P (A B ) = P (B ) =.58

Size: px
Start display at page:

Download "P (A B ) = P (B ) =.58"

Transcription

1 Review Exam 1 This is a sample of problems that would be good practice for the exam. This is by no means a guarantee that the problems on the exam will look identical to those on the exam but it should give you an idea of the level of difficulty and the scope of the topics that will be covered. On your exam there will be space for you to complete the problems. 1. In an IT department 25% of all calls to the help desk are about and 42% of calls are about passwords. Let A be the event that the next call to the help desk is about and let B be the event that the next call is about a password problem. Compute P (B ), P (A B ) and P (A B ). State any assumptions you make. Solutions: First before I compute any of the quantities I am assuming that the intersection of A and B is the empty set. Namely, the next call to the help desk cannot be bot about and passwords. Thus P (A B) = 0. Now it is essentially given that P (B) =.42. This P (B ) = 1 P (B) = 1.42 =.58. Next we note that since A does not intersect B then all of A is not in B or A B = B since there are no elements that are in A that are not also in B. Consequently, P (A B ) = P (B ) =.58 To compute P (A B ) we note that A B = (A B) and thus, P (A B ) = 1 P (A B) = 1 [P (A) + P (B) P (A B)] Since P (A B) = 0 we then have: P (A B ) = 1 P (A) P (B) = = Suppose that a box contains 3 green, 4 blue, and 5 red balls. Mary first selects a ball and after Mary has chosen Jim chooses a ball. Let G 1, R 1 and B 1 be the events that Mary chooses a green, red or blue ball respectively. Similarly define G 2, B 2 and R 2 as the event that Jim chooses a green, blue or red ball respectively. (a) Let E be the event that Jim chooses a red ball but Marry does not. Express E in terms of the events defined above and then compute P (E). Solution: The event E = R 2 R 1. and P (R 2 R 1 ) = P (R 1 )P (R 2 R 1 ) = = Here I have used that if R 1 occurs then thee are still 5 red balls remaining out of the total 11 balls that remain after Mary has chosen, thus P (R 2 R 1 ) = 5/11.

2 (b) What is the probability that Jim chooses a red ball if it is known that Mary chose Green? Solution: The If Mary chooses Green then there are 11 balls left in the box and 5 of them are red, thus P (R 2 G 1 ) = 5/11. (c) What is the probability that Mary chose a red ball if it is known that Jim chose a red ball? Solution: Here we use Bayes Theorem where our mutually exclusive, exhaustive events are R 1, G 1 and B 1. We seek to compute P (R 1 R 2 ). Applying Bayes Theorem we have: P (R 1 R 2 ) = = P (R 1 )P (R 2 R 1 ) P (R 1 )P (R 2 R 1 ) + P (B 1 )P (R 2 B 1 ) + P (G 1 )P (R 2 G 1 ) = Prove that if P (A B) = P (A) then P (B A) = P (B). = Solution: Assume that P (A B) = A. By definition of conditional probability we have that: P (B A) = P (A B) P (A) Now by the multiplication rule, P (A B) = P (B)P (A B). Thus, P (B A) = P (B)P (A B) P (A) By our assumption P (A B) = P (A). Thus, This proves the desired result. P (B A) = P (B) P (A) P (A) = P (B)

