Discontinues pour l imagerie sismique en domaine fréquentiel Julien Diaz, Équipe Inria Magique 3D Séminaire de Mathématiques Appliquées, Laboratoire de Mathématiques Nicolas Oresme

2 Introduction Objective : imaging the subsurface Séminaire de Mathématiques Appliquées, Caen 25 avril

3 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information Séminaire de Mathématiques Appliquées, Caen 25 avril

4 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information 2 Determine the constitutive parameters ; dynamic information Séminaire de Mathématiques Appliquées, Caen 25 avril

5 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information 2 Determine the constitutive parameters ; dynamic information Tool: reflection of waves Séminaire de Mathématiques Appliquées, Caen 25 avril

6 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information 2 Determine the constitutive parameters ; dynamic information Tool: reflection of waves Means: numerical solution of wave equations Séminaire de Mathématiques Appliquées, Caen 25 avril

7 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information 2 Determine the constitutive parameters ; dynamic information Tool: reflection of waves Means: numerical solution of wave equations Objective (1) : time-reversibility Séminaire de Mathématiques Appliquées, Caen 25 avril

8 Introduction Objective : imaging the subsurface 1 Find the hidden interfaces ; kinematic information 2 Determine the constitutive parameters ; dynamic information Tool: reflection of waves Means: numerical solution of wave equations Objective (1) : time-reversibility Objective (2) : inverse problem Séminaire de Mathématiques Appliquées, Caen 25 avril

9 Things in common Approximation: the propagation medium is highly heterogeneous Efficiency: any algorithm must be elaborated for High Performance Computing (HPC) Séminaire de Mathématiques Appliquées, Caen 25 avril

10 The numerical method we use Finite element approximation based on discontinuous polynomials Séminaire de Mathématiques Appliquées, Caen 25 avril

11 The numerical method we use Finite element approximation based on discontinuous polynomials Séminaire de Mathématiques Appliquées, Caen 25 avril

12 The numerical method we use Finite element approximation based on discontinuous polynomials RTM requires solving plenty of full-wave equations Séminaire de Mathématiques Appliquées, Caen 25 avril

13 The numerical method we use Finite element approximation based on discontinuous polynomials RTM requires solving plenty of full-wave equations RTM is computationally intensive Séminaire de Mathématiques Appliquées, Caen 25 avril

14 Reverse Time Migration in elastic domains Séminaire de Mathématiques Appliquées, Caen 25 avril

15 Reverse Time Migration Séminaire de Mathématiques Appliquées, Caen 25 avril

16 Reverse Time Migration Let (x i ) 1 i N be a set of given points and (S i ) 1 i N be a set of point sources. Séminaire de Mathématiques Appliquées, Caen 25 avril

17 Reverse Time Migration Let (x i ) 1 i N be a set of given points and (S i ) 1 i N be a set of point sources. Basically, in time-domain:s i (x, t) = δ xi f (t). Séminaire de Mathématiques Appliquées, Caen 25 avril

18 Reverse Time Migration Let (x i ) 1 i N be a set of given points and (S i ) 1 i N be a set of point sources. Basically, in time-domain:s i (x, t) = δ xi f (t). and, in harmonic-domain: Ŝ i (x, t) = δ xi. Séminaire de Mathématiques Appliquées, Caen 25 avril

19 Reverse Time Migration Let (x i ) 1 i N be a set of given points and (S i ) 1 i N be a set of point sources. Basically, in time-domain:s i (x, t) = δ xi f (t). and, in harmonic-domain: Ŝ i (x, t) = δ xi. For each (time-domain) source S i, let g ij (t) be the recorded field at point x j and R i (x, t) = δ j g ij (T t) 1 j N Séminaire de Mathématiques Appliquées, Caen 25 avril

20 Reverse Time Migration Let (x i ) 1 i N be a set of given points and (S i ) 1 i N be a set of point sources. Basically, in time-domain:s i (x, t) = δ xi f (t). and, in harmonic-domain: Ŝ i (x, t) = δ xi. For each (time-domain) source S i, let g ij (t) be the recorded field at point x j and R i (x, t) = δ j g ij (T t) 1 j N For each (harmonic-domain) source Ŝi, let ĝ ij (ω) be the recorded field at point x j and ˆR i (x, ω) = δ xj ĝ ij 1 j N Séminaire de Mathématiques Appliquées, Caen 25 avril

21 Reverse Time Migration in time-domain Solve N forward wave equations: 1 c 2 2 u Si t 2 u Si = S i (x, t), i = 1,..., N, Séminaire de Mathématiques Appliquées, Caen 25 avril

22 Reverse Time Migration in time-domain Solve N forward wave equations: 1 c 2 2 u Si t 2 u Si = S i (x, t), i = 1,..., N, Solve N backward wave equations: 1 c 2 2 u Ri t 2 u Ri = R i (x, t), i = 1,..., N, Séminaire de Mathématiques Appliquées, Caen 25 avril

23 Reverse Time Migration in time-domain Solve N forward wave equations: 1 c 2 2 u Si t 2 u Si = S i (x, t), i = 1,..., N, Solve N backward wave equations: 1 c 2 2 u Ri t 2 u Ri = R i (x, t), i = 1,..., N, Apply the imaging condition: N T I(x) = u Si (x, t) u Ri (x, t)dt. i=1 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

24 Reverse Time Migration in harmonic-domain Solve N forward harmonic wave equations: ω 2 c 2 ûs i + û Si = Ŝ i (x, ω), i = 1,..., N, Séminaire de Mathématiques Appliquées, Caen 25 avril

25 Reverse Time Migration in harmonic-domain Solve N forward harmonic wave equations: ω 2 c 2 ûs i + û Si = Ŝ i (x, ω), i = 1,..., N, Solve N backward harmonic wave equations: ω 2 c 2 ûr i + û Ri = ˆR i (x, ω), i = 1,..., N, Séminaire de Mathématiques Appliquées, Caen 25 avril

26 Reverse Time Migration in harmonic-domain Solve N forward harmonic wave equations: ω 2 c 2 ûs i + û Si = Ŝ i (x, ω), i = 1,..., N, Solve N backward harmonic wave equations: ω 2 c 2 ûr i + û Ri = ˆR i (x, ω), i = 1,..., N, Apply the imaging condition: N + I(x) = u Si (x, ω) u Ri (x, t)dω. i=1 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

27 So what? Is there any interest in working in the frequency domain? Indeed, Séminaire de Mathématiques Appliquées, Caen 25 avril

28 So what? Is there any interest in working in the frequency domain? Indeed, Claerbout imaging condition N T I(x) = u Sj (x, t) u Rj (x, T t) i=1 0 Require to store the wavefields at each point and each time-step: lots of computations and memory overflow. Besides, solve 2N wave equations. Séminaire de Mathématiques Appliquées, Caen 25 avril

29 So what? Is there any interest in working in the frequency domain? Indeed, Claerbout imaging condition N T I(x) = u Sj (x, t) u Rj (x, T t) i=1 0 Require to store the wavefields at each point and each time-step: lots of computations and memory overflow. Besides, solve 2N wave equations. Solve 2N Helmholtz equations? Multiple right-hand sides. Hence, invert the same linear system twice Séminaire de Mathématiques Appliquées, Caen 25 avril

30 So what? Is there any interest in working in the frequency domain? Indeed, Claerbout imaging condition N T I(x) = u Sj (x, t) u Rj (x, T t) i=1 0 Require to store the wavefields at each point and each time-step: lots of computations and memory overflow. Besides, solve 2N wave equations. Solve 2N Helmholtz equations? Multiple right-hand sides. Hence, invert the same linear system twice No free lunch: solving the Helmholtz equation in heterogeneous medium is still a tricky task. Séminaire de Mathématiques Appliquées, Caen 25 avril

31 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Séminaire de Mathématiques Appliquées, Caen 25 avril

32 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Séminaire de Mathématiques Appliquées, Caen 25 avril

33 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Séminaire de Mathématiques Appliquées, Caen 25 avril

34 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Séminaire de Mathématiques Appliquées, Caen 25 avril

35 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Séminaire de Mathématiques Appliquées, Caen 25 avril

36 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Communications between elements thanks to conditions on the faces only ((N 1)D calculi); Séminaire de Mathématiques Appliquées, Caen 25 avril

37 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Communications between elements thanks to conditions on the faces only ((N 1)D calculi); High-order elements to overcome dispersion effects. Séminaire de Mathématiques Appliquées, Caen 25 avril

