Neutrinos and Abelian Gauge Symmetries

Size: px
Start display at page:

Download "Neutrinos and Abelian Gauge Symmetries"

Transcription

1 Neutrinos and Abelian Gauge Symmetries Julian Heeck ULB

2 Standard Model of Particle Physics Beautiful and simple: Julian Heeck Neutrinos and Abelian Gauge Symmetries 1/ 43

3 Standard Model of Particle Physics Not shown: Gauge group SU(3) color SU(2) isospin U(1) hypercharge ; spin-1 bosons with field strength F µν, Three copies of spin- 1 Weyl fields (families/generations) in rep. 2 Ψ 1,2,3 (3,2, 1 6 ) (3,1, 2) (3,1, 1 ) (1,2, }{{} ) (1,1,1), 2 }{{} quarks leptons One complex spin-0 field φ (1,2, 1 ) which breaks 2 SU(2) U(1) U(1) EM via φ 250GeV. About 18 free parameters, all measured as of 2013 (Brout Englert Higgs boson mass). Julian Heeck Neutrinos and Abelian Gauge Symmetries 1/ 43

4 Standard Model of Particle Physics Also not shown (because beyond SM): Neutrinos have mass and mix. Dark matter. Baryon asymmetry of our Universe. Julian Heeck Neutrinos and Abelian Gauge Symmetries 1/ 43

5 Symmetries of the Standard Model L SM renormalizable only mass dimension 4 couplings. L SM invariant under phase shifts of quarks and individual leptons. U(1) 4 : B, L e, L µ, and L τ classically conserved in the Standard Model. Nonperturbative instanton/sphaleron solutions break (B + L) = 6. U(1) B L U(1) Le L µ U(1) Lµ L τ global symmetry of quantum SM. After introducing three right-handed neutrinos ν R : U(1) B L U(1) Le L µ U(1) Lµ L τ anomaly free local symmetry. 1 (Neutrinos automatically massive due to ν R.) Breaking neutrino nature, hierarchies, mixing, baryon asymmetry,... 1 J.H., T. Araki, J. Kubo, JHEP 1207 (2012) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 2/ 43

6 Outline Unflavored Symmetries Neutrinos and abelian gauge symmetries Typically simple models: flavored {}}{ U(1) B L U(1) Le L }{{} µ U(1) Lµ L τ }{{} unflavored dark Few new particles and parameters. Renormalizable. Z gives additional pheno.. Julian Heeck Neutrinos and Abelian Gauge Symmetries 3/ 43

7 Baryon and Lepton Number Unbroken B L Majorana B L Dirac B L B and L classically conserved in the Standard Model. B +L theoretically broken non-perturbatively: (B +L) = 6. B L globally conserved. Fate of fundamental U(1) B L from experiments. Linked to neutrino nature and matter antimatter asymmetry. B L locally conserved after adding three ν R. Neutrinos massive! Three possibilities for (local) U(1) B L : 1 Unbroken B L: Dirac neutrinos + neutrinogenesis. 2 Majorana B L: (B L) = 2, Majorana ν + leptogenesis. 3 Dirac B L: (B L) = n 2, Dirac ν + Dirac leptogenesis. Julian Heeck Neutrinos and Abelian Gauge Symmetries 4/ 43

8 Unbroken B L Unflavored Symmetries Unbroken B L Majorana B L Dirac B L Almost 2 never considered, but very simple: 3 Neutrinos are Dirac, with Yukawa couplings Y ν m ν / H Baryon asymmetry via neutrinogenesis: 4 New heavy scalar doublets decay so that (B L) = L = 0, but L left = L right 0. Right-handed ν R not thermalized due to tiny Yukawas. Sphalerons only see L left, generate B via (B +L) = 6! 2 D. Feldman, P. Fileviez Perez, and P. Nath, arxiv: J.H., arxiv: K. Dick, M. Lindner, M. Ratz, and D. Wright, arxiv:hep-ph/ Julian Heeck Neutrinos and Abelian Gauge Symmetries 5/ 43

9 Signatures Unflavored Symmetries Unbroken B L Majorana B L Dirac B L No 0ν2β or other (B L) 0 processes... Z with tiny coupling α or Stückelberg mass M Z : Introduce real scalar σ with gauge trafo σ σ +M Z θ(x). ( L = 1 MZ Z µ + µ σ )( M 2 Z Z µ + ) µσ is gauge invariant (Z µ Z µ µθ). Mass term 1 2 M2 Z Z µz µ is just gauge fixing, not breaking. Abelian gauge bosons can have a mass without symmetry breaking. M Z /g not connected to m ν or leptogenesis no preferred scale! Limits from modified gravity, stellar energy losses, scattering/collider experiments, and Big Bang nucleosynthesis (ν R γ µ ν R Z µ). Unbroken (local) B L perfectly valid! 5 5 J.H., arxiv: Julian Heeck Neutrinos and Abelian Gauge Symmetries 6/ 43

10 Big Bang Nucleosynthesis Unbroken B L Majorana B L Dirac B L ν R are light (Dirac neutrinos) N eff 6 for strong Z interactions. Light Z also contributes to N eff. BBN (T 1MeV) limit: N eff < 4 at 95% C.L. 6 Thermally averaged rate via Z : Γ(ff ν R ν R ) g 4 T, M Z T, g 2 M2 Z T, M Z T, g 4 T 5, M M 4 Z T. Z rate T H T 2 1 T T M T Demand Γ(ff ν R ν R ) < H(T) T 2 /M Pl at BBN. 6 Mangano, Serpico, PLB (2011), [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 7/ 43

