A finite element algorithm for Exner s equation for numerical simulations of 2D morphological change in open-channels

Size: px
Start display at page:

Download "A finite element algorithm for Exner s equation for numerical simulations of 2D morphological change in open-channels"

Transcription

1 River, Coasal and Esuarine Morphodynamics: RCEM Tsinghua Universiy Press, Beijing A finie elemen algorihm for Exner s equaion for numerical simulaions of D morphological change in open-channels T.B. KIM Researcher, Environmenal Hydrodynamics Laboraory Deparmen of Civil and Environmenal Engineering, Yonsei Universiy 134 Shinchon-dong, Seodaemun-gu, Seoul, , Korea Y. CHOI MS Suden, Environmenal Hydrodynamics Laboraory Deparmen of Civil and Environmenal Engineering, Yonsei Universiy 134 Shinchon-dong, Seodaemun-gu, Seoul, , Korea S.-U. CHOI Professor, Environmenal Hydrodynamics Laboraory Deparmen of Civil and Environmenal Engineering, Yonsei Universiy 134 Shinchon-dong, Seodaemun-gu, Seoul, , Korea ABSTRACT: Recenly D numerical models have been proposed o simulae numerically he morphological change in open-channels. In general, he D numerical model for such purpose is comprised of hree pars, namely flow, sedimen ranspor, and morphology pars. In he presen sudy, for he flow analysis, he shallow waer equaions are solved using D characerisic dissipaive-galerkin mehod. In order o updae he morphological change, a similar finie elemen algorihm is proposed for he soluion of Exner s equaion. The proposed algorihm esimaes he morphological change based on sedimen loads a Gauss poins wihin he elemen. On he oher hand, he convenional mehod uses he value a a node, which may resul in non-unique values due o he disconinuiy of heir derivaives. The model is applied o wo problems: bed aggradaion due o excessive sedimen supply a he upsream and propagaion of a hump on he bed wihou sedimen supply a he upsream. Appropriae weighing of finie elemen scheme for he numerical soluion of Exner s equaion is also invesigaed. The proposed model is a decoupled model in a sense ha he bed elevaion does no change simulaneously wih he flow during each compuaional ime sep, and i is resriced o he case wih uniform sedimen, neglecing armoring or grain soring effecs. 1 INTRODUCTION Mos D numerical models for he simulaion of he bed elevaion change used he finie difference mehod. The finie volume mehod began o be used in 000s because of is excellen mass conservaion propery. I is well known ha he finie elemen mehod provides more flexibiliy in handling spaial domain han FDM or FVM. Neverheless, he finie elemen model has no been favored in he numerical simulaions of morphological change compared wih he finie difference mehods or finie volume mehods. Recenly, Vasquez e al. (008) presened he finie elemen model using riangular mesh for bed elevaion change in meandering rivers. However, he deailed finie elemen algorihm for bed elevaion change has no been proposed.

2 In his sudy, a finie elemen model for he flow and bed elevaion change is proposed. The shallow waer equaions and he Exner s equaion are solved by he finie elemen mehod. The shallow waer equaions are solved by D Characerisic Dissipaive-Galerkin (CDG) scheme, which belong o he family of Sreamline-Upwind / Perov-Galerkin (SU/PG) schemea. A new finie elemen algorihm for he Exner's equaion is also inroduced, and he new algorihm esimaes he equilibrium sedimen load no a a node bu wihin an elemen. In addiion, numerical experimens are carried ou o find appropriae weigh of Exner s equaion. For validaion, he developed model is applied o sraigh channel daa for bed aggradaion due o sedimen overloading (Soni e al., 1980) and he propagaion of a hump wihou sedimen supply a he upsream. The numerical model developed in he presen sudy is based upon he decoupled modeling approach assuming ha he ineracion beween flow and bed is ignorable during he compuaional ime sep. Also, he model is resriced o beds of uniform sedimen wihou armoring or grain soring effecs. NUMERICAL METHODS.1 Flow equaions For he flow analysis, he following D shallow waer equaions wih he effecive sress erms are adoped: U U U D x D y A B F 0 (1) x y x y where T U h p q () p p A gh 0 h h pq q p h h h (3) pq q p B h h h q q gh 0 h h (4) D x 0 p x p q y x (5)