3 4. Suppose that a clinical trial is being performed to test side effects of a drug meant to lower cholesterol. It is known that 50% of all people have normal (N) cholesterol, 20% have low (L) cholesterol and 30% have high (H) cholesterol. It is also known that the drug causes headaches in 30% of those with normal cholesterol, in 90% of those with low cholesterol and in 2% of those with high cholesteral. (a) What is the probability that a randomly selected person has both high cholesterol and gets a headache from using the drug? Solution: First define some events: H = { a randomly selected person has high cholesterol} N = { a randomly selected person has normal cholesterol} L = { a randomly selected person has low cholesterol} A = { a randomly selected person gets a headache from the drug} In this part of the question you are asked to compute P (H A). To do this we use the multiplication rule. P (H A) = P (H)P (A H) = (.3)(.02) =.006. (b) What is the probability that if randomly selected person is known to get headaches from the drug that they have high cholesterol? Solution: We are asked to compute P (H A). Note that H, L and A are mutually exclusive and exhaustive events. Consequently we can use Bayes Theorem which tells us that: P (H)P (A H) P (H A) = P (H)P (A H) + P (N)P (A N) + P (L)P (A L). Note that in the statement of the problem it is given that P (N) =.5, P (L) =.2 and P (H) =.3. IT is also given that P (A N) =.3, P (A L) =.9 andp (A H) =.02. Substituting these values in to Bayes formula gives: P (H A) = (.3)(.02).3(.02) +.5(.3) +.2(.9) =

4 5. A certain factory produces glass pipets for use in laboratories. Unfortunately these pipets are useless if they have any imperfections and they are very difficult to produce. Suppose that any pipet that comes off the assembly has no imperfections with probability.92. (a) If pipets are shipped in boxes of 24 what is the probability that the box has no imperfections? Solution: Let A i = { the i th pipet put into the box has no imperfection}. Since the probability that any pupet has no imperfections is independent of any other then we have that: P (A 1 A 2... A 24 ) = P (A 1 )P (A 2 )... P (A 24 ) = (.92)(.92)... (.92) = (.92) (b) If pipets are shipped in boxes of 24 what is the probability that a box has at least one imperfection? Solution: The event that at least one pipet has an imperfection is the complement of the event that non have imperfections. The probability that non have imperfections was computed above, thus we have that, P (at least one has an imperfection} = 1 (.92) (c) If pipets are shipped in boxes of 24 what is the probability that a box has exactly 4 with imperfections? Solution: The probability that the 1 st four put in the box are defective could be written as: P (A 1 A 2 A 3 A 4 A 5 A 6... A 24 ) = P (A 1)P (A 2)P (A 3)P (A 4)p(A 5 )P (A 6 )... P (A 24 ) = (.08) 4 (.92) However, the four that are defective are equally likely to be any four. And there are ( ) 24 4 different ways to select which of the four are defective. Thus the each of these events is just as likely to occur as the one with the first four being defective, this the total probability for this situation is: P (exactly four are defective) = ( ) 24 (.08) 4 (.92)

5 6. Anxiety disorders and symptoms can often be effectively treated with benzodiazepine medications. It is known that animals exposed to stress exhibit a decrease in benzodiazepine receptor binding in the frontal cortex. The paper Decreased Benzodiazepine Receptor Binding in Prefrontal Cortex in Combat-Related Post-traumatic Stress Disorder (Amer. J. of Psychiatry, 2000: ) described the first study of benzodiazepine receptor binding in individuals suffering from PTSD. The accompanying data on a receptor binding measure (adjusted) was read from a graph in the paper. PTSD : 7, 20, 25, 28, 31, 35, 37, 38, 39, 39, 42, 46 (a) Find the sample mean, sample median, sample standard deviation, fourth spread and 25% trimmed mean for this data set. The sample mean is given by: x = = The sample median is the average of the 6 th and 7 th largest values since there are 12 total observations. Since the observations are already ordered this means taking the average of 35 and 37. Thus: x = 36. The sample standard deviation can be computed by: x 2 i s = (P x i ) 2 n n 1 In this case n = 12 thus we have: ( )2 12 s = 11 Computing this gives: s = The fourth spread is computed by taking the difference of the lower and upper fourths. The upper fourth is the median of the 6 largest values. This it is the average of 39 and 39, thus the upper fourth is 39. Similarly the lower fourth is the median of the 6 smallest values which in this case is the average of 25 and 28 giving that the lower fourth is The fourth spread is the difference of these. Namely, f s = = 12.5 To compute the 25% trimmed mean we first note that 25% of 12 is 3, thus we disregard the largest 3 values and the smallest three values and average the remaining giving: x 25% trim =