11 The Money Shot Unflavored Symmetries Unbroken B L Majorana B L Dirac B L 0 5 Log 10 Λ m q Ν BaBar BD Lim its on a B L force e Ν with Dirac neutrinos neutron BBN LEP LHC Log 10 g EP M g 100 GeV Casim ir Sun RG Ν ISR M g 10 9 GeV HB RG SN1987A Log 10 Α Log 10 M ev Applicable to any Z B L (BBN, RG/ν, solid SN1987 depend on number of light ν R). 7 7 J.H., arxiv: Julian Heeck Neutrinos and Abelian Gauge Symmetries 8/ 43

12 Majorana B L Unflavored Symmetries Unbroken B L Majorana B L Dirac B L New scalar φ B L=2 to break U(1) B L by two units. L Y ν ν R HL+ 1 2 Y R ν R ν c R φ B L=2 +h.c. Spontaneous symmetry breaking gives mass matrix for (ν L,νR c): ( ) 0 Y T M = ν H. Y ν H Y R φ B L=2 High scale Y R φ B L=2 Y ν H : small seesaw Majorana mass for active neutrinos: M ν H 2 φ B L=2 YT ν Y 1 R Y ν. Signature of Majorana B L: neutrinoless double beta decay (A,Z) (A,Z +2)+2e (B L) = 2. Julian Heeck Neutrinos and Abelian Gauge Symmetries 9/ 43

13 Majorana B L: Leptogenesis Unbroken B L Majorana B L Dirac B L L Y ν ν R HL+ 1 2 Y R ν R ν c R φ B L=2 +h.c. Heavy (M R Y R φ B L= GeV) Majorana neutrinos N = ν R +νr c decay out-of-equilibrium in early Universe. If CP violated in loops: Γ(N HL) Γ(N H L) Lepton asymmetry L! Sphalerons with B = L = 3 above T TeV transfer L to baryon asymmetry B. Julian Heeck Neutrinos and Abelian Gauge Symmetries 10/ 43

14 Dirac B L Unflavored Symmetries Unbroken B L Majorana B L Dirac B L Break B L, but by n 2 units. 8 Lepton number violating Dirac neutrinos. All fermions in SM+ν R are odd under B L only even (B L) possible. Lowest order new processes: (B L) = 4: O d=6 : ν c R ν R ν c R ν R O d=8 : H 2 ν c R ν R ν c R ν R, (L c H )( H L) ν c R ν R, F µν Y νc R σµνν R ν c R ν R O d=10 : (L c H )( H L) (L c H )( H L), H 2 (L c H )( H L) ν c R ν R, F µν Y (Lc H )( H L) ν c R σµνν R, W µν a (L c H )( H τ a L) ν c R σµνν R, (u R d c R )(d R H L)(ν c R ν R),... O d=18 : (d R dr c uc R u R e c R e R)(d R dr c uc R u R e c R e R),... [ O d=20 : ((D µl) c 2 H)(H D νl)] (e c L W µ + W ν + e L )(e c L W+µ W +ν e L ),... 8 Witten, hep-ph/ Julian Heeck Neutrinos and Abelian Gauge Symmetries 11/ 43

15 UV Completion Unflavored Symmetries Unbroken B L Majorana B L Dirac B L One scalar φ B L=4 to break B L, one scalar χ B L= 2 as mediator. L y αβ L α Hν R,β +κ αβ χ B L= 2 ν R,α νr,β c +h.c. Neutrinos are Dirac (and L = 2 forbidden) if χ B L= 2 = 0. Scalar potential V µφ B L=4 (χ B L= 2 ) 2 +h.c. Lepton number violation L = 4 still possible! 9 t Extension to left right model can enhance rates. 9 J.H. and W. Rodejohann, EPL 103, (2013) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 12/ 43

16 Unbroken B L Majorana B L Dirac B L Phenomenology of LNV Dirac Neutrinos How to check for L = 4? Collider processes: LHC: pp W W W W l + l + l + l + +X, Like-sign lepton collider: e e W W W W l + l +. Nuclear decays (0ν4β?). 10 Rare meson decays etc.? All tough, many particles in final state! (Even harder for L > 4...) L = 4 can however easily be relevant in the early Universe new Dirac leptogenesis mechanism! J.H. and W. Rodejohann, EPL 103, (2013) [arxiv: ]. 11 J.H., PRD 88, (2013) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 13/ 43

17 Dirac B L: Leptogenesis Unbroken B L Majorana B L Dirac B L Scalar potential V(H,φ,χ) µφ B L=4 (χ B L= 2 ) 2 breaks complex χ B L= 2 = (Ξ 1 +i Ξ 2 )/ 2 into two real scalars with mass m 2 1 = m 2 c 2µ φ B L=4, m 2 2 = m 2 c +2µ φ B L=4. Heavy mediator scalar Ξ j decays to ν R ν R or ν R ν R out-of-equilibrium in early Universe. Ξ i ν c R,δ Ξ j ν R,α + ν c R,δ Ξ j ν c R,γ ν R,β ν c R,γ CP violation requires second scalar χ B L= 2. Y νr nν R 1 ( Γ(Ξ i ν R ν R ) Γ Ξi νr c R) νc s g Γ(Ξ i ν R ν R )+Γ ( Ξ i νr c ). νc R Asymmetry in ν R. How to translate to baryon asymmetry? Julian Heeck Neutrinos and Abelian Gauge Symmetries 14/ 43