3 D y 0 p q y x q y 0 z b gn F gh p p q x 7/3 h z b gn gh q p q y 7/3 h (6) (7) where h is flow deph, p and q are discharge per uni widh in x- and y-direcions, respecively, g is graviaional acceleraion, z b is bed elevaion measured from a cerain daum, n is Manning s roughness coefficien, and is urbulen viscosiy. Herein, he following parabolic eddy viscosiy model is used: Uh (8) 6 where U is he shear velociy, and is von Kármán consan (= 0.4). To solve he shallow waer equaions numerically, he finie elemen mehod is used. The weighed residual equaion of he shallow waer equaions akes he form such as U U U D D x y N A B F d 0 x y x y (9) where N denoes he weighing funcion. The various finie elemen schemes have been developed wih each unique forma. In his sudy, he Perov-Galerkin scheme is employed as following: Ni Ni Ni Ni x Wx y W y (10) x y where N i is basis or shape funcion for he i-h node, N i is weighing funcion for he i-h node, is weighing coefficien, W x and W y are weighing marices in he x- and y-direcions, respecively, and x and y are characerisic elemen lenghs in he x- and y- direcions, which are esimaed by means of Kaopodes (1984). In his sudy, following weighing marices suggesed by Ghanem (1995) are used. W x A A B, W y A B B (11) where A and B are advecion marix defined by Eqs. (3) and (4), respecively. For each elemen, Eq. (9) resuls nonlinear equaions, which are solved by using he Newon-Raphson mehod and unsymmerical fronal algorihm proposed by Hood (1976). 3

4 . Exner s equaion In order o updae he bed elevaion a each ime sep, he following Exner s equaion is solved: zb q q x 1 ' y p 0 x y (1) where p' is porosiy, and q x and q y are he x- and y-componens of oal sedimen load per uni widh, which are, respecively, expressed as q x q cos ; q q cos (13) y where is he direcion of sedimen ranspor and q is he oal sedimen load per uni widh. In he presen sudy, he following formula is used for he oal sedimen load: q b av (14) which was given in Soni e al. (1980). In Eq. (14), V is deph-averaged flow velociy, a and b are consans of values and 5.0, respecively, obained in Soni e al. s (1980) experimen. The weighed residual equaion of he Exner s equaion is given by zb 1 q q x y N d 0 1 p ' x y (15) By using he Green s Theorem in Eq. (15), he following equaion in he marix form can be obained as proposed by Kim and Choi (008): AΔzb D F (16) 1 p' ij e i j e A N N d (17) D q q d x y Ni Ni e ij e x y (18) e i e i x x y y (19) F N n q n q d where Γ e means he boundary of an elemen. The convenional mehod esimaes spaial variaion of mean velociy and bed opography a a node, which may resul in non-unique values due o he disconinuiy of heir derivaives. However, he proposed algorihm esimaes he change of such variables a Gauss poins wihin he elemen. In Eq. (15), N is he weighing funcion as in Eq. (9). Unlike he finie scheme for he flow equaion, a paricular scheme for he Exner s equaion has no been proposed nor discussed. Therefore, 4

5 Bubnov-Galerkin scheme in which he weighing funcion is he same as he basis funcion has been jus used. In his sudy, weighing funcion for he Exner s equaion is proposed and applied. A weighing funcion similar o he one used in PG scheme for he flow equaion is used. q N q N N N x y (0) x i y i i i q x q y If he weighing coefficien, ω, is zero, he weighing funcion by Eq. (0) resuls in BG scheme, if posiive, upwind weighing scheme, and if negaive, downwind weighing scheme, respecively. 3 APPLICATIONS 3.1 Bed aggradaion due o overloaded sedimen inpu Firs, he proposed model is applied o Soni e al. s (1980) experimen, in which hey carried ou bed aggradaion es due o overloaded sedimen supply. The experimen was conduced in a 0. m wide, 0.5 m deep, and 30 m long sraigh iling flume. Bed maerials and supplied sedimen paricles were uniform sands wih a median diameer of 0.3 mm. Afer he se up of a uniform flow condiion for he given discharge and slope, he sedimen supply rae was increased o a predeermined value by coninuously feeding excess sedimen a he upsream end of he flume. The bed and waer surface profiles were recorded a ime inervals varying from 10-0 minues. The measured profiles were averaged because of he presence of ripples and dunes on he bed. One of he cases in Soni e al. s (1980) experimens is seleced for he numerical simulaion. Iniial bed slope, waer discharge per widh, and waer deph were , 0.0 m /s, and 0.05 m, respecively. The amoun of sedimen supply a he upsream end of he flume is four imes larger han he equilibrium sedimen load rae. In his applicaion, boh BG and downwind schemes are used for he Exner s equaion. Figure 1 shows he resuls of he compued bed and waer surface elevaion profiles a various imes. Due o he overloaded sedimen supply a he upsream, bed elevaion increases and he range of bed elevaion change is exended oward downsream in ime. Simulaed resuls agree well wih experimenal daa by Soni e al. (1980), alhough waer surface profiles are slighly higher han measured daa. 3. Propagaion of hump on he bed In he presen secion, he propagaion of he hump on he bed is numerically simulaed. The flow condiion in Soni e al. s (1980) experimen is imposed wih a riangular hump as shown in Figure. I is expeced ha he hump on he bed propagaes in he downsream direcion wih diffusion and equilibrium sae reaches. Figure 3 shows bed elevaion profiles simulaed by BG scheme. I appears ha he hump on he bed spreads wih ime, reaching equilibrium aferwards. However, i is observed ha he disurbance of he bed elevaion propagaes no only in he downsream bu also upsream direcion. The propagaion owards upsream direcion seems o be caused by numerical oscillaions. Finally, he downwind or forward weighing scheme wih negaive weighing coefficien in Eq. (0) is applied. Figure 4 shows simulaed bed elevaion profiles a various imes. I can be seen ha he hump propagaes mainly in he downsream direcion and numerical oscillaions are noiceably and rapidly diminished wih ime. This is comparable wih he resul of BG scheme in Figure 3. 5