38 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Communications between elements thanks to conditions on the faces only ((N 1)D calculi); High-order elements to overcome dispersion effects. Flexible choice of interpolation orders (p adaptativity) Séminaire de Mathématiques Appliquées, Caen 25 avril

39 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Communications between elements thanks to conditions on the faces only ((N 1)D calculi); High-order elements to overcome dispersion effects. Flexible choice of interpolation orders (p adaptativity) Increased computational cost as compared to FEM Séminaire de Mathématiques Appliquées, Caen 25 avril

40 Discontinuous Galerkin Methods Quasi-explicit scheme: mass matrix is block-diagonal; Based on tetrahedras (easy to handle); Adapted to strongly varying velocities; Efficient computational methods: Volume calculi are made locally; Communications between elements thanks to conditions on the faces only ((N 1)D calculi); High-order elements to overcome dispersion effects. Flexible choice of interpolation orders (p adaptativity) Increased computational cost as compared to FEM DoF of FEM DoF of DGM Séminaire de Mathématiques Appliquées, Caen 25 avril

41 Outline of the talk Séminaire de Mathématiques Appliquées, Caen 25 avril

42 Outline of the talk Interior Penalty Discontinuous Galerkin (IPDG) method for elasto-acoustic problem Séminaire de Mathématiques Appliquées, Caen 25 avril

43 Outline of the talk Interior Penalty Discontinuous Galerkin (IPDG) method for elasto-acoustic problem Numerical illustrations: Reverse Time-Harmonic Migration Séminaire de Mathématiques Appliquées, Caen 25 avril

44 Outline of the talk Interior Penalty Discontinuous Galerkin (IPDG) method for elasto-acoustic problem Numerical illustrations: Reverse Time-Harmonic Migration Hybridizable Discontinuous Galerkin (HDG) method for elastodynamic Séminaire de Mathématiques Appliquées, Caen 25 avril

45 Outline of the talk Interior Penalty Discontinuous Galerkin (IPDG) method for elasto-acoustic problem Numerical illustrations: Reverse Time-Harmonic Migration Hybridizable Discontinuous Galerkin (HDG) method for elastodynamic Performance comparison between IPDG and HDG Séminaire de Mathématiques Appliquées, Caen 25 avril

46 Outline of the talk Interior Penalty Discontinuous Galerkin (IPDG) method for elasto-acoustic problem Numerical illustrations: Reverse Time-Harmonic Migration Hybridizable Discontinuous Galerkin (HDG) method for elastodynamic Performance comparison between IPDG and HDG Concluding remarks Séminaire de Mathématiques Appliquées, Caen 25 avril

47 The direct elasto-acoustic scattering problem Continuous formulation Séminaire de Mathématiques Appliquées, Caen 25 avril

48 The direct elasto-acoustic scattering problem Continuous formulation σ(u) + ω 2 ρ s u = 0 in Ω s p + k 2 p = 0 in Ω f (k = ω/c f ) Séminaire de Mathématiques Appliquées, Caen 25 avril

49 The direct elasto-acoustic scattering problem Continuous formulation σ(u) + ω 2 ρ s u = 0 in Ω s p + k 2 p = 0 in Ω f (k = ω/c f ) ω 2 ρ f u n = p n + pinc n on Γ σ(u)n = pn p inc n on Γ Séminaire de Mathématiques Appliquées, Caen 25 avril

50 The direct elasto-acoustic scattering problem Continuous formulation σ(u) + ω 2 ρ s u = 0 in Ω s p + k 2 p = 0 in Ω f (k = ω/c f ) ω 2 ρ f u n = p n + pinc n on Γ σ(u)n = pn p inc n on Γ ( ) p lim r r + r ikp = 0 (r = x 2 ) Séminaire de Mathématiques Appliquées, Caen 25 avril

51 A finite element solver Main features Séminaire de Mathématiques Appliquées, Caen 25 avril

52 A finite element solver Main features 1. A BVP reduced to Ω f b Ω s via an absorbing boundary condition on an artificial boundary Σ; Séminaire de Mathématiques Appliquées, Caen 25 avril

53 A finite element solver Main features 1. A BVP reduced to Ω f b Ω s via an absorbing boundary condition on an artificial boundary Σ; 2. A Discontinuous Galerkin method with interior penalty; Séminaire de Mathématiques Appliquées, Caen 25 avril

54 A finite element solver Main features 1. A BVP reduced to Ω f b Ω s via an absorbing boundary condition on an artificial boundary Σ; 2. A Discontinuous Galerkin method with interior penalty; 3. Curved elements on the boundaries Γ et Σ. Séminaire de Mathématiques Appliquées, Caen 25 avril

55 The reduced direct fluid-solid problem An absorbing boundary condition σ(u) + ω 2 ρ s u = 0 in Ω s p + ω2 cf 2 p = 0 in Ω f b ω 2 ρ f u n = p n + pinc n on Γ σ(u)n = pn p inc n on Γ p + Λ(p) = 0 on Σ. n Séminaire de Mathématiques Appliquées, Caen 25 avril

56 The reduced direct fluid-solid problem An absorbing boundary condition σ(u) + ω 2 ρ s u = 0 in Ω s p + ω2 cf 2 p = 0 in Ω f b ω 2 ρ f u n = p n + pinc n on Γ σ(u)n = pn p inc n on Γ First-order boundary condition: p ikp = 0 on Σ. n. Séminaire de Mathématiques Appliquées, Caen 25 avril

57 The Interior Penalty Discontinuous Galerkin Method (IPDG method) Notations f h and s h: mesh of Ω f b and Ω s of dim. N s h and N f h; F f h,σ and F f,s h,γ: sets of faces on Σ and Γ; F f h,int, F s h,int: sets of internal faces; [q] := q + q and {q} := q+ + q. 2 Séminaire de Mathématiques Appliquées, Caen 25 avril

58 The IPDG method Approximation spaces Vh f := {q L 2 (Ω f b) : q P m (), h}; f Vh s := {v (L 2 (Ω s )) 2 : v (P m ()) 2, h}; s (ϕ k ) k=1,,n : Lagrange functions of degree m in P m (); p h = N f h n j=1 k=1 p j h,kϕ j k = Nf i=1 p h,i ϕ i V f h ; Séminaire de Mathématiques Appliquées, Caen 25 avril

59 The IPDG method Weak continuity constraints through each interior element [p] = 0 and [u] = 0; [ 1 ρ f p n] = 0 and [σ(u)n] = 0. Séminaire de Mathématiques Appliquées, Caen 25 avril

60 The IPDG method IPDG matricial formulation Af B t B A s P U = F 1 F 2. where P and U are the unknown vectors: P = (p h,i ) t 1 i N f and U = (U x, U y ) t = (u h,i ) t 1 i N s. Séminaire de Mathématiques Appliquées, Caen 25 avril

61 The IPDG method A f = + + h f IPDG matricial formulation 1 ω 2 F Fh,int f F Fh,int f F F f h,σ ( 1 ω 2 F 1 ω 2 F 1 ω 2 F 1 ϕ i ϕ j dx 1 k 2 ρ f ρ f ϕ i ϕ j dx) ({ 1 ϕ i }n[ϕ j ] + { 1 ϕ j }n[ϕ i ]) ds ρ f ρ f α f c f max h F [ϕ i ][ϕ j ] ds 1 Λ(ϕ i )ϕ j ds ρ f 1 i,j N f 1 i,j N f 1 i,j N f 1 i,j N f Séminaire de Mathématiques Appliquées, Caen 25 avril

62 The IPDG method A f = + + IPDG matricial formulation ( 1 ω 2 h f 1 ω 2 F Fh,int f F F Fh,int f F F f h,σ 1 ω 2 F 1 ω 2 F 1 ϕ i ϕ j dx 1 k 2 ρ f ρ f ϕ i ϕ j dx) ({ 1 ϕ i }n[ϕ j ] + { 1 ϕ j }n[ϕ i ]) ds ρ f ρ f α f c f max h F [ϕ i ][ϕ j ] ds 1 Λ(ϕ i )ϕ j ds ρ f 1 i,j N f 1 i,j N f 1 i,j N f 1 i,j N f Séminaire de Mathématiques Appliquées, Caen 25 avril