18 Baryon Asymmetry Unflavored Symmetries Unbroken B L Majorana B L Dirac B L Dirac-Yukawa coupling Y ν = m ν / H too small to equilibrate ν R... Add second scalar doublet H 2 with large Yukawa LH 2 ν R : Neutrinophilic H 2 with small VEV H 2 1eV. 12 Dirac neutrinos light with large Yukawas. H 2 moves Y νr to Y νl. Sphalerons move Y νl to Y B. Different from neutrinogenesis! Necessary thermalization of ν R N eff > 3! 3.14 N eff 3.29 depending on H 2 + mass and Yukawa coupling. Specific collider signatures of neutrinophilic H E. Ma, PRL 86 (2001), F. Wang, W. Wang, J. M. Yang, EPL 76 (2006), S. Gabriel and S. Nandi, PLB 655 (2007). 13 Davidson and Logan, PRD 80 (2009), arxiv: Julian Heeck Neutrinos and Abelian Gauge Symmetries 15/ 43

19 Unflavored Summary Unflavored Symmetries Unbroken B L Majorana B L Dirac B L name (B L) neutrino BAU signatures Unbroken B L 0 Dirac neutrinogenesis Z (?), N eff 3 Majorana B L 2 Majorana leptogenesis 0ν2β Dirac B L > 2, e.g. 4 Dirac Dirac leptogenesis 0ν4β, N eff 3.14 B L mystery: global, local, unbroken, broken by 2, 4,...units? Currently testing: L = 2 via 0ν2β. L 4 way more challenging (experimentally and theoretically). Lepton number violation not synonymous with Majorana neutrinos. L = 4 lowest LNV of Dirac neutrinos. New Dirac leptogenesis (3.14 N eff 3.29). Julian Heeck Neutrinos and Abelian Gauge Symmetries 16/ 43

20 Let s add some flavor... Neutrino Hierarchies Texture Zeros Neutrinos and abelian flavor symmetries flavored {}}{ U(1) B L U(1) Le L }{{} µ U(1) Lµ L τ }{{} unflavored dark. Julian Heeck Neutrinos and Abelian Gauge Symmetries 17/ 43

21 Neutrino Mixing Unflavored Symmetries Neutrino Hierarchies Texture Zeros Pontecorvo Maki Nakagawa Sakata leptonic mixing matrix c 12 c 13 s 12 c 13 e iα s 13 e i(β δ CP ) U = c 23 s 12 s 23 s 13 c 12 e iδ CP (c 23 c 12 s 23 s 13 s 12 e iδ CP)e iα s 23 c 13 e iβ s 23 s 12 c 23 s 13 c 12 e iδ CP (s 23 c 12 + c 23 s 13 s 12 e iδ CP)e iα c 23 c 13 e iβ with [Gonzalez-Garcia et al, arxiv: ] sin 2 θ , Normal Inverted sin 2 θ , m ev 2, ν 3 m 2 21 ν 2 ν 1 sin 2 θ (NO) or sin 2 θ (IO), m ev 2 (NO) or m ev 2 (IO). ν 2 ν 1 m 2 32 m 2 21 ν e ν µ ν τ m 2 31 ν 3 Ordering (normal or inverted), absolute scale, phases? Why these values? Symmetries!? Julian Heeck Neutrinos and Abelian Gauge Symmetries 18/ 43

22 Neutrino Hierarchies Unflavored Symmetries Neutrino Hierarchies Texture Zeros Majorana mass matrix M ν = Udiag(m 1,m 2,m 3 )U T in special cases: 1 Normal hierarchy (m 1 0) and best-fit values (phases zero): M ν ev 0 L e Inverted hierarchy (m 3 0) and α = π/2: M ν ev 0 0 L e L µ L τ Quasi-degenerate (m 1,2,3 1eV) and β = π/2: M ν ev 0 0 L µ L τ Julian Heeck Neutrinos and Abelian Gauge Symmetries 19/ 43

23 Now what? Unflavored Symmetries Neutrino Hierarchies Texture Zeros Three interesting zeroth order approximations: M Le ν 0, M Le Lµ Lτ ν , M Lµ Lτ ν [G. Branco, W. Grimus, L. Lavoura, NPB (1989); S. Choubey, W. Rodejohann, EPJC 40 (2005)] Impose U(1) X to get M X ν, then slightly break it. Goldstone boson... Here: promote to local symmetry. Goldstone massive Z. Remember: SM +3ν R has anomaly free U(1) B L U(1) Le L µ U(1) Lµ L τ. Simply take U(1) B 3Le, U(1) B+3(Le L µ L τ), or U(1) Lµ L τ? Julian Heeck Neutrinos and Abelian Gauge Symmetries 20/ 43

24 Wrong end of the seesaw Neutrino Hierarchies Texture Zeros Imposing U(1) B 3Le gives L e symmetric M R, but not L e symmetric because M Le R not invertible! Weird coincidence: M Le Lµ Lτ R M ν m T DM 1 R m D, ε 1 1 ε ε M ν M 1 ε R ε 2 ε ε L e L µ L τ gives approximate L e symmetry after seesaw! Broken U(1) B+3(Le L µ L τ) (say ε = 0.05) gives normal hierarchy. 14 (Inverted hierarchy requires additional Z 2 symmetry.) 14 J.H. and W. Rodejohann, PRD 85, (2012) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 21/ 43