6 (b) Draw a stem and leaf diagram for this data. Solution: The stem is the tens digit and the leaf is the ones digit (c) What is the general shape. The shape seems to be unimodal and perhaps slightly negatively skewed (which is also confirmed since the mean is less than the median). The peek is somewhere around 3 and there seems to be a gap between 7 and 20. (d) Decide if any of the data points are outliers or extreme outliers. Outliers are values that are more then 1.5(f s ) below the lower fourth or more then 1.5(f s ) above the upper fourth. 1.5(f s ) = (1.5)(12.5) = The lower fourth is 26.5 and = Since 7 is below this value it is an outlier = There are no values above this so there are no outliers at the upper end. Now we should check that 7 is or is not an extreme outlier as well. In order to be an extreme outlier it would need to be more then 3f s = 3(12.5) = 37.5 below the lower fourth, but = 11. Seven is certainly greater than this, so there are no extreme outliers. (e) Draw a box plot for this data

7 7. Suppose that 5 couples are seated in 10 chairs on one side of a rectangular table and that each person is equally likely to be sitting in any seat. (a) Find the probability that every couple sits next to each other. Solution: First note that there are 10! possibilities of how the 10 people could sit at the table. There are numerous ways to count the total possibilities of arrangements where all the couples are seated next to each other. One way to think about it is to first order the 5 couples in 5! ways and then within each couple order the couple or 2 5 ways. Thus a total of 2 5 5! ways. Another way to think about it is to seat the first person (10 possible choices). There is then only one person (the spouse of the first person) that can sit in the second seat. For the third seat there is now 8 choices, and so on giving, possible choices. The total probability for all the couples seated next to their spouse is: ! = (b) Find the probability that Joe and Sally (husband and wife) sit next to each other. Again there are several ways to think about this problem. One way is to think about Joe and Sally as one unit and there are 8 other units. So we must order the 9 units in 9! ways and then order Joe and Sally in their unit in 2 ways giving 9! 2 total possible ways in which Joe and Sally sit next to each other. Thus the probability that they sit next to each other is: 9!2 10! = 2 10 =.2 Another way of thinking about it is to define the event A = { Joe is seated in an end seat}. and N = { Joe and Sally are seated next to each other}. Using the law of total probability we have that: P (N) = P (A)P (N A) + P (A )P (N A ) Since Joe is equally likely to sit in any seat then P (A) = 2/10 and P (A ) = 8/10. If Joe is seated in an end seat then there is only one seat in which Sally would be sitting next to him. Since she is equally likely to be in any of the other seats then P (N A) = 1/9. Moreover, if Joe is not in an end seat there are two choices of seats in which Sally could be seated next to him, this P (N A ) = 2/9. The total probability is then: P (S) = (.2)(1/9) + (8/10)(2/9) = 18/90 =.2 A third way to think about it is that there are 10 9 Possible choices of the seats that Joe and Sally could be seated in. If they are to be seated together then there are 9 choices of the seats that they could be in ((one and two), (two and three), (three and four), (four and five), (five and six), (six and seven), (seven and eight), (eight and nine) or (nine and 10)). Then there are 2 ways that Joe and Sally can sit in those seats (either Sally on the Right and Joe on the left or Sally on the left and Joe on the right). Thus there the probability of ways in which they can sit next to each other is 9 2/(10 9) =.2.