63 The IPDG method A f = + + IPDG matricial formulation ( 1 ω 2 h f 1 ω 2 F Fh,int f F F Fh,int f F F f h,σ 1 ω 2 F 1 ω 2 F 1 ϕ i ϕ j dx 1 k 2 ρ f ρ f ϕ i ϕ j dx) ({ 1 ϕ i }n[ϕ j ] + { 1 ϕ j }n[ϕ i ]) ds ρ f ρ f α f c f max h F [ϕ i ][ϕ j ] ds 1 Λ(ϕ i )ϕ j ds ρ f 1 i,j N f 1 i,j N f 1 i,j N f 1 i,j N f Séminaire de Mathématiques Appliquées, Caen 25 avril

64 The IPDG method IPDG matricial formulation A s = + ( h s F Fh,int s F F Fh,int s F σ(ψ i ) : ψ j dx ω 2 ρ s ψ i ψ j dx ) ({σ(ψ i )}n[ψ j ] + {σ(ψ j )}n[ψ i ]) ds α f c s max h F [ψ i ][ψ j ] ds 1 i,j N s 1 i,j N s 1 i,j N s Séminaire de Mathématiques Appliquées, Caen 25 avril

65 The IPDG method IPDG matricial formulation B = F 1 = F 2 = F F f,s h,γ F F f,s h,γ F F F f,s h,γ ψ i nϕ j ds 1 ω 2 F F 1 i N s,1 j N f 1 g nϕ j ds ρ f gnψ j ds 1 i,j Ns. 1 i,j Nf, Séminaire de Mathématiques Appliquées, Caen 25 avril

66 The IPDG method IPDG matricial formulation Af B t B A s P U = F 1 F 2. Séminaire de Mathématiques Appliquées, Caen 25 avril

67 The IPDG method IPDG matricial formulation Af B t B A s P U = F 1 F 2. Solver MUMPS. Séminaire de Mathématiques Appliquées, Caen 25 avril

68 Curved elements on the boundaries Idea Modelling of the curved boundaries. (a) P 3 straight elements (b) P 3 curved elements Séminaire de Mathématiques Appliquées, Caen 25 avril

69 A circular elastic inclusion problem with analytical solution Configuration Physical parameters: c f = 1500 m/s, ρ f = 1000 kg/m 3, c p = 6198 m/s, c s = 3122 m/s, ρ s = 2700 kg/m 3. p inc = e ikx d with d = (1, 0). Séminaire de Mathématiques Appliquées, Caen 25 avril

70 A circular elastic inclusion problem with analytical solution Configuration 1 Physical parameters: c f = 1500 m/s, ρ f = 1000 kg/m 3, c p = 6198 m/s, c s = 3122 m/s, ρ s = 2700 kg/m 3. p inc = e ikx d with d = (1, 0). 1 T. Huttunen, J. aipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction, J. Comput. Appl. Math., 213, pp , Séminaire de Mathématiques Appliquées, Caen 25 avril

71 A circular elastic inclusion problem with analytical solution Configuration 2 Physical parameters: c f = 1500 m/s, ρ f = 1000 kg/m 3, c p = 6198 m/s, c s = 3122 m/s, ρ s = 2700 kg/m 3. p inc = e ikx d with d = (1, 0). 2 H. Barucq, E. Éstécahandy and R. Djellouli, Efficient DG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems, IJNME, 98, pp , Séminaire de Mathématiques Appliquées, Caen 25 avril

72 A circular elastic inclusion problem Fourier series of the analytical solution p(r, θ) = + n=0 [ An H (1) n (kr) + B n H n (2) u(r, θ) = φ + ( e z ) ψ where (kr) ] cos(nθ) φ(r, θ) = + C n J n (k p r) cos(nθ), n=0 ψ(r, θ) = + D n J n (k s r) sin(nθ). n=0 Séminaire de Mathématiques Appliquées, Caen 25 avril

73 A circular elastic inclusion problem Fourier series of the analytical solution p(r, θ) = + n=0 [ An H (1) n (kr) + B n H n (2) u(r, θ) = φ + ( e z ) ψ where (kr) ] cos(nθ) φ(r, θ) = + C n J n (k p r) cos(nθ), n=0 ψ(r, θ) = + D n J n (k s r) sin(nθ). n=0 Séminaire de Mathématiques Appliquées, Caen 25 avril

74 A circular elastic inclusion problem Fourier series of the analytical solution X n = (A n, B n, C n, D n ) t solution of a system arising from the boundary conditions: E n X n = b n. Séminaire de Mathématiques Appliquées, Caen 25 avril

75 A circular elastic inclusion problem Fourier series of the analytical solution X n = (A n, B n, C n, D n ) t solution of a system arising from the boundary conditions: Issue: E n X n = b n. Location of the Jones resonance frequencies? Séminaire de Mathématiques Appliquées, Caen 25 avril

76 A circular elastic inclusion problem Fourier series of the analytical solution X n = (A n, B n, C n, D n ) t solution of a system arising from the boundary conditions: Issue: E n X n = b n. Location of the Jones resonance frequencies? Idea: Study of the invertibility of the matrix E n for each mode n. Séminaire de Mathématiques Appliquées, Caen 25 avril

77 A circular elastic inclusion problem On the identification of the Jones frequencies Mesh 1: 8 points per wavelength relatively to ka 10, composed of 6442 elements. Figure : Circular elastic inclusion problem - Mesh 1. Séminaire de Mathématiques Appliquées, Caen 25 avril

78 A circular elastic inclusion problem On the identification of the Jones frequencies Figure : Relative error as a function of ka on the range [4, 21] with P 3 straight finite elements. Séminaire de Mathématiques Appliquées, Caen 25 avril

79 A circular elastic inclusion problem On the identification of the Jones frequencies Figure : Relative error as a function of ka on the range [4, 21] with P 3 straight finite elements. Maximal error at ka = : f R = 221 khz. Séminaire de Mathématiques Appliquées, Caen 25 avril

80 A circular elastic inclusion problem On the identification of the Jones frequencies Figure : Normalized determinant dete n as a function of ka for the third mode number n = 2. Séminaire de Mathématiques Appliquées, Caen 25 avril

81 A circular elastic inclusion problem On the identification of the Jones frequencies Séminaire de Mathématiques Appliquées, Caen 25 avril

82 A circular elastic inclusion problem On the identification of the Jones frequencies Conclusion: The peaks in the error coincide with the Jones frequencies. Séminaire de Mathématiques Appliquées, Caen 25 avril

83 A circular elastic inclusion problem Objective A study of the IPDG method combined with curved finite elements on three frequencies: The resonance: f R = 221 khz; Two closed values: f 1 = 219 khz and f 2 = 223 khz. Séminaire de Mathématiques Appliquées, Caen 25 avril

84 A circular elastic inclusion problem IPDG method combined with curved finite elements Mesh 2: 645 elements. Figure : Circular elastic inclusion problem - Mesh 2. Séminaire de Mathématiques Appliquées, Caen 25 avril

85 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

86 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

87 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

88 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

89 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

90 A circular elastic inclusion problem Curved finite elements on Mesh 2 f (khz) p u x u y P P E E-002 P E Table : Relative error (%) for P 1 to P 3 approximations with curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

91 A circular elastic inclusion problem Curved finite elements on Mesh 2 (a) Approximate solution (b) Exact solution Figure : Pressure modulus and displacement amplitude fields for the frequency f 1 = 219kHz with P 3 finite elements and curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

92 A circular elastic inclusion problem Curved finite elements on Mesh 2 Figure : Absolute error between both solutions - f 1 = 219kHz. Séminaire de Mathématiques Appliquées, Caen 25 avril

93 A circular elastic inclusion problem Curved finite elements on Mesh 2 (a) Approximate solution (b) Exact solution Figure : Pressure modulus and displacement amplitude fields for the frequency f 2 = 223kHz with P 3 finite elements and curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

94 A circular elastic inclusion problem Curved finite elements on Mesh 2 Figure : Absolute error between both solutions - f 2 = 223kHz. Séminaire de Mathématiques Appliquées, Caen 25 avril

95 A circular elastic inclusion problem Curved finite elements on Mesh 2 (a) Approximate solution (b) Exact solution Figure : Pressure modulus and displacement amplitude fields for the frequency f R = 221kHz with P 3 finite elements and curved elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

96 A circular elastic inclusion problem Curved finite elements on Mesh 2 Figure : Absolute error between both solutions - f R = 221kHz. Séminaire de Mathématiques Appliquées, Caen 25 avril