6 (a) a 15 min. (b) a 30 min. (c) a 40 min. Figure 1 Simulaed bed and waer surface profiles Figure Iniial bed profile wih a riangular hump 6

7 (a) a min. (b) a 5 min. (c) a 10 min. (d) a 0 min. Figure 3 Bed elevaion change simulaed by BG scheme (a) a min. (b) a 5 min. (c) a 10 min. (d) a 0 min. Figure 4 Bed elevaion change simulaed by downwind weighing scheme 4 CONCLUSIONS This sudy presens a finie elemen model for numerical simulaions of D morphological change of open-channels. The model compues he flow and morphological change by solving he shallow waer equaions and Exner s equaion, respecively. The D characerisic dissipaive-galerkin mehod is applied o solve he flow equaions, and a new algorihm is presened for he soluion of Exner s equaion. The new algorihm esimaes a unique value of he sedimen load wihin he elemen, which was no possible wih convenional mehods. The model was applied o a bed aggradaion problem due o sedimen over-load a he upsream, Soni e al. s experimen. I was found ha he model reproduce well bed elevaion change due o over-loaded sedimen supply a he upsream. Then, he model was applied o he propagaion of a hump on he bed. Boh BG and downwind 7

8 schemes simulaes well he hump propagaion. However, numerical oscillaions appear on he bed elevaion profile and propagae in he upsream direcion when he upwind scheme was used. 5 ACKNOWLEDGEMENTS This sudy was suppored by he 006 Core Consrucion Technology Developmen Projec (06KSHS-B01) hrough ECORIVER1 Research Cener in KICTEP of MLTM KOREA. REFERENCES Ghanem, A.H.M. 1995, Two-dimensional finie elemen modeling of flow in aquaic habias. Ph.D. Thesis, Universiy of Albera, Albera. Hood, P. 1976, Fronal soluion program for unsymmeric marices. Inernaional Journal of Numerical Mehods in Engineering, Vol. 10, pp Kaopodes, N.D. 1984, Two-dimensional surges and shocks in open channels. Journal of Hydraulic Engineering, ASCE, Vol. 110, No. 6, pp Kim, T.B. and Choi, S.-U. 008, Algorihm for D finie elemen modeling of bed elevaion change in a naural river. In Preceedings of he 8 h Inernaional Conference on Hydro-Science and Engineering, Nagoya Universiy, Nagoya, Japan, Sepember 9-1, 008. Soni, J.P., Garde, R.J., and Ranga Raju, K.G. 1980, Aggradaion in sreams due o overloading. Journal of he Hydraulics Division, ASCE, Vol. 106, No. HY1, pp Vasquez, J.A., Seffler, P.M., and Millar, R.G. 008, Modeling bed changes in meandering rivers using riangular Finie Elemens. Journal of Hydraulic Engineering, ASCE, Vol. 134, No. 9, pp

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK

CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 175 CHAPTER 10 VALIDATION OF TEST WITH ARTIFICAL NEURAL NETWORK 10.1 INTRODUCTION Amongs he research work performed, he bes resuls of experimenal work are validaed wih Arificial Neural Nework. From he

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

Flow-Induced Vibration Analysis of Supported Pipes with a Crack

Flow-Induced Vibration Analysis of Supported Pipes with a Crack Flow-Induced Vibraion Analsis of Suppored Pipes wih a Crack Jin-Huk Lee, Samer Masoud Al-Said Deparmen of Mechanical Engineering American Universi of Sharjah, UAE Ouline Inroducion and Moivaion Aeroacousicall