Math P (A 1 ) =.5, P (A 2 ) =.6, P (A 1 A 2 ) =.9r

Math P (A 1 ) =.5, P (A 2 ) =.6, P (A 1 A 2 ) =.9r Math 3070 1. Treibergs σιι First Midterm Exam Name: SAMPLE January 31, 2000 (1. Compute the sample mean x and sample standard deviation s for the January mean temperatures (in F for Seattle from 1900 to

More information

Lecture 3: Probability

Lecture 3: Probability Lecture 3: Probability 28th of October 2015 Lecture 3: Probability 28th of October 2015 1 / 36 Summary of previous lecture Define chance experiment, sample space and event Introduce the concept of the

More information

University of Jordan Fall 2009/2010 Department of Mathematics

University of Jordan Fall 2009/2010 Department of Mathematics handouts Part 1 (Chapter 1 - Chapter 5) University of Jordan Fall 009/010 Department of Mathematics Chapter 1 Introduction to Introduction; Some Basic Concepts Statistics is a science related to making

More information

a. The sample space consists of all pairs of outcomes:

a. The sample space consists of all pairs of outcomes: Econ 250 Winter 2009 Assignment 1 Due at Midterm February 11, 2009 There are 9 questions with each one worth 10 marks. 1. The time (in seconds) that a random sample of employees took to complete a task

More information

Chapter 2: Tools for Exploring Univariate Data

Chapter 2: Tools for Exploring Univariate Data Stats 11 (Fall 2004) Lecture Note Introduction to Statistical Methods for Business and Economics Instructor: Hongquan Xu Chapter 2: Tools for Exploring Univariate Data Section 2.1: Introduction What is

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Statistics 1. Edexcel Notes S1. Mathematical Model. A mathematical model is a simplification of a real world problem.

Statistics 1. Edexcel Notes S1. Mathematical Model. A mathematical model is a simplification of a real world problem. Statistics 1 Mathematical Model A mathematical model is a simplification of a real world problem. 1. A real world problem is observed. 2. A mathematical model is thought up. 3. The model is used to make

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

Probability and the Second Law of Thermodynamics

Probability and the Second Law of Thermodynamics Probability and the Second Law of Thermodynamics Stephen R. Addison January 24, 200 Introduction Over the next several class periods we will be reviewing the basic results of probability and relating probability

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Multiple Choice Practice Set 1

Multiple Choice Practice Set 1 Multiple Choice Practice Set 1 This set of questions covers material from Chapter 1. Multiple choice is the same format as for the midterm. Q1. Two events each have probability 0.2 of occurring and are

More information

1 Probability Theory. 1.1 Introduction

1 Probability Theory. 1.1 Introduction 1 Probability Theory Probability theory is used as a tool in statistics. It helps to evaluate the reliability of our conclusions about the population when we have only information about a sample. Probability

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Engineers and scientists are constantly exposed to collections of facts, or data. The discipline of statistics provides methods for organizing and summarizing data, and for drawing

More information

2.6 Tools for Counting sample points

2.6 Tools for Counting sample points 2.6 Tools for Counting sample points When the number of simple events in S is too large, manual enumeration of every sample point in S is tedious or even impossible. (Example) If S contains N equiprobable

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Sets and Set notation. Algebra 2 Unit 8 Notes

Sets and Set notation. Algebra 2 Unit 8 Notes Sets and Set notation Section 11-2 Probability Experimental Probability experimental probability of an event: Theoretical Probability number of time the event occurs P(event) = number of trials Sample

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline.

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. data; variables: categorical & quantitative; distributions; bar graphs & pie charts: What Is Statistics?

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

Probability and Samples. Sampling. Point Estimates

Probability and Samples. Sampling. Point Estimates Probability and Samples Sampling We want the results from our sample to be true for the population and not just the sample But our sample may or may not be representative of the population Sampling error

More information

PRACTICE PROBLEMS FOR EXAM 1

PRACTICE PROBLEMS FOR EXAM 1 PRACTICE PROBLEMS FOR EXAM 1 Math 3160Q Spring 01 Professor Hohn Below is a list of practice questions for Exam 1. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248)

AIM HIGH SCHOOL. Curriculum Map W. 12 Mile Road Farmington Hills, MI (248) AIM HIGH SCHOOL Curriculum Map 2923 W. 12 Mile Road Farmington Hills, MI 48334 (248) 702-6922 www.aimhighschool.com COURSE TITLE: Statistics DESCRIPTION OF COURSE: PREREQUISITES: Algebra 2 Students will