97 A circular elastic inclusion problem Remark on the Jones frequency (a) Displacement error (b) Fourier mode n = 2 Figure : Comparison between the error in displacement and the third Fourier mode for the resonance frequency f R = 221kHz. Séminaire de Mathématiques Appliquées, Caen 25 avril

98 A circular elastic inclusion problem Curved finite elements on Mesh 2 Figure : Relative error as a function of ka on the range [4, 21] with P 3 finite elements combined with curved finite elements on the boundaries. Séminaire de Mathématiques Appliquées, Caen 25 avril

99 A circular elastic inclusion problem Curved finite elements on Mesh 2 Straight finite elements on Mesh 1 Séminaire de Mathématiques Appliquées, Caen 25 avril

100 A circular elastic inclusion problem IPDG method combined with curved finite elements Conclusion: Accuracy; Robustness in the Jones frequency regions; No additional numerical resonance; A large range of frequencies covered by a single coarse mesh. Séminaire de Mathématiques Appliquées, Caen 25 avril

101 IPDG method combined with curved finite elements Convergence study Figure : Convergence of the relative error as a function of kh in the resonance region with P 3 finite elements combined with curved finite elements on the boundaries for ka = (f 1 = 219 khz). Séminaire de Mathématiques Appliquées, Caen 25 avril

102 IPDG method combined with curved finite elements Convergence study Figure : Convergence of the relative error as a function of kh in the resonance region with P 3 finite elements combined with curved finite elements on the boundaries for ka = (f 2 = 223 khz). Séminaire de Mathématiques Appliquées, Caen 25 avril

103 IPDG method combined with curved finite elements Convergence study Figure : Convergence of the relative error as a function of kh in the resonance region with P 3 finite elements combined with curved finite elements on the boundaries for ka = (f R = 221 khz). Séminaire de Mathématiques Appliquées, Caen 25 avril

104 IPDG method combined with curved finite elements Convergence study Conclusion: Order 4. Séminaire de Mathématiques Appliquées, Caen 25 avril

105 IPDG method combined with curved finite elements Convergence study Conclusion: Order 4. Comparison with straight finite elements: Non-resonant cases: order 2; Jones frequency case: order 3/2. Séminaire de Mathématiques Appliquées, Caen 25 avril

106 IPDG method combined with curved finite elements Stability study in the low and mid-frequency regimes Figure : Relative error as a function of ka on range [5, 200] with P 3 finite elements combined with curved finite elements on the boundaries (Mesh 1 refined twice). Séminaire de Mathématiques Appliquées, Caen 25 avril

107 IPDG method combined with curved finite elements Stability study in the high-frequency regime ka p u x u y E E E E E E E E E E Table : Relative error (%) in the high-frequency regime with P 3 finite elements combined with curved finite elements on the boundaries (Mesh 1 refined three times). Séminaire de Mathématiques Appliquées, Caen 25 avril

108 IPDG method combined with curved finite elements Stability study in the high-frequency regime ka p u x u y E E E E E E E E E E Table : Relative error (%) in the high-frequency regime with P 3 finite elements combined with curved finite elements on the boundaries (Mesh 1 refined three times). Séminaire de Mathématiques Appliquées, Caen 25 avril

109 IPDG method combined with curved finite elements Stability study Conclusion: Stability in the mid and high-frequency regimes. Séminaire de Mathématiques Appliquées, Caen 25 avril

110 Numerical applications : Reverse Time-Harmonic Migration Two cases: The object contains corner The object has a curved interface Séminaire de Mathématiques Appliquées, Caen 25 avril

111 Object with corners Ω 2 Ω 1 Séminaire de Mathématiques Appliquées, Caen 25 avril

112 Object with corners Ω 1 : fluid medium with c = 1500 m/s Ω 2 : solid medium with V p = 6200 m/s and V s = 4300 m/s We use 100 sources placed on an ellipse with major axis of 2 km and minor axis of 1 km. The data are obtained using PML. The forward and backward problems are coupled with ABC on an elliptic artificial boundary of major axis of 2.2 km and minor axis of 2.1 km. Ω 2 Ω 1 Séminaire de Mathématiques Appliquées, Caen 25 avril

113 Object with corners RTM image for f = 10 Hz Séminaire de Mathématiques Appliquées, Caen 25 avril

114 Object with corners RTM image for f = 20 Hz Séminaire de Mathématiques Appliquées, Caen 25 avril

115 Object with corners RTM image for f = 40 Hz Séminaire de Mathématiques Appliquées, Caen 25 avril

116 Object with curved interfaces Ω 1 Ω 2 Séminaire de Mathématiques Appliquées, Caen 25 avril

117 Object with curved interfaces Ω 1 : fluid medium with c = 1500 m/s Ω 2 : solid medium with V p = 6200 m/s and V s = 4300 m/s We use 100 sources placed on an ellipse with major axis of 2 km and minor axis of 1 km. The data are obtained using PML. The forward and backward problems are coupled with either PML or ABC on an elliptic artificial boundary of major axis of 2.2 km and minor axis of 2.1 km. Ω 2 Ω 1 Séminaire de Mathématiques Appliquées, Caen 25 avril

118 Object with curved interfaces RTM image for f = 10 Hz Séminaire de Mathématiques Appliquées, Caen 25 avril

119 Conclusion IPDG method combined with curved finite elements Accuracy and robustness; Optimal convergence order recovered even in the Jones frequency case; Well-suited to address the pollution effects. Séminaire de Mathématiques Appliquées, Caen 25 avril

120 Conclusion for preliminary computations RTHM is efficient to recover hidden objects. And what about limited aperture? ABCs can be used to reduce the size of the linear system. But because of the difficulty of solving huge linear systems, RTHM should be kept for 2D seismic imaging. What do we intend to investigate now? The influence of ABCs is unclear: more numerical experiments are needed In particular, is it relevant to enrich the modelling related to the exterior boundary? Séminaire de Mathématiques Appliquées, Caen 25 avril

121 How can we improve the efficiency? Hybridizable Discontinuous Galerkin Methods same advantages as DG methods: unstructured triangular meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions introduction of a new variable defined only on the interfaces lower number of coupled DOF than classical DG methods Séminaire de Mathématiques Appliquées, Caen 25 avril

122 How can we improve the efficiency? Hybridizable Discontinuous Galerkin Methods same advantages as DG methods: unstructured triangular meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions introduction of a new variable defined only on the interfaces lower number of coupled DOF than classical DG methods Séminaire de Mathématiques Appliquées, Caen 25 avril

123 How can we improve the efficiency? Hybridizable Discontinuous Galerkin Methods same advantages as DG methods: unstructured triangular meshes, hp-adaptivity, easily parallelizable method, discontinuous basis functions introduction of a new variable defined only on the interfaces lower number of coupled DOF than classical DG methods time-domain, implicit scheme Séminaire de Mathématiques Appliquées, Caen 25 avril

124 Hybridizable Discontinuous Galerkin method B. Cockburn, J. Gopalakrishnan and R. Lazarov. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, Vol. 47: , S. Lanteri, L. Li and R. Perrussel. Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell s equations. COMPEL, 32(3) , N.C. Nguyen, J. Peraire and B. Cockburn. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics, 230: , 2011 N.C. Nguyen and B. Cockburn. Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. Journal of Computational Physics 231: , 2012 Séminaire de Mathématiques Appliquées, Caen 25 avril

125 HDG formulation of the equations Local HDG formulation { iωρv σ = 0 iωσ Cε (v) = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

126 HDG formulation of the equations Local HDG formulation iωρ v w + iωσ : ξ + v σ : w ( C ξ ) σ n w = 0 v C ξ n = 0 σ and v are numerical traces of σ and v respectively on Séminaire de Mathématiques Appliquées, Caen 25 avril

127 HDG formulation of the equations We define: v = λ F, F F h, Séminaire de Mathématiques Appliquées, Caen 25 avril

128 HDG formulation of the equations We define: v = λ F, ( F F h, σ ) n = σ n τi v λ F, on where τ is the stabilization parameter (τ > 0) Séminaire de Mathématiques Appliquées, Caen 25 avril

129 HDG formulation of the equations Local HDG formulation ( ) We replace v and σ n by their definitions into the local equations iωρ v w + σ : w σ n w ( + τi v λ F w = 0 ( iωσ : ξ + v C ξ ) λ F C ξ n = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

130 HDG formulation of the equations Local HDG formulation iωρ v w iωσ : ξ + v ( σ ) w + ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