25 Mixing Angles and Collider Neutrino Hierarchies Texture Zeros U(1) B+3(Le L µ L τ) broken by scalar S 6 in RHN sector: S ν c R,1ν R,1, S ν c R,2ν R,2, S ν c R,2ν R,3, S ν c R,3ν R,3 M R S. VEV v S ε M R gives: sin 2 Θ sin 2 Θ 13 µ and τ same U(1) charge: θ 23 random (large...). LEP-II constraint on U(1) B+3(Le L µ L τ): v S > 2.3TeV, LHC prospects in [H. S. Lee and E. Ma, PLB 688 (2010)]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 22/ 43

26 Neutrino Hierarchies Texture Zeros L µ L τ Anomaly free in SM even without ν R. 15. M Lµ Lτ invertible Seesaw gives L µ L τ symmetric M ν. Add one or two scalars S that couple to ν c R,i ν R,j and get a VEV. VEV fills zeros in M R and M ν and gives mass to Z boson M Z /g S. No Z coupling to first generation Weak limits for heavy Z : M Z /g > 550GeV at 95% C.L. from trident production at CCFR ν µ N ν µ N ν µ Nµ + µ. 16 Light Z (below 400MeV) can resolve muon s magnetic moment anomaly Foot (1991), He, Joshi, Lew, Volkas (1991). 16 Altmannshofer Gori, Pospelov, Yavin, PRD 89 (2014) [arxiv: ]. 17 Altmannshofer Gori, Pospelov, Yavin, PRL 113 (2014) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 23/ 43

27 Neutrino Hierarchies Texture Zeros L µ L τ Two scalars, ε = v S / M R = 0.02: 0.36 sin 2 Θ sin 2 Θ sin 2 Θ 13 sin 2 Θ 13 Julian Heeck Neutrinos and Abelian Gauge Symmetries 24/ 43

28 Neutrino Hierarchies Texture Zeros L µ L τ and Lepton Flavor Violation LFV in charged leptons if we break L µ L τ with a scalar doublet. 18 Can source h µτ. 19 SM-like doublet Φ 2, new doublet Φ 1 with L µ L τ charge 2, and singlet S with +1: V(Φ 1,Φ 2,S) = m 2 1 Φ λ 1 2 Φ 1 4 m 2 2 Φ λ 2 2 Φ 2 4 +λ 3 Φ 1 2 Φ 2 2 +λ 4 Φ 1 Φ2 2 µ 2 S S 2 + λ S 2 S 4 +λ Φ1 S Φ 1 2 S 2 +λ Φ2 S Φ 2 2 S 2 δ S 2 Φ 2Φ1 +h.c. S heavy and large VEV: 2HDM with softly broken U(1): V(Φ 1,Φ 2) m 2 1 Φ λ 1 2 Φ 1 4 m 2 2 Φ λ 2 2 Φ 2 4 +λ 3 Φ 1 2 Φ 2 2 +λ 4 Φ 1 Φ2 2 m3φ 2 2Φ1 +h.c. Small VEV for Φ 1 : Φ 1 Φ 2 m 2 3 /m2 1 δ Φ 2 S 2 /m J.H., Rodejohann, PRD 84 (2011) [arxiv: ]. 19 J.H., Holthausen, Rodejohann, Shimizu, arxiv:1411.xxxx. Julian Heeck Neutrinos and Abelian Gauge Symmetries 25/ 43

29 Yukawa Structure Unflavored Symmetries Neutrino Hierarchies Texture Zeros L Y = L L Y l1 Φ 1 l R +L L Y N1 Φ 1 N R with matrices +L L Y l2 Φ 2 l R +L L Y N2 Φ 2 N R +Q L Y u Φ 2 u R +Q L Y d Φ 2 d R Nc RM N N R Nc RY S1 SN R Nc RY S2 SN R +h.c. Y l2 = diag(y e,y µ,y τ ), Y N2 = diag(y 1,y 2,y 3 ), Y l1 = 0 0 0, Y N1 = 0 0 ξ ξ τµ a 13 0 a 12 0 M N = M M 2,Y S1 = 0 0 0, Y S2 = a a M 2 Julian Heeck Neutrinos and Abelian Gauge Symmetries 26/ 43

30 Charged Lepton Masses Neutrino Hierarchies Texture Zeros M e = v 2 y e s β y µ s β ξ τµ c β y τ s β V el diag(m e,m µ,m τ )V e R, with tanθ L tanθ R = m µ m τ 1 and sinθ R v m τ ξ τµ 2 cosβ. SM-like scalar h couples y diag(m e,m µ,m τ ) c α vs β } {{ } type-i 2HDM s R m τ v cos(α β) c β s β 0 c R s L s L s R c L c R c L s R. Only LFV in µ τ sector, quarks and electrons save! Julian Heeck Neutrinos and Abelian Gauge Symmetries 27/ 43

31 h µτ Unflavored Symmetries Neutrino Hierarchies Texture Zeros S S Φ2 S S τ Φ1 µ µ + Φ2 τ Φ2 Φ1 τ CMS 2.5σ excess in h µτ for 20 yτµ h = mτ v cos(α β) c β s β c R c L s R cos(α β) s β c β c R s R! Either c β,s R 1 and ξ τµc α β , or larger s R and correlations with h ττ, µµ: ( ) 2 BR(h ττ) cα y h v τµ t R (1±0.4 t R ) 2, BR(h ττ) SM s β m τ compared to 0.78±0.27 (CMS) or (ATLAS). 20 J.H., Holthausen, Rodejohann, Shimizu, arxiv:1411.xxxx. Julian Heeck Neutrinos and Abelian Gauge Symmetries 28/ 43