More information

i=1 A i i=1 P (A c B c ) = 1 P ((A c B c ) c ) = 1 P (A B) = 1 (P (A) + P (B) P (A B)) =

i=1 A i i=1 P (A c B c ) = 1 P ((A c B c ) c ) = 1 P (A B) = 1 (P (A) + P (B) P (A B)) = Homework 1 Solutions 1.8.8 ( n P i1 A i ) [ n 1 P i1 A i ( n ) 1 P A i 1 i1 n P (A i ) i1 ] by countable subadditivity property. 1.8.9 Let A be the event that we select a male factory worker, and let B

More information

Combinatorial Analysis

Combinatorial Analysis Chapter 1 Combinatorial Analysis STAT 302, Department of Statistics, UBC 1 A starting example: coin tossing Consider the following random experiment: tossing a fair coin twice There are four possible outcomes,

More information

Elements of probability theory

Elements of probability theory The role of probability theory in statistics We collect data so as to provide evidentiary support for answers we give to our many questions about the world (and in our particular case, about the business

More information

Discrete Probability. Chemistry & Physics. Medicine

Discrete Probability. Chemistry & Physics. Medicine Discrete Probability The existence of gambling for many centuries is evidence of long-running interest in probability. But a good understanding of probability transcends mere gambling. The mathematics

More information

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things.

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things. (c) Epstein 2013 Chapter 5: Exploring Data Distributions Page 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms Individuals are the objects described by a set of data. These individuals

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Introduction to Probability, Fall 2009

Introduction to Probability, Fall 2009 Introduction to Probability, Fall 2009 Math 30530 Review questions for exam 1 solutions 1. Let A, B and C be events. Some of the following statements are always true, and some are not. For those that are

More information

Chapter 8 Sequences, Series, and Probability

Chapter 8 Sequences, Series, and Probability Chapter 8 Sequences, Series, and Probability Overview 8.1 Sequences and Series 8.2 Arithmetic Sequences and Partial Sums 8.3 Geometric Sequences and Partial Sums 8.5 The Binomial Theorem 8.6 Counting Principles

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Solutions - Final Exam

Solutions - Final Exam Solutions - Final Exam Instructors: Dr. A. Grine and Dr. A. Ben Ghorbal Sections: 170, 171, 172, 173 Total Marks Exercise 1 7 Exercise 2 6 Exercise 3 6 Exercise 4 6 Exercise 5 6 Exercise 6 9 Total 40 Score

More information

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES INTRODUCTION TO APPLIED STATISTICS NOTES PART - DATA CHAPTER LOOKING AT DATA - DISTRIBUTIONS Individuals objects described by a set of data (people, animals, things) - all the data for one individual make

More information

HW MATH425/525 Lecture Notes 1

HW MATH425/525 Lecture Notes 1 HW MATH425/525 Lecture Notes 1 Definition 4.1 If an experiment can be repeated under the same condition, its outcome cannot be predicted with certainty, and the collection of its every possible outcome

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number:

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number: Stat 2300 International, Fall 2006 Sample Midterm Friday, October 20, 2006 Your Name: A Number: The Midterm consists of 35 questions: 20 multiple-choice questions (with exactly 1 correct answer) and 15

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Statistics Add Ins.notebook. November 22, Add ins

Statistics Add Ins.notebook. November 22, Add ins Add ins We have LOADS of things we need to know for the IGCSE that you haven't learnt as part of the Bavarian Curriculum. We are now going to shoehorn in some of those topics and ideas. Nov 12 11:50 Main

More information

Week 2: Probability: Counting, Sets, and Bayes

Week 2: Probability: Counting, Sets, and Bayes Statistical Methods APPM 4570/5570, STAT 4000/5000 21 Probability Introduction to EDA Week 2: Probability: Counting, Sets, and Bayes Random variable Random variable is a measurable quantity whose outcome