131 HDG formulation of the equations Local HDG formulation iωρ v w iωσ : ξ + v ( σ ) w + ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 We define: W = (V ) x, V y, V z, σ xx, σ yy, σ zz, σ xy, σ T xz, σ yz Λ = ( ) T Λ F1, Λ F2,..., Λ Fn f, where nf = card(f h ) Discretization of the local HDG formulation A W + C,F Λ = 0 F Séminaire de Mathématiques Appliquées, Caen 25 avril

132 HDG formulation of the equations Local HDG formulation iωρ v w iωσ : ξ + v ( σ ) w + ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 We define: W = (V ) x, V y, V z, σ xx, σ yy, σ zz, σ xy, σ T xz, σ yz Λ = ( ) T Λ F1, Λ F2,..., Λ Fn f, where nf = card(f h ) Discretization of the local HDG formulation A W + C Λ = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

133 HDG formulation of the equations Transmission condition In order to determine λ F, the continuity of the normal component of σ is weakly enforced, rendering this numerical trace conservative : [[ σ n]] η = 0 F Séminaire de Mathématiques Appliquées, Caen 25 avril

134 HDG formulation of the equations Transmission condition In order to determine λ F, the continuity of the normal component of σ is weakly enforced, rendering this numerical trace conservative : [[ σ n]] η = 0 T h F ( ) Replacing σ n and summing over all faces, the transmission condition becomes : ( ) σ n η ( ) τi v λ F η = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

135 HDG formulation of the equations Transmission condition In order to determine λ F, the continuity of the normal component of σ is weakly enforced, rendering this numerical trace conservative : [[ σ n]] η = 0 T h F ( ) Replacing σ n and summing over all faces, the transmission condition becomes : ( ) σ n η ( ) τi v λ F η = 0 T h Discretization of the transmission condition [ B W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

136 HDG formulation of the equations Global HDG formulation iωρ v w iωσ : ξ + T h ( σ ) w + v ( σ n ) η T h ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 τi ( v λ F ) η = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

137 HDG formulation of the equations Global HDG formulation iωρ v w iωσ : ξ + T h ( σ ) w + v ( σ n ) η T h ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 τi ( v λ F ) η = 0 Global HDG discretization A W + C Λ = 0 [ B W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

138 HDG formulation of the equations Global HDG formulation iωρ v w iωσ : ξ + T h ( σ ) w + v ( σ n ) η T h ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 τi ( v λ F ) η = 0 Global HDG discretization W = (A ) 1 C Λ [ B W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

139 HDG formulation of the equations Global HDG formulation iωρ v w iωσ : ξ + T h ( σ ) w + v ( σ n ) η T h ( ) C ξ τi ( v λ F ) w = 0 λ F C ξ n = 0 τi ( v λ F ) η = 0 Global HDG discretization [ B (A ) 1 C + L ] Λ = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

140 Symmetric HDG formulation Local HDG formulation { iωρv σ = 0 iωσ Cε (v) = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

141 Symmetric HDG formulation Local HDG formulation { iωρv σ = 0 iωσ Cε (v) = 0 C invertible and symmetric tensor, i.e for a symmetric σ : with D = C 1 and u = iωv σ = Cε (u) and ε (u) = Dσ Séminaire de Mathématiques Appliquées, Caen 25 avril

142 Symmetric HDG formulation Local HDG formulation iωρ v w + iωσ : ξ + v σ : w ( C ξ ) σ n w = 0 v C ξ n = 0 σ and v are numerical traces of σ and v respectively on Séminaire de Mathématiques Appliquées, Caen 25 avril

143 Symmetric HDG formulation Local HDG formulation iωρ v w + iωσ : ξ + v σ : w ( C ξ ) σ n w = 0 v C ξ n = 0 σ and v are numerical traces of σ and v respectively on ξ = D ξ Séminaire de Mathématiques Appliquées, Caen 25 avril

144 Symmetric HDG formulation Local HDG formulation iωρ v w + σ : w σ n w = 0 iωσ : D ξ v (C D ξ ) + v C D ξ n = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

145 Symmetric HDG formulation Local HDG formulation iωρ v w + iωd σ : ξ σ : w v ξ + σ n w = 0 v ξ n = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

146 Symmetric HDG formulation Local HDG formulation iωρ v w + iωd σ : ξ σ : w v ξ + σ n w = 0 v ξ n = 0 v = λ F, ( F F h, σ ) n = σ n τi v λ F, on Séminaire de Mathématiques Appliquées, Caen 25 avril

147 Symmetric HDG formulation Local HDG formulation iωρ v w iωd σ : ξ ( σ ) w + v ξ + τi ( v λ F ) w = 0 λ F ξ n = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

148 Symmetric HDG formulation Local HDG formulation iωρ v w iωd σ : ξ ( σ ) w + v ξ + τi ( v λ F ) w = 0 λ F ξ n = 0 Discretization of the local HDG formulation A 2 W + C,F 2 Λ = 0 F Séminaire de Mathématiques Appliquées, Caen 25 avril

149 Symmetric HDG formulation Local HDG formulation iωρ v w iωd σ : ξ ( σ ) w + v ξ + τi ( v λ F ) w = 0 λ F ξ n = 0 Discretization of the local HDG formulation A 2 W + C 2 Λ = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

150 Symmetric HDG formulation Local HDG formulation iωρ v w iωd σ : ξ ( σ ) w + v ξ + τi ( v λ F ) w = 0 λ F ξ n = 0 Discretization of the local HDG formulation A 2 W + C 2 Λ = 0 A 2 symmetric matrix Séminaire de Mathématiques Appliquées, Caen 25 avril

151 Symmetric HDG formulation Transmission condition [[ σ n]] η = 0 F Séminaire de Mathématiques Appliquées, Caen 25 avril

152 Symmetric HDG formulation Transmission condition [[ σ n]] η = 0 F T h ( ) σ n η T h ( ) τi v λ F η = 0 Séminaire de Mathématiques Appliquées, Caen 25 avril

153 Symmetric HDG formulation Transmission condition [[ σ n]] η = 0 F T h ( ) σ n η T h ( ) τi v λ F η = 0 Discretization of the transmission condition [ B W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

154 Symmetric HDG formulation Transmission condition [[ σ n]] η = 0 F T h ( ) σ n η T h ( ) τi v λ F η = 0 Discretization of the transmission condition [ B W + L Λ ] = 0 T h B = (C 2 ) T Séminaire de Mathématiques Appliquées, Caen 25 avril

155 Symmetric HDG formulation Transmission condition [[ σ n]] η = 0 F T h ( ) σ n η T h ( ) τi v λ F η = 0 Discretization of the transmission condition [ (C2 ) T W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

156 Symmetric HDG formulation of the equations Global HDG formulation ( iωρ v w ) σ w + τi ( v λ ) F w = 0 iωd σ : ξ v ξ + λ F ξ n = 0 ( σ n ) η τi ( v λ ) F η = 0 T h T h Séminaire de Mathématiques Appliquées, Caen 25 avril

157 Symmetric HDG formulation of the equations Global HDG formulation ( iωρ v w ) σ w + τi ( v λ ) F w = 0 iωd σ : ξ v ξ + λ F ξ n = 0 ( σ n ) η τi ( v λ ) F η = 0 T h T h Global HDG discretization A 2 W + C 2 Λ = 0 [ (C2 ) T W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

158 Symmetric HDG formulation of the equations Global HDG formulation ( iωρ v w ) σ w + τi ( v λ ) F w = 0 iωd σ : ξ v ξ + λ F ξ n = 0 ( σ n ) η τi ( v λ ) F η = 0 T h T h Global HDG discretization W = (A 2 ) 1 C 2 Λ [ (C2 ) T W + L Λ ] = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

159 Symmetric HDG formulation of the equations Global HDG formulation ( iωρ v w ) σ w + τi ( v λ ) F w = 0 iωd σ : ξ v ξ + λ F ξ n = 0 ( σ n ) η τi ( v λ ) F η = 0 T h T h Global HDG discretization [ (C2 ) T (A 2 ) 1 C 2 + L ] Λ = 0 T h Séminaire de Mathématiques Appliquées, Caen 25 avril