32 One step further: texture zeros Neutrino Hierarchies Texture Zeros U(1) B L U(1) Le L µ U(1) Lµ L τ subgroups forbid entries in M R texture zeros! 21 Choose subgroup so that some entries are allowed, others filled by S, e.g. B L e +L µ 3L τ with Y (S) = 2: M R = M S M 1 ν. 0 Dirac matrices diagonal by symmetry, so M R M 1 ν. Texture zeros imply testable correlations among neutrino parameters, seven out of 15 two-zero patterns currently viable. 21 J.H., Araki, Kubo, JHEP 1207 (2012) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 29/ 43

33 Neutrino Hierarchies Texture Zeros Simplest U(1) models with just one scalar With just one scalar S, we can get five of the seven valid patterns: 22 Symmetry generator Y Y (S) Texture zeros in M R Texture zeros in M ν L µ L τ 1 (M R ) 33, (M R ) 22 (C R ) B L e +L µ 3L τ 2 (M R ) 33, (M R ) 13 (B R 4 ) (Mν) 12, (M ν) 22 (B ν 3 ) B L e 3L µ +L τ 2 (M R ) 22, (M R ) 12 (B R 3 ) (Mν) 13, (M ν) 33 (B ν 4 ) B +L e L µ 3L τ 2 (M R ) 33, (M R ) 23 (D R 2 ) (Mν) 12, (M ν) 11 (A ν 1 ) B +L e 3L µ L τ 2 (M R ) 22, (M R ) 23 (D R 1 ) (Mν) 13, (M ν) 11 (A ν 2 ) Many patterns are hard to distinguish via neutrino experiments, e.g. D R 1 and D R 2, but the symmetries B +L e 3L µ L τ and B +L e L µ 3L τ are very different new possibilities to disentangle texture zeros. More scalars or discrete Z N subgroups can generate other allowed patterns. 22 J.H., Araki, Kubo, JHEP 1207 (2012) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 30/ 43

34 Flavored Summary SM+3ν R has anomaly free local U(1) B L U(1) Le L µ U(1) Lµ L τ. Can use subgroups to influence Neutrino hierarchies: U(1) B+3(Le L µ L τ) for normal hierarchy, (U(1) B+3(Le L µ L τ) Z 2 for inverted hierarchy,) U(1) Lµ L τ for quasi-degenerate. Texture zeros in M ν or M 1 ν. Specific LFV modes, e.g. h µτ via L µ L τ. (Z pheno on top: muon s magnetic moment, leptophilic DM,...) Very simple models, surprisingly potent framework! Julian Heeck Neutrinos and Abelian Gauge Symmetries 31/ 43

35 Sterile Neutrinos Dark Matter and Light Sterile Neutrinos Neutrinos and dark gauge symmetries flavored {}}{ U(1) B L U(1) Le L }{{} µ U(1) Lµ Lτ }{{} unflavored dark. LSND, MiniBooNE: ν S with ev mass and mixing U as 0.1? Tension appearance vs. disappearance... Tension with cosmology... [Kopp, Neutrino 2014] If we ever observe a sterile neutrino, it s lighter than expected (10 9 GeV). Why? Julian Heeck Neutrinos and Abelian Gauge Symmetries 32/ 43

36 How to make ν s light? Unflavored Symmetries Sterile Neutrinos Dark Matter Isn t new physics always at TeV? Use seesaw partners ν R as steriles: ev-seesaw ( ) 0 md M = m T D M R with m D 0.1eV, M R 1eV. [de Gouvêa, PRD (2005)] Active sterile mixing automatically large: U as m D /M R m ν /m s 0.1. Minimal 3+2 scheme: two ν R at ev scale, works fine. [Donini, Schwetz et al., JHEP (2012)] Just throw in random O(1) couplings: sterile neutrino anarchy. [JH, Rodejohann, PRD (2013)] The heavy ev-scale suppresses the light 0.1 ev? Julian Heeck Neutrinos and Abelian Gauge Symmetries 33/ 43

37 How to make ν s light? II Sterile Neutrinos Dark Matter Put ν s on the other side of the seesaw: ν α ν s ν R Suppressed BY seesaw: need additional right-handed singlet S and mass matrix for (ν α, ν c R,j, Sc ) 0 m D 0 M MES = md T M R m S. 0 ms T 0 Minimal Extended Seesaw (MES) [Chun, Joshipura, Smirnov, PLB (1995), Babu, Seidl, PRD,PLB (2004), Barry, Rodejohann, Zhang, JHEP (2011), Zhang, PLB (2012)] Works also for 3+2, 3+3,..., just add more singlets. Julian Heeck Neutrinos and Abelian Gauge Symmetries 34/ 43

38 Minimal extended seesaw Sterile Neutrinos Dark Matter m D 0 M MES = md T M 3 3 R m S 0 ms T Assume M R m D,m S, usual seesaw: ( (md M 1 R mt D )3 3 M 4 4 ν m T S M 1 R mt D m D M 1 R m S (m T S M 1 R m S) 1 1 ). all masses suppressed by seesaw scale M R GeV. sterile mass m 4 1 ev for m S 5 10m D. active sterile mixing U as = O(m D /m S ) automatically right. SBL sterile neutrinos. Great, but how to get MES structure? Julian Heeck Neutrinos and Abelian Gauge Symmetries 35/ 43

39 How to get MES Unflavored Symmetries Sterile Neutrinos Dark Matter Need and forbid couplings L H ν R, m S S c ν R, M R ν c R ν R L H S, S c S. Flavor symmetry A 4 Z 4 (messy...). [Zhang, PLB (2012)] Abelian gauge symmetry U(1) : simple, but need additional fermions to cancel anomalies. [Babu, Seidl, PLB (2004)] Cancel anomalies, make new fermions massive, and not disturb MES structure? With few scalars? Yes! Julian Heeck Neutrinos and Abelian Gauge Symmetries 36/ 43

