Mathematics 102 Solutions for HWK 22 SECTION 7.6 P (R 1 )=0.05

Size: px
Start display at page:

Download "Mathematics 102 Solutions for HWK 22 SECTION 7.6 P (R 1 )=0.05"

Transcription

1 Mathematics 102 Solutions for HWK 22 SECTION 7.6 p 368 Problem 3. Assume R 1, R 2, and R 3 are mutually exclusive events and we have P (R 1 )0.05 P (R 2 )0.6 P (R 3 )0.35 P (Q R 1 )0.4 P (Q R 2 )0.3 P (Q R 3 )0.6 Find P (R 1 Q). Solution. Notice that the three events R 1,R 2,R 3 are not only mutually exclusive (as given) but also exhaustive (since their probabilities add to 1). In other words, whatever the outcome is, one of the three events R 1,R 2,R 3 must occur. We have exactly the setup described in Bayes Theorem. Aschematic diagram of the sample space might look like this: Page 1 of 10 A. Sontag April 22, 2004

2 To begin applying Bayes Theorem, use the given data to set up a tree diagram as follows. Recall that P (R 1 Q) P (R 1 Q). Bayes theorem lets us find the numerator and denominator P (Q) we need by using branches of the tree that end in Q. Inparticular, the numerator we need is the probability for the top branch in the tree, the branch showing that R 1 occurs and Q occurs. The denominator is the sum of the probabilities for the three (red) branches that end in Q. So P (R 1 Q) P (R 1 Q) P (Q) (0.5)(0.4) (0.5)(0.4)+(0.6)(0.3)+(0.35)(0.6) p 368 Problem 6. Under the same assumptions as in Problem 3, find P (R 1 Q). Solution. Using the result from Problem 3, we have P (R 1 Q) 1 P (R 1 Q) Page 2 of 10 A. Sontag April 22, 2004

3 p 368 Problem 8. Suppose you have three jars with the following contents: 2 black balls and 1 white ball in the first, 1 black ball and 2 white balls in the second, and 1 black ball and 1 white ball in the third. One jar is to be selected, and then 1 ball is to be drawn (at random) from the selected jar. If the probabilities of selecting the first, second, or third jar are 1 2, 1 3, and 1 6, respectively, find the probabilities that if a white ball is drawn, it came from the third jar. (In other words, find the probability that the ball came from the third jar, given that the ball is white.) Solution. Begin with a tree diagram: Let W be the event that the ball is white. Let J1,J2,J3bethe events that the ball comes from jar 1, jar 2, jar 3, respectively. Using the three branches that end in white, we find Also, P (W )( 1 2 )(1 3 )+(1 3 )(2 3 )+(1 6 )(1 2 ) P (J3 W )( 1 6 )(1 2 ) Page 3 of 10 A. Sontag April 22, 2004

4 Therefore P (J3 W ) P (J3 W ) P (W ) p 368 Problem 9. Employment Test. A manufacturing firm finds that 70% of its new hires turn out to be good workers and 30% become poor workers. All current workers are given a reasoning test. Of the good workers, 80% pass it; 40% of the poor workers pass it. Assume that these figures will hold true in the future. if the company makes the test part of its hiring procedure and only hires people who meet the previous requirements and also pass the test, what percent of the new hires will turn out to be good workers? Solution. For a potential new hire chosen at random we have the following tree diagram: Let G be the event that the new hire turns out to be a good worker. Let T be the event that the new hire passes the test. From the tree we find P (T )(0.7)(0.8) + (0.3)(0.4) Moreover P (G T )(0.7)(0.8) So the probability that a potential new hire turns out to be a good worker, given that s/he passed the test, is P (G T ) P (G T ) P (T ) Thus one could expect approximately 82.35% of the new hires to be good workers. Page 4 of 10 A. Sontag April 22, 2004

5 p 368 Problem 16. Appliance Reliability. Companies A, B, and C produce 15%, 40%, and 45%, respectively of the major appliances sold in a certain area. In that area, 1% of the company A appliances, 1.5% of the company B appliances, and 2% of the company C appliances need service within the first year. Suppose a defective appliance is chosen at random; find the probability that it was manufactured by Company A. Solution. It appears that defective should be interpreted as needs service within the first year. So we have the following tree diagram, for a randomly chosen appliance sold in the specified area. Let D be the event that the randomly chosen appliance is defective (i.e. needs service within a year), and let A be the event that it was manufactured by Company A. Using the three branches that yield a defective outcome, find P (D) (.15)(.01) + (.40)(.015) + (.45)(.02) Also, P (A D) (.15)(.01) Therefore the required probability is P (A D) P (A D) P (D) Page 5 of 10 A. Sontag April 22, 2004