More information

Probability 5-4 The Multiplication Rules and Conditional Probability

Probability 5-4 The Multiplication Rules and Conditional Probability Outline Lecture 8 5-1 Introduction 5-2 Sample Spaces and 5-3 The Addition Rules for 5-4 The Multiplication Rules and Conditional 5-11 Introduction 5-11 Introduction as a general concept can be defined

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

Solutions 2016 AB Exam

Solutions 2016 AB Exam Solutions 206 AB Exam Texas A&M High School Math Contest October 22, 206. If (x, y) is a point on the circle x 2 + y 2 = and the distance from (x, y) to (0, ) is 6 5, what is the value of y? ANSWER: 7

More information

Men. Women. Men. Men. Women. Women

Men. Women. Men. Men. Women. Women Math 203 Topics for second exam Statistics: the science of data Chapter 5: Producing data Statistics is all about drawing conclusions about the opinions/behavior/structure of large populations based on

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 020, Exam II October, 206 The Honor Code is in effect for this examination. All work is to be your own. You may use a calculator. The exam lasts for hour 5 minutes. Be sure that your name is on every

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

DSST Principles of Statistics

DSST Principles of Statistics DSST Principles of Statistics Time 10 Minutes 98 Questions Each incomplete statement is followed by four suggested completions. Select the one that is best in each case. 1. Which of the following variables

More information

Ch 2: Probability. Contents. Fall 2017 UAkron Dept. of Stats [3470 : 451/551] Theoretical Statistics I

Ch 2: Probability. Contents. Fall 2017 UAkron Dept. of Stats [3470 : 451/551] Theoretical Statistics I Fall 2017 UAkron Dept. of Stats [3470 : 451/551] Theoretical Statistics I Ch 2: Probability Contents 1 Preliminaries 3 1.1 Interpretation of Probability (2.2)......................................................

More information

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University richamar@gvsu.edu Overview of Lesson In this activity students explore the properties of the distribution

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

Lecture 1: Descriptive Statistics

Lecture 1: Descriptive Statistics Lecture 1: Descriptive Statistics MSU-STT-351-Sum 15 (P. Vellaisamy: MSU-STT-351-Sum 15) Probability & Statistics for Engineers 1 / 56 Contents 1 Introduction 2 Branches of Statistics Descriptive Statistics

More information

AP Statistics Cumulative AP Exam Study Guide

AP Statistics Cumulative AP Exam Study Guide AP Statistics Cumulative AP Eam Study Guide Chapters & 3 - Graphs Statistics the science of collecting, analyzing, and drawing conclusions from data. Descriptive methods of organizing and summarizing statistics

More information

CHAPTER 2: Describing Distributions with Numbers

CHAPTER 2: Describing Distributions with Numbers CHAPTER 2: Describing Distributions with Numbers The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 2 Concepts 2 Measuring Center: Mean and Median Measuring

More information

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury.

Probability. Part 1 - Basic Counting Principles. 1. References. (1) R. Durrett, The Essentials of Probability, Duxbury. Probability Part 1 - Basic Counting Principles 1. References (1) R. Durrett, The Essentials of Probability, Duxbury. (2) L.L. Helms, Probability Theory with Contemporary Applications, Freeman. (3) J.J.

More information

Math 2311 Test 1 Review. 1. State whether each situation is categorical or quantitative. If quantitative, state whether it s discrete or continuous.

Math 2311 Test 1 Review. 1. State whether each situation is categorical or quantitative. If quantitative, state whether it s discrete or continuous. Math 2311 Test 1 Review Know all definitions! 1. State whether each situation is categorical or quantitative. If quantitative, state whether it s discrete or continuous. a. The amount a person grew (in

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

Example 2. Given the data below, complete the chart:

Example 2. Given the data below, complete the chart: Statistics 2035 Quiz 1 Solutions Example 1. 2 64 150 150 2 128 150 2 256 150 8 8 Example 2. Given the data below, complete the chart: 52.4, 68.1, 66.5, 75.0, 60.5, 78.8, 63.5, 48.9, 81.3 n=9 The data is

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Probability Exercises. Problem 1.