40 Magic numbers Unflavored Symmetries Sterile Neutrinos Dark Matter ν R,1 ν R,2 ν R,3 S 1 S 2 S 3 S 4 S 5 S 6 S 7 φ Y Mass matrix has nice block structure: ( ) (MMES ) M = (M S ) 6 6 with 0 y 1 φ y 1 φ M S = y 2 φ y 2 φ y 3 φ y 3 φ 0. S 1 gives MES, S 2,3,4,5,6,7 decouple and form 3 Dirac fermions Ψ 1,2,3! Julian Heeck Neutrinos and Abelian Gauge Symmetries 37/ 43

41 More numbers Unflavored Symmetries Sterile Neutrinos Dark Matter Happy accident : φ breaks U(1) to Z 11. all three Ψ j stable! Active sterile mixing V 4j O(m D /m S )! = O(0.1). For O(1) Yukawas U(1) breaking at φ 10 H TeV. masses for Z, Re(φ), Ψ 1,2,3 around 100GeV TeV. Multicomponent stable dark matter. Breakdown of neutral fermions: seesaw/leptogenesis Ψ 1 {}}{{}}{{}}{{}}{ ν e,ν µ,ν τ,s 1, ν R,1,ν R,2,ν R,3, S 2,S 3, S 4,S 5, S 6,S }{{}}{{} 7 (3+1) MES DM Ψ 2 Ψ 3 Julian Heeck Neutrinos and Abelian Gauge Symmetries 38/ 43

42 Dark matter interactions Sterile Neutrinos Dark Matter Lagrangian: ( [iψ j γ µ µ Ψ j M j 1+ Re(φ) ) Re(φ) j Ψ j Ψ j + g 2 Z µψ j γ µ( g V j +g A j γ 5 ) Ψj ] with g V 1 = 1, gv 2 = 13, gv 3 = 7, ga 1 = 11, ga 2 = 11, ga 3 = 11. Connection to the Standard Model just like all other U(1) DM models: Scalar mixing (Higgs portal): L δ H 2 φ 2 Ψ j couple to Brout Englert Higgs boson. Vector mixing (kinetic-mixing portal): L sinξ F µν Y F µν Ψ j couple to Z boson. New: Fermion mixing (neutrino portal): L 11g 2 Z µ i,j=1 4 V4iV 4j (ν i γ µ γ 5 ν j +ν i γ µ ν j ). Julian Heeck Neutrinos and Abelian Gauge Symmetries 39/ 43

43 Neutrino portal Unflavored Symmetries Sterile Neutrinos Dark Matter M R GeV ν R,j φ Z, φ DM : Ψ i Ψ j TeV Z Z H φ H 100 GeV SM Z ev W, Z ν α V 4j ν s Julian Heeck Neutrinos and Abelian Gauge Symmetries 40/ 43

44 Relic density via neutrino portal Sterile Neutrinos Dark Matter Relic density via annihilation ΨΨ Z ν s ν s into sterile neutrinos M = M = M = 800 GeV M = 500 GeV M = 600 GeV M = 800 GeV 10 0 M = 1 TeV M = 500 GeV h h M Z' [GeV] M Z' [GeV] Direct detection is loop-suppressed: m 2 41 /(100GeV) Indirect detection: BR(ΨΨ νν) 100% gives monochromatic neutrinos from Galactic halo. Too small for IceCube... Including Higgs portal and kinetic-mixing portal gives the usual measurable effects. Julian Heeck Neutrinos and Abelian Gauge Symmetries 41/ 43

45 Dark Summary Unflavored Symmetries Sterile Neutrinos Dark Matter Additional right-handed neutrinos with exotic charges under a broken U(1) can generate structure in neutral fermions. Here: generate seesaw-suppressed sterile neutrino. Magic numbers: necessary anomaly-cancelling fermions form multicomponent DM. Gauge interactions open new SM DM portal through sterile neutrinos. Huge unexplored playground! Other charges: 3+2, 3+3, Majorana DM, unstable DM,... Julian Heeck Neutrinos and Abelian Gauge Symmetries 42/ 43

46 Conclusion Unflavored Symmetries Sterile Neutrinos Dark Matter Abelian gauge symmetries U(1) versatile framework. Simple, minimalistic, renormalizable. SM-motivated symmetries flavored {}}{ U(1) B L U(1) Le L }{{} µ U(1) Lµ L τ }{{} unflavored dark connected to neutrino properties: B L for Majorana vs. Dirac and leptogenesis. B L only possible unbroken symmetry acting on SM particles. L µ L τ, B +3(L e L µ L τ),...for hierarchies, mixing angles, texture zeros, LFV, h µτ, muon s magnetic moment, R-parity,... Dark U(1) for sterile neutrino pheno, dark matter stability and abundance,.... Julian Heeck Neutrinos and Abelian Gauge Symmetries 43/ 43

47 Conclusion Unflavored Symmetries Sterile Neutrinos Dark Matter Abelian gauge symmetries U(1) versatile framework. Simple, minimalistic, renormalizable. SM-motivated symmetries flavored {}}{ U(1) B L U(1) Le L }{{} µ U(1) Lµ L τ }{{} unflavored dark connected to neutrino properties: B L for Majorana vs. Dirac and leptogenesis. B L only possible unbroken symmetry acting on SM particles. L µ L τ, B +3(L e L µ L τ),...for hierarchies, mixing angles, texture zeros, LFV, h µτ, muon s magnetic moment, R-parity,... Dark U(1) for sterile neutrino pheno, dark matter stability and abundance,... Merci! Julian Heeck Neutrinos and Abelian Gauge Symmetries 43/ 43.