160 Symmetric HDG formulation of the equations Global HDG formulation ( iωρ v w ) σ w + τi ( v λ ) F w = 0 iωd σ : ξ v ξ + λ F ξ n = 0 ( σ n ) η τi ( v λ ) F η = 0 T h T h Global HDG discretization [ (C2 ) T (A 2 ) 1 C 2 + L ] Λ = 0 T h Symmetric linear system Séminaire de Mathématiques Appliquées, Caen 25 avril

161 Main steps of the HDG algorithm 1. Construction of the global matrix M with M = [ B ] (A ) 1 C + L T h for = 1 to Nb tri do Computation of matrices B, (A ) 1, C and L Construction of the corresponding section of M end for Séminaire de Mathématiques Appliquées, Caen 25 avril

162 Main steps of the HDG algorithm 1. Construction of the global matrix M with M = [ (C ] 2 ) T (A 2 ) 1 C 2 + L T h for = 1 to Nb tri do Computation of matrices (A 2 ) 1, C 2 and L Construction of the corresponding section of M (use of the symetry of the system, only the upper or lower corresponding section) end for Séminaire de Mathématiques Appliquées, Caen 25 avril

163 Main steps of the HDG algorithm 1. Construction of the global matrix M 2. Construction of the right hand side S Séminaire de Mathématiques Appliquées, Caen 25 avril

164 Main steps of the HDG algorithm 1. Construction of the global matrix M 2. Construction of the right hand side S 3. Resolution MΛ = S, with a direct solver (MUMPS) Séminaire de Mathématiques Appliquées, Caen 25 avril

165 Main steps of the HDG algorithm 1. Construction of the global matrix M 2. Construction of the right hand side S 3. Resolution MΛ = S, with a direct solver (MUMPS) 4. Computation of the solutions of the initial problem Séminaire de Mathématiques Appliquées, Caen 25 avril

166 Main steps of the HDG algorithm 1. Construction of the global matrix M 2. Construction of the right hand side S 3. Resolution MΛ = S, with a direct solver (MUMPS) 4. Computation of the solutions of the initial problem for = 1 to Nb tri do Compute W = (A ) 1 C Λ end for Séminaire de Mathématiques Appliquées, Caen 25 avril

167 Main steps of the HDG algorithm 1. Construction of the global matrix M 2. Construction of the right hand side S 3. Resolution MΛ = S, with a direct solver (MUMPS) 4. Computation of the solutions of the initial problem for = 1 to Nb tri do Compute W = (A 2 ) 1 C 2 Λ end for Séminaire de Mathématiques Appliquées, Caen 25 avril

168 Plane wave m Physical parameters : ρ = 2000kg.m 3 λ = 16GPa µ = 8GPa Plane wave: i(k cos θx+k sin θy) u = e m Computational domain Ω setting where k = ω v p θ = 0, v p = 4000 m.s 1, ω = 4π Three meshes: 3000 elements elements elements Séminaire de Mathématiques Appliquées, Caen 25 avril

169 Plane wave Exact solution Séminaire de Mathématiques Appliquées, Caen 25 avril

170 Plane wave HDG-P 2 solution, computed on the coarsest mesh Séminaire de Mathématiques Appliquées, Caen 25 avril

171 Plane wave: Convergence order W a W e P 1 P 2 P 3 P h max Séminaire de Mathématiques Appliquées, Caen 25 avril

172 Plane wave: Memory consumption 5 Finest mesh (45000 elements) 4 Memory (GB) HDGm 1 HDGm 2 P 1 P 2 P 3 P 4 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

173 Plane wave: Memory consumption Finest mesh (45000 elements) Memory (GB) HDGm 1 HDGm 2 UDGm IPDGm P 1 P 2 P 3 P 4 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

174 Plane wave: CPU time 200 Finest mesh (45000 elements) CPU time (s) HDGm const. 1 HDGm res. 1 HDGm const. 2 HDGm res. 2 0 P 2 P 3 P 4 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

175 Disk shaped scatterer Computational domain Ω setting a = 2000 m and b = 8000 m Physical parameters in Ω: ρ = 1 kg.m 3 λ = 8 GPa µ = 4 GPa Γ a free surface boundary: σn = 0 Γ b absorbing boundary: σn = v p (v n)n + v s (v t)t Three meshes: 1200 elements 5400 elements elements Séminaire de Mathématiques Appliquées, Caen 25 avril

176 Disk shaped scatterer: Memory consumption Finest mesh (21000 elements) 2 Memory (GB) HDGm 1 HDGm P 2 P 3 P 4 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

177 Anisotropic test case Three meshes: 600 elements 3000 elements elements Séminaire de Mathématiques Appliquées, Caen 25 avril

178 Anisotropic test case Three meshes: 600 elements 3000 elements elements Symmetric HDG formulation does not work with acoustic media Séminaire de Mathématiques Appliquées, Caen 25 avril

179 Anisotropic test case: Comparison between anisotropic HDG-P 3 formulations 1 and 2 and IPDG-P 3 performances. # elements Memory (MB) HDG 1 HDG 2 IPDG Séminaire de Mathématiques Appliquées, Caen 25 avril

180 Anisotropic test case: Comparison between anisotropic HDG-P 3 formulations 1 and 2 and IPDG-P 3 performances. # elements Const. time (s) Res. time (s) HDG 1 HDG 2 IPDG HDG 1 HDG 2 IPDG Séminaire de Mathématiques Appliquées, Caen 25 avril

181 3D plane wave in an homogeneous medium m 1000 m Configuration of the computational domain Ω. Physical parameters : ρ = 2000kg.m 3 λ = 16GPa µ = 8GPa Plane wave: i(k cos θx+k sin θy) u = e where k = ω v p θ = 0 Two meshes: 2250 elements elements Séminaire de Mathématiques Appliquées, Caen 25 avril

182 Plane wave: Memory consumption Coarsest mesh (2250 elements) 6 Memory (GB) 4 2 HDGm 1 HDGm 2 0 P 1 P 2 P 3 P 4 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

183 Plane wave: CPU time 100 Coarsest mesh (2250 elements) 80 CPU time (s) HDGm const. 1 HDGm res. 1 HDGm const. 2 HDGm res. 2 0 P 1 P 2 P 3 Interpolation order Séminaire de Mathématiques Appliquées, Caen 25 avril

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain

Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain March 4-5, 2015 Performance comparison between hybridizable DG and classical DG methods for elastic waves simulation in harmonic domain M. Bonnasse-Gahot 1,2, H. Calandra 3, J. Diaz 1 and S. Lanteri 2

More information

Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques

Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques Approximation SEM-DG pour les problèmes d ondes elasto-acoustiques Helene Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian Gout To cite this version: Helene Barucq, Henri Calandra, Aurélien

More information

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media

Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Weight-adjusted DG methods for elastic wave propagation in arbitrary heterogeneous media Jesse Chan Department of Computational and Applied Math, Rice University ICOSAHOM 2018 July 12, 2018 Chan (CAAM)

More information

Trefftz-DG solution to the Helmholtz equation involving integral equations

Trefftz-DG solution to the Helmholtz equation involving integral equations Trefftz-DG solution to the Helmholtz equation involving integral equations H. Barucq, A. Bendali, M. Fares, V. Mattesi, S. Tordeux Magique 3D Inria Bordeaux Sud Ouest LMA UMR CNRS 5142 INSA of Toulouse

More information

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation

Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Introduction Solving Time-Harmonic Scattering Problems by the Ultra Weak Variational Formulation Plane waves as basis functions Peter Monk 1 Tomi Huttunen 2 1 Department of Mathematical Sciences University

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations with Smooth Coefficients. Mario Bencomo TRIP Review Meeting 2013

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations with Smooth Coefficients. Mario Bencomo TRIP Review Meeting 2013 About Me Mario Bencomo Currently 2 nd year graduate student in CAAM department at Rice University. B.S. in Physics and Applied Mathematics (Dec. 2010). Undergraduate University: University of Texas at

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Hybridized Discontinuous Galerkin Methods

Hybridized Discontinuous Galerkin Methods Hybridized Discontinuous Galerkin Methods Theory and Christian Waluga Joint work with Herbert Egger (Uni Graz) 1st DUNE User Meeting, Stuttgart Christian Waluga (AICES) HDG Methods October 6-8, 2010 1

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem.

We briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem. Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus 2016 1 Wave propagation Figure 1: Finite difference discretization of the 2D acoustic problem. We briefly discuss two examples

More information

Waveform inversion and time-reversal imaging in attenuative TI media

Waveform inversion and time-reversal imaging in attenuative TI media Waveform inversion and time-reversal imaging in attenuative TI media Tong Bai 1, Tieyuan Zhu 2, Ilya Tsvankin 1, Xinming Wu 3 1. Colorado School of Mines 2. Penn State University 3. University of Texas

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

DG discretization of optimized Schwarz methods for Maxwell s equations

DG discretization of optimized Schwarz methods for Maxwell s equations DG discretization of optimized Schwarz methods for Maxwell s equations Mohamed El Bouajaji, Victorita Dolean,3, Martin J. Gander 3, Stéphane Lanteri, and Ronan Perrussel 4 Introduction In the last decades,

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

Multiscale methods for time-harmonic acoustic and elastic wave propagation

Multiscale methods for time-harmonic acoustic and elastic wave propagation Multiscale methods for time-harmonic acoustic and elastic wave propagation Dietmar Gallistl (joint work with D. Brown and D. Peterseim) Institut für Angewandte und Numerische Mathematik Karlsruher Institut

More information

Conservation Laws & Applications

Conservation Laws & Applications Rocky Mountain Mathematics Consortium Summer School Conservation Laws & Applications Lecture V: Discontinuous Galerkin Methods James A. Rossmanith Department of Mathematics University of Wisconsin Madison

More information

The Finite Element Method

The Finite Element Method The Finite Element Method 3D Problems Heat Transfer and Elasticity Read: Chapter 14 CONTENTS Finite element models of 3-D Heat Transfer Finite element model of 3-D Elasticity Typical 3-D Finite Elements

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh Rome, 10th Apr 2017 Joint work with: Emmanuil

More information

Pseudospectral and High-Order Time-Domain Forward Solvers

Pseudospectral and High-Order Time-Domain Forward Solvers Pseudospectral and High-Order Time-Domain Forward Solvers Qing H. Liu G. Zhao, T. Xiao, Y. Zeng Department of Electrical and Computer Engineering Duke University DARPA/ARO MURI Review, August 15, 2003

More information

Application of Nodal Discontinuous Glaerkin Methods in Acoustic Wave Modeling

Application of Nodal Discontinuous Glaerkin Methods in Acoustic Wave Modeling 1 Application of Nodal Discontinuous Glaerkin Methods in Acoustic Wave Modeling Xin Wang ABSTRACT This work will explore the discontinuous Galerkin finite element method (DG-FEM) for solving acoustic wave

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

We G Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-Slab Propagator

We G Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-Slab Propagator We G05 0 Elastic One-Return Boundary Element Method and Hybrid Elastic Thin-lab Propagator R.. Wu* (University of California) & Z. Ge (Beijing University, China) UMMARY We developed the theory and algorithm

More information

Finite Element Analysis of Acoustic Scattering

Finite Element Analysis of Acoustic Scattering Frank Ihlenburg Finite Element Analysis of Acoustic Scattering With 88 Illustrations Springer Contents Preface vii 1 The Governing Equations of Time-Harmonic Wave Propagation, 1 1.1 Acoustic Waves 1 1.1.1

More information

Finite Element Method (FEM)

Finite Element Method (FEM) Finite Element Method (FEM) The finite element method (FEM) is the oldest numerical technique applied to engineering problems. FEM itself is not rigorous, but when combined with integral equation techniques

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION

CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION Journal of Computational Acoustics, Vol. 8, No. 1 (2) 139 156 c IMACS CONTINUED-FRACTION ABSORBING BOUNDARY CONDITIONS FOR THE WAVE EQUATION MURTHY N. GUDDATI Department of Civil Engineering, North Carolina

More information

Some improvements of Xfem for cracked domains

Some improvements of Xfem for cracked domains Some improvements of Xfem for cracked domains E. Chahine 1, P. Laborde 2, J. Pommier 1, Y. Renard 3 and M. Salaün 4 (1) INSA Toulouse, laboratoire MIP, CNRS UMR 5640, Complexe scientifique de Rangueil,

More information

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

An A Posteriori Error Estimate for Discontinuous Galerkin Methods An A Posteriori Error Estimate for Discontinuous Galerkin Methods Mats G Larson mgl@math.chalmers.se Chalmers Finite Element Center Mats G Larson Chalmers Finite Element Center p.1 Outline We present an

More information

A space-time Trefftz method for the second order wave equation

A space-time Trefftz method for the second order wave equation A space-time Trefftz method for the second order wave equation Lehel Banjai The Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh & Department of Mathematics, University of

More information

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS

INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS INFINITE ELEMENT METHODS FOR HELMHOLTZ EQUATION PROBLEMS ON UNBOUNDED DOMAINS Michael Newman Department of Aerospace Engineering Texas A&M University 34 TAMU 744D H.R. Bright Building College Station,

More information

STABILIZATION IN RELATION TO WAVENUMBER IN HDG METHODS

STABILIZATION IN RELATION TO WAVENUMBER IN HDG METHODS STABILIZATION IN RELATION TO WAVENUMBER IN HDG METHODS J. GOPALAKRISHNAN, S. LANTERI, N. OLIVARES, AND R. PERRUSSEL Abstract. Simulation of wave propagation through complex media relies on proper understanding

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

NONLINEAR CONTINUUM FORMULATIONS CONTENTS NONLINEAR CONTINUUM FORMULATIONS CONTENTS Introduction to nonlinear continuum mechanics Descriptions of motion Measures of stresses and strains Updated and Total Lagrangian formulations Continuum shell

More information

An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem

An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem An arbitrary lagrangian eulerian discontinuous galerkin approach to fluid-structure interaction and its application to cardiovascular problem Yifan Wang University of Houston, Department of Mathematics

More information

A finite difference Poisson solver for irregular geometries

A finite difference Poisson solver for irregular geometries ANZIAM J. 45 (E) ppc713 C728, 2004 C713 A finite difference Poisson solver for irregular geometries Z. Jomaa C. Macaskill (Received 8 August 2003, revised 21 January 2004) Abstract The motivation for this

More information

An explicit time-domain finite-element method for room acoustics simulation

An explicit time-domain finite-element method for room acoustics simulation An explicit time-domain finite-element method for room acoustics simulation Takeshi OKUZONO 1 ; Toru OTSURU 2 ; Kimihiro SAKAGAMI 3 1 Kobe University, JAPAN 2 Oita University, JAPAN 3 Kobe University,

More information

Multiscale Analysis of Vibrations of Streamers

Multiscale Analysis of Vibrations of Streamers Multiscale Analysis of Vibrations of Streamers Leszek Demkowicz Joint work with S. Prudhomme, W. Rachowicz, W. Qiu and L. Chamoin Institute for Computational Engineering and Sciences (ICES) The University

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY ABHELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D HELSINKI A posteriori error analysis for the Morley plate element Jarkko Niiranen Department of Structural

More information

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS 1 / 36 HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS Jesús Garicano Mena, E. Valero Sánchez, G. Rubio Calzado, E. Ferrer Vaccarezza Universidad

More information

To CG or to HDG: A Comparative Study

To CG or to HDG: A Comparative Study To CG or to HDG: A Comparative Study Robert M. Kirby a,1, Spencer J. Sherwin b,3 Bernardo Cockburn c,2, a School of Computing, Univ. of Utah, Salt Lake City, UT, USA b Department of Aeronautics, Imperial

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Side branch resonators modelling with Green s function methods

Side branch resonators modelling with Green s function methods Side branch resonators modelling with Green s function methods E. Perrey-Debain, R. Maréchal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Université de Technologie de Compiègne, France

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states

Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states C. Meng (cmeng@mit.edu) B. Hager ERL, MIT May 16, 2016 Reservoir production/injection induced seismicity

More information

Asymptotic Behavior of Waves in a Nonuniform Medium

Asymptotic Behavior of Waves in a Nonuniform Medium Available at http://pvamuedu/aam Appl Appl Math ISSN: 1932-9466 Vol 12, Issue 1 June 217, pp 217 229 Applications Applied Mathematics: An International Journal AAM Asymptotic Behavior of Waves in a Nonuniform

More information

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Two-grid Method for Coupled Free Flow with Porous Media Flow A Two-grid Method for Coupled Free Flow with Porous Media Flow Prince Chidyagwai a and Béatrice Rivière a, a Department of Computational and Applied Mathematics, Rice University, 600 Main Street, Houston,

More information

Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations

Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations Hybrid iterative-direct domain decomposition based solvers for the time-harmonic Maxwell equations 1st workshop of the joint INRIA-UIUC laboratory for Petascale Computing Victorita Dolean 1, Mohamed El