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Morning Time: 1 hour 30 minutes Additional materials (enclosed):

Morning Time: 1 hour 30 minutes Additional materials (enclosed): ADVANCED GCE 78/0 MATHEMATICS (MEI) Differenial Equaions THURSDAY JANUARY 008 Morning Time: hour 30 minues Addiional maerials (enclosed): None Addiional maerials (required): Answer Bookle (8 pages) Graph

More information

t 2 B F x,t n dsdt t u x,t dxdt

t 2 B F x,t n dsdt t u x,t dxdt Evoluion Equaions For 0, fixed, le U U0, where U denoes a bounded open se in R n.suppose ha U is filled wih a maerial in which a conaminan is being ranspored by various means including diffusion and convecion.

More information

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI

Mean Square Projection Error Gradient-based Variable Forgetting Factor FAPI 3rd Inernaional Conference on Advances in Elecrical and Elecronics Engineering (ICAEE'4) Feb. -, 4 Singapore Mean Square Projecion Error Gradien-based Variable Forgeing Facor FAPI Young-Kwang Seo, Jong-Woo

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

ON THE BEAT PHENOMENON IN COUPLED SYSTEMS

ON THE BEAT PHENOMENON IN COUPLED SYSTEMS 8 h ASCE Specialy Conference on Probabilisic Mechanics and Srucural Reliabiliy PMC-38 ON THE BEAT PHENOMENON IN COUPLED SYSTEMS S. K. Yalla, Suden Member ASCE and A. Kareem, M. ASCE NaHaz Modeling Laboraory,

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Dam Flooding Simulation Using Advanced CFD Methods

Dam Flooding Simulation Using Advanced CFD Methods WCCM V Fifh World Congress on Compuaional Mechanics July 7-12, 2002, Vienna, Ausria Dam Flooding Simulaion Using Advanced CFD Mehods Mohamed Gouda*, Dr. Konrad Karner VRVis Zenrum für Virual Realiy und

More information

Physical Transport in Surface Waters

Physical Transport in Surface Waters Physical Transpor in Surface Waers odule : Surface Waers, ecure 1 Chemical Fae and Transpor in he Environmen, nd ediion. H.F. Hemond and E.J. Fechner-evy. Academic Press. ondon. 000..1.1 Naure of Surface

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7].

We here collect a few numerical tests, in order to put into evidence the potentialities of HBVMs [4, 6, 7]. Chaper Numerical Tess We here collec a few numerical ess, in order o pu ino evidence he poenialiies of HBVMs [4, 6, 7]. Tes problem Le us consider he problem characerized by he polynomial Hamilonian (4.)

More information

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems. di ernardo, M. (995). A purely adapive conroller o synchronize and conrol chaoic sysems. hps://doi.org/.6/375-96(96)8-x Early version, also known as pre-prin Link o published version (if available):.6/375-96(96)8-x

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM Journal of elecrical sysems Special Issue N 01 : November 2009 pp: 48-52 Compuaion of he Effec of Space Harmonics on Saring Process of Inducion Moors Using TSFEM Youcef Ouazir USTHB Laboraoire des sysèmes

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh

Chapter 5: Control Volume Approach and Continuity Principle Dr Ali Jawarneh Chaper 5: Conrol Volume Approach and Coninuiy Principle By Dr Ali Jawarneh Deparmen of Mechanical Engineering Hashemie Universiy 1 Ouline Rae of Flow Conrol volume approach. Conservaion of mass he coninuiy

More information

Random Walk with Anti-Correlated Steps

Random Walk with Anti-Correlated Steps Random Walk wih Ani-Correlaed Seps John Noga Dirk Wagner 2 Absrac We conjecure he expeced value of random walks wih ani-correlaed seps o be exacly. We suppor his conjecure wih 2 plausibiliy argumens and

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Method

Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Method , ISSN 0974-570X (Online), ISSN 0974-578 (Prin), Vol. 6; Issue No. 3; Year 05, Copyrigh 05 by CESER PUBLICATIONS Dynamic Analysis of Damped Driven Pendulum using Laplace Transform Mehod M.C. Agarana and

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

Finite Element Analysis of Structures

Finite Element Analysis of Structures KAIT OE5 Finie Elemen Analysis of rucures Mid-erm Exam, Fall 9 (p) m. As shown in Fig., we model a russ srucure of uniform area (lengh, Area Am ) subjeced o a uniform body force ( f B e x N / m ) using

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member Verificaion Example Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro Caegory: Isoropic Linear Elasiciy, Dynamics, Member Verificaion Example: 0104 Canilever Beam wih Periodic Exciaion 0104 Canilever Beam

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3 The The rd rd Inernaional Conference on on Design Engineering and Science, ICDES 14 Pilsen, Czech Pilsen, Republic, Czech Augus Republic, 1 Sepember 1-, 14 In-plane and Ou-of-plane Deflecion of J-shaped

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Sliding Mode Controller for Unstable Systems

Sliding Mode Controller for Unstable Systems S. SIVARAMAKRISHNAN e al., Sliding Mode Conroller for Unsable Sysems, Chem. Biochem. Eng. Q. 22 (1) 41 47 (28) 41 Sliding Mode Conroller for Unsable Sysems S. Sivaramakrishnan, A. K. Tangirala, and M.