48 How to check for L = 4? Sterile Neutrinos Dark Matter Neutrinoless quadruple beta decay 23 (A,Z) (A,Z +4)+4e e.g. via O L=4 = (ν c L ν L) 2 /Λ 2 : d d u u W e ν ν ν ν W e e e d u d u Collider process e e W W W W l + l +. Rare meson decays etc.? 23 J.H. and W. Rodejohann, EPL 103, (2013) [arxiv: ]. Julian Heeck Neutrinos and Abelian Gauge Symmetries 44/ 43

49 Candidate Nuclei for 0ν4β Sterile Neutrinos Dark Matter Q 0ν4β Other decays NA/% 96 40Zr 96 44Ru MeV τ 2ν2β 1/ y Xe Ce MeV τ 2ν2β 1/ y Nd Gd MeV τ 2ν2β 1/ y 5.6 Q0ν4β Mass 2β 0ν4β 2β + Z 0 2 Z 0 Z 0 +2 Z Julian Heeck Neutrinos and Abelian Gauge Symmetries 45/ 43

50 Sterile Neutrinos Dark Matter Best Candidate: Neodymium 150 Nd Decay channels: Nd Sm via 2ν2β (τ 2ν2β 1/ y): the two electrons have a continuous energy spectrum and total energy E e,1 +E e,2 < 3.371MeV Nd Gd via 0ν4β. Four electrons with continuous energy spectrum and summed energy Q 0ν4β = 2.079MeV are emitted. In this special case, the daughter nucleus is α-unstable with half-life τ1/2( α Gd Sm) y. Decay rate 2ν2β 0ν4β 0ν2β Q 0ν4β Q 0ν2β Energy 0ν4β kinematically allowed, but expected rates unobservable. Julian Heeck Neutrinos and Abelian Gauge Symmetries 46/ 43

51 Texture Zeros Unflavored Symmetries Sterile Neutrinos Dark Matter Take M ν and set two independent entries to zero four constraints on the nine low-energy parameters (m 1,m 2,m 3 ), (θ 23,θ 12,θ 13 ) and (δ,α,β) (CP violating phases) 15 two-zero textures possible, only 7 allowed at 3σ: [H. Fritzsch et al, JHEP 1109 (2011)] A ν 1 : 0 0 0, A ν 2 : 0 0, B ν 1 : 0 0, B ν 2 : 0 0, B ν 3 : 0 0 0, B ν 4 : 0, C ν : Julian Heeck Neutrinos and Abelian Gauge Symmetries 47/ 43

52 Vanishing Minors Unflavored Symmetries Sterile Neutrinos Dark Matter Same idea, but with M 1 ν instead of M ν. Seven patterns for M 1 ν allowed: D R 1 : 0 0, D R 2 : 0, B R 3 : 0 0, B R 4 : 0, 0 0 B R 1 : 0 0, B R 2 : 0, C R : Two-zero texture in M 1 ν corresponds to two vanishing minors in M ν. E.g. 0 M 1 = 0 0 M 11 M 13 M 31 M 33 = 0 = M 21 M 22 M 31 M 32 Julian Heeck Neutrinos and Abelian Gauge Symmetries 48/ 43

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

Outline: Introduction: The LHC flavour anomalies

Outline: Introduction: The LHC flavour anomalies Andreas Crivellin Lepton Flavour Universality Violation in decays and New Physics Supported by a Marie Curie Intra-European Fellowship of the European Community's 7th Framework Programme under contract

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

Lepton Flavor Violation

Lepton Flavor Violation Lepton Flavor Violation I. The (Extended) Standard Model Flavor Puzzle SSI 2010 : Neutrinos Nature s mysterious messengers SLAC, 9 August 2010 Yossi Nir (Weizmann Institute of Science) LFV 1/39 Lepton

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles Marco Drewes, Université catholique de Louvain The Other Neutrinos 21.12.2017 IAP Meeting Université libre de Bruxelles The Standard Model of Particle 125 GeV The periodic table of elementary particles

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries Minimal Neutrinoless Double Beta Decay Rates from Anarchy and When is Γ ββ0ν unobservably small? Theoretical Division, T-2 Los Alamos National Laboratory Institute for Nuclear Theory, Seattle References

More information

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Right-Handed Neutrinos as the Origin of the Electroweak Scale Right-Handed Neutrinos as the Origin of the Electroweak Scale Hooman Davoudiasl HET Group, Brookhaven National Laboratory Based on: H. D., I. Lewis, arxiv:1404.6260 [hep-ph] Origin of Mass 2014, CP 3 Origins,

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Debasish Borah. (Based on with A. Dasgupta)

Debasish Borah. (Based on with A. Dasgupta) & Observable LNV with Predominantly Dirac Nature of Active Neutrinos Debasish Borah IIT Guwahati (Based on 1609.04236 with A. Dasgupta) 1 / 44 Outline 1 2 3 4 2 / 44 Evidence of Dark Matter In 1932, Oort

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

B-physics and other anomalies as hints for new physics

B-physics and other anomalies as hints for new physics B-physics and other anomalies as hints for new physics Julian Heeck 26.9.2015 IPP15, Tehran, Iran Based on work in collaboration with Andreas Crivellin, Giancarlo D Ambrosio, Peter Stoffer, Martin Holthausen,