Probability Exercises. Problem 1. Probability Exercises. Ma 162 Spring 2010 Ma 162 Spring 2010 April 21, 2010 Problem 1. ˆ Conditional Probability: It is known that a student who does his online homework on a regular basis has a chance

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Estadística I Exercises Chapter 4 Academic year 2015/16

Estadística I Exercises Chapter 4 Academic year 2015/16 Estadística I Exercises Chapter 4 Academic year 2015/16 1. An urn contains 15 balls numbered from 2 to 16. One ball is drawn at random and its number is reported. (a) Define the following events by listing

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected What is statistics? Statistics is the science of: Collecting information Organizing and summarizing the information collected Analyzing the information collected in order to draw conclusions Two types

More information

IBPS Clerk Online CWE ( ) Reasoning Question Paper

IBPS Clerk Online CWE ( ) Reasoning Question Paper IBPS Clerk Online CWE (20-12-2015) Reasoning Question Paper 1. If all the symbols are dropped from the arrangement, then which will be the eleventh element from the right end of the given arrangement?

More information

2.4 Conditional Probability

2.4 Conditional Probability 2.4 Conditional Probability The probabilities assigned to various events depend on what is known about the experimental situation when the assignment is made. Example: Suppose a pair of dice is tossed.

More information

Section 1.1: Patterns in Division

Section 1.1: Patterns in Division Section 1.1: Patterns in Division Dividing by 2 All even numbers are divisible by 2. E.g., all numbers ending in 0,2,4,6 or 8. Dividing by 4 1. Are the last two digits in your number divisible by 4? 2.

More information

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data:

Lecture 2. Quantitative variables. There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Lecture 2 Quantitative variables There are three main graphical methods for describing, summarizing, and detecting patterns in quantitative data: Stemplot (stem-and-leaf plot) Histogram Dot plot Stemplots

More information

Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays

Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays Histograms: Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays Sep 9 1:13 PM Shape: Skewed left Bell shaped Symmetric Bi modal Symmetric Skewed

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Monroe County Schools First Grade Math

Monroe County Schools First Grade Math Grade 1 Overview Operations and Algebraic Thinking [OA] Represent and solve problems involving addition and subtraction. Understand and apply properties of operations and the relationship between addition

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Axioms of Probability. Set Theory. M. Bremer. Math Spring 2018

Axioms of Probability. Set Theory. M. Bremer. Math Spring 2018 Math 163 - pring 2018 Axioms of Probability Definition: The set of all possible outcomes of an experiment is called the sample space. The possible outcomes themselves are called elementary events. Any

More information

Huntington Beach City School District Grade 1 Mathematics Standards Schedule

Huntington Beach City School District Grade 1 Mathematics Standards Schedule 2016-2017 Interim Assessment Schedule Orange Interim Assessment: November 1 - November 18, 2016 Green Interim Assessment: February 20 - March 10, 2017 Blueprint Summative Assessment: May 29 - June 16,

More information

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions

Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions Discrete Mathematics, Spring 2004 Homework 4 Sample Solutions 4.2 #77. Let s n,k denote the number of ways to seat n persons at k round tables, with at least one person at each table. (The numbers s n,k

More information

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved.

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved. 1-1 Chapter 1 Sampling and Descriptive Statistics 1-2 Why Statistics? Deal with uncertainty in repeated scientific measurements Draw conclusions from data Design valid experiments and draw reliable conclusions

More information

SECOND UNIVERSITY EXAMINATION

SECOND UNIVERSITY EXAMINATION OLLSCOIL NA héireann, GAILLIMH NATIONAL UNIVERSITY OF IRELAND, GALWAY AUTUMN EXAMINATIONS, 2000 2001 SECOND UNIVERSITY EXAMINATION STATISTICS [MA237] Dr. D. Harrington, Dr. J.N. Sheahan, Paul Wilson, M.A.,

More information

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators.