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

NUMERICAL INVESTIGATION OF STROUHAL FREQUENCIES OF TWO STAGGERED BLUFF BODIES

NUMERICAL INVESTIGATION OF STROUHAL FREQUENCIES OF TWO STAGGERED BLUFF BODIES NUMERICAL INVESTIGATION OF STROUHAL FREQUENCIES OF TWO STAGGERED BLUFF BODIES Eswaran M 1, P. Goyal, Anu Dua, G.R. Reddy, R. K. Singh and K.K. Vaze Bhabha Aomic Research Cenre, Mumbai, India. 1 Corresponding

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis TRANSPORTATION RESEARCH RECORD 155 35 Curling Sress Equaion for Transverse Join Edge of a Concree Pavemen Slab Based on Finie-Elemen Mehod Analysis TATSUO NISHIZAWA, TADASHI FUKUDA, SABURO MATSUNO, AND

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Area A 0 level is h 0, assuming the pipe flow to be laminar. D, L and assuming the pipe flow to be highly turbulent.

Area A 0 level is h 0, assuming the pipe flow to be laminar. D, L and assuming the pipe flow to be highly turbulent. Pipe Flows (ecures 5 o 7). Choose he crec answer (i) While deriving an expression f loss of head due o a sudden expansion in a pipe, in addiion o he coninuiy and impulse-momenum equaions, one of he following

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

1998 Calculus AB Scoring Guidelines

1998 Calculus AB Scoring Guidelines AB{ / BC{ 1999. The rae a which waer ows ou of a pipe, in gallons per hour, is given by a diereniable funcion R of ime. The able above shows he rae as measured every hours for a {hour period. (a) Use a

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization Proceedings Inverse Analysis for Esimaing Temperaure and Residual Sress Disribuions in a Pipe from Ouer Surface Temperaure Measuremen and Is Regularizaion Shiro Kubo * and Shoki Taguwa Deparmen of Mechanical

More information

A DELAY-DEPENDENT STABILITY CRITERIA FOR T-S FUZZY SYSTEM WITH TIME-DELAYS

A DELAY-DEPENDENT STABILITY CRITERIA FOR T-S FUZZY SYSTEM WITH TIME-DELAYS A DELAY-DEPENDENT STABILITY CRITERIA FOR T-S FUZZY SYSTEM WITH TIME-DELAYS Xinping Guan ;1 Fenglei Li Cailian Chen Insiue of Elecrical Engineering, Yanshan Universiy, Qinhuangdao, 066004, China. Deparmen

More information

A Shooting Method for A Node Generation Algorithm

A Shooting Method for A Node Generation Algorithm A Shooing Mehod for A Node Generaion Algorihm Hiroaki Nishikawa W.M.Keck Foundaion Laboraory for Compuaional Fluid Dynamics Deparmen of Aerospace Engineering, Universiy of Michigan, Ann Arbor, Michigan

More information

Numerical Simulation of the Overall Flow Field for Underwater Vehicle with Pump Jet Thruster

Numerical Simulation of the Overall Flow Field for Underwater Vehicle with Pump Jet Thruster Available online a www.sciencedirec.com Procedia Engineering 31 (2012) 769 774 Inernaional Conference on Advances in Compuaional Modeling and Simulaion Numerical Simulaion of he Overall Flow Field for

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

Heat Transfer. Revision Examples

Heat Transfer. Revision Examples Hea Transfer Revision Examples Hea ransfer: energy ranspor because of a emperaure difference. Thermal energy is ransferred from one region o anoher. Hea ranspor is he same phenomena lie mass ransfer, momenum

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions

PET467E-Analysis of Well Pressure Tests/2008 Spring Semester/İTÜ Midterm Examination (Duration 3:00 hours) Solutions M. Onur 03.04.008 PET467E-Analysis of Well Pressure Tess/008 Spring Semeser/İTÜ Miderm Examinaion (Duraion 3:00 hours) Soluions Name of he Suden: Insrucions: Before saring he exam, wrie your name clearly

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information