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Electroweak baryogenesis from a dark sector

Electroweak baryogenesis from a dark sector Electroweak baryogenesis from a dark sector with K. Kainulainen and D. Tucker-Smith Jim Cline, McGill U. Moriond Electroweak, 24 Mar., 2017 J. Cline, McGill U. p. 1 Outline Has electroweak baryogenesis

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Lepton non-universality at LEP and charged Higgs

Lepton non-universality at LEP and charged Higgs Lepton non-universality at LEP and charged Higgs Jae-hyeon Park TU Dresden Institutsseminar TU Dresden, 13.10.2011 Standard Model L SM = 1 4 F F+ ψi/dψ [H ψ L Y ψ R+ h.c.] + g2 θ 32π 2 F F+ DH 2 V(H) Omitted:

More information

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry Yoshihiro Shigekami KEK HUST ( 華中科技大学 ), Wuhan ( 武漢 ) Syuhei Iguro (Nagoya U.), Yu Muramatsu (CCNU), Yuji Omura (Nagoya

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles Technicolor Dark Matter Chris Kouvaris Université Libre de Bruxelles Dynamical Symmetry breaking: The motivation for Technicolor Long time before QCD BCS showed that the Fermi surfaces are unstable to

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Updated S 3 Model of Quarks

Updated S 3 Model of Quarks UCRHEP-T56 March 013 Updated S 3 Model of Quarks arxiv:1303.698v1 [hep-ph] 7 Mar 013 Ernest Ma 1 and Blaženka Melić 1, 1 Department of Physics and Astronomy, University of California, Riverside, California

More information

Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments

Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments Search for Lμ-Lτ gauge boson at Belle-II and Neutrino beam experiments Takashi Shimomura (Miyazaki U.) in collaboration with Yuya Kaneta (Niigata U.) On the possibility of search for Lμ Lτ gauge boson

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti C. Giunti Status of Light Sterile Neutrinos EPS-HEP 05 3 July 05 /5 Status of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica, Università di Torino giunti@to.infn.it

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

CP Violation Predictions from Flavour Symmetries

CP Violation Predictions from Flavour Symmetries CP Violation Predictions from Flavour Symmetries Arsenii V. Titov in collaboration with Ivan Girardi and Serguey T. Petcov SISSA and INFN, Trieste, Italy Neutrino Oscillation Workshop 016 September 6,

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Search for Lμ-Lτ gauge boson at Belle-II

Search for Lμ-Lτ gauge boson at Belle-II Search for Lμ-Lτ gauge boson at Belle-II Takashi Shimomura (Miyazaki U.) in collaboration with Yuya Kaneta (Niigata U.) On the possibility of search for Lμ Lτ gauge boson at Belle-II and neutrino beam

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Gauge Theories for Baryon Number.

Gauge Theories for Baryon Number. Gauge Theories for Baryon Number. Michael Duerr International Workshop on Baryon and Lepton Number Violation 2017 (BLV 2017) Case Western Reserve University, 18 May 2017 Thanks to my collaborators. This

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Discrete dark matter mechanism

Discrete dark matter mechanism Journal of Physics: Conference Series OPEN ACCESS Discrete dark matter mechanism To cite this article: E Peinado 2014 J. Phys.: Conf. Ser. 485 012026 View the article online for updates and enhancements.

More information

Directions for BSM physics from Asymptotic Safety

Directions for BSM physics from Asymptotic Safety Bad Honnef- 21.6.2018 Directions for BSM physics from Asymptotic Safety phenomenology connecting theory to data Gudrun Hiller, TU Dortmund q f e DFG FOR 1873 et 1 Asymptotic Safety pheno for cosmology

More information

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking Shao-Feng Ge (gesf02@mails.thu.edu.cn) Center for High Energy Physics, Tsinghua Univeristy 200-4-8 Collaborators: Hong-Jian

More information

Neutrino Oscillations And Sterile Neutrinos

Neutrino Oscillations And Sterile Neutrinos Neutrino Oscillations And Sterile Neutrinos Keshava Prasad Gubbi University of Bonn s6nagubb@uni-bonn.de May 27, 2016 Keshava Prasad Gubbi (Uni Bonn) Neutrino Oscillations,Sterile Neutrinos May 27, 2016

More information

Invisible Sterile Neutrinos

Invisible Sterile Neutrinos Invisible Sterile Neutrinos March 25, 2010 Outline Overview of Sterile Neutrino Dark Matter The Inert Doublet Model with 3 Singlet Fermions Non-thermal Dark Matter Conclusion Work done in collaboration

More information

Phenomenology of the Higgs Triplet Model at the LHC

Phenomenology of the Higgs Triplet Model at the LHC Phenomenology of the Higgs Triplet Model at the LHC Andrew Akeroyd SHEP, University of Southampton, UK Higgs Triplet Model (HTM) and doubly charged scalars (H ±± ) The decay channel H 1 γγ and contribution

More information

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra Electromagnetic Leptogenesis at TeV scale Sudhanwa Patra Physical Research Laboratory, INDIA Collaboration with Debjyoti Choudhury, Namit Mahajan, Utpal Sarkar 25th Feb, 2011 Sudhanwa Patra, NuHorizon-IV,

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Investigating Beyond Standard Model

Investigating Beyond Standard Model Investigating Beyond Standard Model Joydeep Chakrabortty Physical Research Laboratory TPSC Seminar, IOP 5th February, 2013 1/35 Standard Model A Brief Tour Why BSM? BSM Classification How do we look into

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information