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators. SS657a Midterm Exam, October 7 th 008 pg. SS57a Midterm Exam Monday Oct 7 th 008, 6:30-9:30 PM Talbot College 34 and 343 You may use simple, non-programmable scientific calculators. This exam has 5 questions

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

CS 109 Midterm Review!

CS 109 Midterm Review! CS 109 Midterm Review! Major Topics: Counting and Combinatorics Probability Conditional Probability Random Variables Discrete/Continuous Distributions Joint Distributions and Convolutions Counting Sum

More information

Mathematics 102 Solutions for HWK 22 SECTION 7.6 P (R 1 )=0.05

Mathematics 102 Solutions for HWK 22 SECTION 7.6 P (R 1 )=0.05 Mathematics 102 Solutions for HWK 22 SECTION 7.6 p 368 Problem 3. Assume R 1, R 2, and R 3 are mutually exclusive events and we have P (R 1 )0.05 P (R 2 )0.6 P (R 3 )0.35 P (Q R 1 )0.4 P (Q R 2 )0.3 P

More information

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information.

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information. CHAPTER 4 PROBABILITY Probability is used in inference statistics as a tool to make statement for population from sample information. Experiment is a process for generating observations Sample space is

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Chapter 4: Probability and Probability Distributions

Chapter 4: Probability and Probability Distributions Chapter 4: Probability and Probability Distributions 4.1 How Probability Can Be Used in Making Inferences 4.1 a. Subjective probability b. Relative frequency c. Classical d. Relative frequency e. Subjective

More information

For use only in Badminton School November 2011 S1 Note. S1 Notes (Edexcel)

For use only in Badminton School November 2011 S1 Note. S1 Notes (Edexcel) For use only in Badminton School November 011 s (Edexcel) Copyright www.pgmaths.co.uk - For AS, A notes and IGCSE / GCSE worksheets 1 For use only in Badminton School November 011 Copyright www.pgmaths.co.uk

More information

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2

Probability Experiments, Trials, Outcomes, Sample Spaces Example 1 Example 2 Probability Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application. However, probability models underlie

More information

Please do NOT write in this box. Multiple Choice Total

Please do NOT write in this box. Multiple Choice Total Name: Instructor: ANSWERS Bullwinkle Math 1010, Exam I. October 14, 014 The Honor Code is in effect for this examination. All work is to be your own. Please turn off all cellphones and electronic devices.

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

Chapter 4 Probability

Chapter 4 Probability 4-1 Review and Preview Chapter 4 Probability 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule: Basics 4-5 Multiplication Rule: Complements and Conditional Probability 4-6 Counting

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

Probability. On the first day of Christmas. Notation. Literacy. Impossible Certain Event Outcome Equally likely

Probability. On the first day of Christmas. Notation. Literacy. Impossible Certain Event Outcome Equally likely Impossible Certain Event Outcome Equally likely Literacy On the first day of Probability Notation Mathematicians write the probability of an event as: P(event) = The event being the outcomes you want to

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

Chapter2 Description of samples and populations. 2.1 Introduction.

Chapter2 Description of samples and populations. 2.1 Introduction. Chapter2 Description of samples and populations. 2.1 Introduction. Statistics=science of analyzing data. Information collected (data) is gathered in terms of variables (characteristics of a subject that

More information

MATH 118 FINAL EXAM STUDY GUIDE

MATH 118 FINAL EXAM STUDY GUIDE MATH 118 FINAL EXAM STUDY GUIDE Recommendations: 1. Take the Final Practice Exam and take note of questions 2. Use this study guide as you take the tests and cross off what you know well 3. Take the Practice

More information