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

extended Hybridizable Discontinuous Galerkin (X-HDG) for Void and Bimaterial Problems

extended Hybridizable Discontinuous Galerkin (X-HDG) for Void and Bimaterial Problems extended Hybridizable Discontinuous Galerkin (X-HDG) for Void and Bimaterial Problems Ceren Gürkan, Esther Sala-Lardies, Martin Kronbichler, and Sonia Fernández-Méndez Abstract A strategy for the Hybridizable

More information

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations

An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations An Accurate Fourier-Spectral Solver for Variable Coefficient Elliptic Equations Moshe Israeli Computer Science Department, Technion-Israel Institute of Technology, Technion city, Haifa 32000, ISRAEL Alexander

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators

A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators A Framework for Analyzing and Constructing Hierarchical-Type A Posteriori Error Estimators Jeff Ovall University of Kentucky Mathematics www.math.uky.edu/ jovall jovall@ms.uky.edu Kentucky Applied and

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

Shifted Laplace and related preconditioning for the Helmholtz equation

Shifted Laplace and related preconditioning for the Helmholtz equation Shifted Laplace and related preconditioning for the Helmholtz equation Ivan Graham and Euan Spence (Bath, UK) Collaborations with: Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

A Multiscale Hybrid-Mixed method for the elastodynamic model in time domain

A Multiscale Hybrid-Mixed method for the elastodynamic model in time domain 1/21 A Multiscale Hybrid-Mixed method for the elastodynamic model in time domain Weslley da Silva Pereira 1 Nachos project-team, Inria Sophia Antipolis - Mediterranée (FR) Inria Sophia Antipolis - Mediterranée

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method

A 27-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method Geophysical Prospecting 04 6 58 77 doi: 0./365-478.090 A 7-point scheme for a 3D frequency-domain scalar wave equation based on an average-derivative method Jing-Bo Chen Key Laboratory of Petroleum Resources

More information

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping

Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping Comparison of a One and Two Parameter Family of Transmission Conditions for Maxwell s Equations with Damping M. El Bouajaji 1, V. Dolean 2, M. J. Gander 3 and S. Lanteri 1 1 Introduction Transmission conditions

More information

Coercivity of high-frequency scattering problems

Coercivity of high-frequency scattering problems Coercivity of high-frequency scattering problems Valery Smyshlyaev Department of Mathematics, University College London Joint work with: Euan Spence (Bath), Ilia Kamotski (UCL); Comm Pure Appl Math 2015.

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

Two-scale Dirichlet-Neumann preconditioners for boundary refinements

Two-scale Dirichlet-Neumann preconditioners for boundary refinements Two-scale Dirichlet-Neumann preconditioners for boundary refinements Patrice Hauret 1 and Patrick Le Tallec 2 1 Graduate Aeronautical Laboratories, MS 25-45, California Institute of Technology Pasadena,

More information

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber

A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber A phase-based interior penalty discontinuous Galerkin method for the Helmholtz equation with spatially varying wavenumber Chi Yeung Lam * and Chi-Wang Shu ** * Department of Mathematics, The Chinese University

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

Nested Krylov methods for shifted linear systems

Nested Krylov methods for shifted linear systems Nested Krylov methods for shifted linear systems M. Baumann, and M. B. van Gizen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands

More information

Analytical Solution for Acoustic/Poroelastic Interaction

Analytical Solution for Acoustic/Poroelastic Interaction Analytical Solution for Acoustic/Poroelastic Interaction Julien Diaz,2 Abdelâaziz Ezziani 2, INRIA Bordeaux Sud-Ouest, EPI Magique 3D 2 LMA, UMR 542, Université de Pau 7 April 2009 Acoustic/Poroelastic

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Multi-Domain Approaches for the Solution of High-Frequency Time-Harmonic Propagation Problems

Multi-Domain Approaches for the Solution of High-Frequency Time-Harmonic Propagation Problems Académie universitaire Wallonie Europe Université de Liège Faculté des Sciences Appliquées Collège de doctorat en Électricité, électronique et informatique Multi-Domain Approaches for the Solution of High-Frequency

More information

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems.

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems. Stefan Girke WWU Münster Institut für Numerische und Angewandte Mathematik 10th

More information

Evolution equations with spectral methods: the case of the wave equation

Evolution equations with spectral methods: the case of the wave equation Evolution equations with spectral methods: the case of the wave equation Jerome.Novak@obspm.fr Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris, France in collaboration with

More information

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i FDTD for 1D wave equation Equation: 2 H = t 2 c2 2 H x 2 Notations: o t = nδδ, x = iδx o n H nδδ, iδx = H i o n E nδδ, iδx = E i discretization H 2H + H H 2H + H n+ 1 n n 1 n n n i i i 2 i+ 1 i i 1 = c

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

1 Exercise: Linear, incompressible Stokes flow with FE

1 Exercise: Linear, incompressible Stokes flow with FE Figure 1: Pressure and velocity solution for a sinking, fluid slab impinging on viscosity contrast problem. 1 Exercise: Linear, incompressible Stokes flow with FE Reading Hughes (2000), sec. 4.2-4.4 Dabrowski

More information

Finite Element Methods for Optical Device Design

Finite Element Methods for Optical Device Design DFG Research Center Matheon mathematics for key technologies and Zuse Institute Berlin Finite Element Methods for Optical Device Design Frank Schmidt Sven Burger, Roland Klose, Achim Schädle, Lin Zschiedrich

More information

Chapter 1 Mathematical Foundations

Chapter 1 Mathematical Foundations Computational Electromagnetics; Chapter 1 1 Chapter 1 Mathematical Foundations 1.1 Maxwell s Equations Electromagnetic phenomena can be described by the electric field E, the electric induction D, the

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

An Introduction to the Discontinuous Galerkin Method

An Introduction to the Discontinuous Galerkin Method An Introduction to the Discontinuous Galerkin Method Krzysztof J. Fidkowski Aerospace Computational Design Lab Massachusetts Institute of Technology March 16, 2005 Computational Prototyping Group Seminar

More information

Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a

Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a Juan E. Santos a,b,c, Gabriela B. Savioli a and Robiel Martínez Corredor c a Universidad de Buenos Aires, Fac. Ing., IGPUBA, ARGENTINA b Department of Mathematics, Purdue University, USA c Universidad

More information

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem Larisa Beilina Michael V. Klibanov December 18, 29 Abstract

More information

A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA

A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA A FINITE-VOLUME DISCRETIZATION FOR DEFORMATION OF FRACTURED MEDIA Eren Ucar a, Eirik Keilegavlen a, Inga Berre a,b, Jan Martin Nordbotten a,c a Department of Mathematics, University of Bergen, Bergen,

More information

A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation

A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation Commun. Comput. Phys. doi: 1.428/cicp.251112.21113a Vol. 15, No. 5, pp. 1461-1479 May 214 A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation Lin Mu 1, Junping Wang 2, Xiu Ye 3 and

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #2 April 14, 2014 Name: SOLUTION ID#: PS1.:

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

Applied Numerical Mathematics. High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces

Applied Numerical Mathematics. High-order numerical schemes based on difference potentials for 2D elliptic problems with material interfaces Applied Numerical Mathematics 111 (2017) 64 91 Contents lists available at ScienceDirect Applied Numerical Mathematics www.elsevier.com/locate/apnum High-order numerical schemes based on difference potentials

More information

q is large, to ensure accuracy of the spatial discretization 1 In practice, q = 6 is a good choice.

q is large, to ensure accuracy of the spatial discretization 1 In practice, q = 6 is a good choice. Time-stepping beyond CFL: a locally one-dimensional scheme for acoustic wave propagation Leonardo Zepeda-Núñez 1*), Russell J. Hewett 1, Minghua Michel Rao 2, and Laurent Demanet 1 1 Dept. of Mathematics

More information

An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves.

An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves. Copyright 205 Tech Science Press CMES, vol.06, no.2, pp.27-45, 205 An Error Estimator for the Finite Element Approximation of Plane and Cylindrical Acoustic Waves. J. E. Sebold, L. A. Lacerda 2 and J.

More information

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS

Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS Compensating visco-acoustic effects in anisotropic resverse-time migration Sang Suh, Kwangjin Yoon, James Cai, and Bin Wang, TGS SUMMARY Anelastic properties of the earth cause frequency dependent energy

More information