6 p 368 Problem 17. Same as Problem 16, except for Company B. Solution. We already computed that P (D) Consulting the tree again, see that P (B D) (.40)(.015).006. Therefore the probability we want to find is given by P (B D) P (B D) P (D) p 368 Problem 20. Shipping Errors. Three shipping terminals are operated by Krag Corporation, namely a land terminal, an air terminal, and a sea terminal. The land terminal handles 50% of Krag s cargo, the air terminal handles 40%, and the sea terminal handles the remaining 10%. For the cargo shipments handled by the land terminal, 2% of the shipping documents contain errors. The corresponding figures for the air and sea terminals are 4% and 14%, respectively. Krag s internal auditor randomly selects one set of shipping documents, ascertaining that the set selected contains an error. Which of the figures (a) 0.02, (b) 0.10, (c) 0.25, (d) 0.50 gives the probability that the error occurred in the land terminal? Solution. For arandomly chosen shipping document, the data in the problem gives us the following tree. If we let L denote the event that the document came from the land terminal and E the event that it contains an error, then we need to find P (L E). Using the tree diagram to apply Bayes Page 6 of 10 A. Sontag April 22, 2004

7 Theorem, we find P (L E) P (L E) P (E) (.5)(.02) (.5)(.02)+(.4)(.04)+(.1)(.14) so the correct answer would be (c). p 368 Problem 22. Toxemia Test. A magazine article described a new test for toxemia, a disease that affects pregnant women. To perform this test, the woman lies on her left side and then rolls onto her back. The test is considered positive if there is a 20 millimeter rise in her blood pressure within one minute. The article gives the following probabilities, where T represents having toxemia at some time during the pregnancy, and N represents a negative test. P (T N) 0.90 P (T N )0.75 Assume that P (N )0.11, and find (a) P (N T ); (b) P (N T ). Solution. We are given enough information to make the following tree (for a randomly selected pregnant woman). The probability that the woman has toxemia at some point is given by P (T )(.89)(.1) + (.11)(.75) Page 7 of 10 A. Sontag April 22, 2004

8 For the probability that a woman tests negative and has toxemia at some time, we have P (N T )(.89)(.1).089. Part (a) asks for the probability of a negative test given some toxemia, which is P (N T ) P (N T ) P (T ) Part (b) asks for the probability of a positive test given toxemia, which is P (N T ) P (N T ) P (T ) (.11)(.75) It looks to me that this isn t a terribly good test. Page 8 of 10 A. Sontag April 22, 2004

9 p 368 Problem 32. Seat Belt Effectiveness. A federal study showed that in 1990, 49% of all those involved in a fatal car crash wore seat belts. Of those in a fatal crash who wore seat belts, 44% were injured and 27% were killed. For those not wearing seat belts, the comparable figures were 41% and 50%, respectively. Find the probability that a randomly selected person who was killed in a car crash was wearing a seat belt. Solution. The data supplied gives us the following tree (for those involved in a fatal crash). Let K denote the event that a randomly selected person involved in a fatal crash was killed, and let B denote the event s/he was wearing a seat belt. Then we find P (B K) P (B K) P (K) (.49)(.27) (.49)(.27)+(.51)(.5) p 368 Problem 33. Using the same data as in Problem 32, find the probability that a randomly selected person who was unharmed in a fatal crash was not wearing a seat belt. Solution. Let U denote the event that a randomly selected person involved in a fatal crash was unharmed. This time we re looking for P (B U), which is P (B U) P (B U) P (U) (.51)(.09) (.49)(.29) + (.51)(.09) Page 9 of 10 A. Sontag April 22, 2004

Slide 1 Math 1520, Lecture 21

Slide 1 Math 1520, Lecture 21 Slide 1 Math 1520, Lecture 21 This lecture is concerned with a posteriori probability, which is the probability that a previous event had occurred given the outcome of a later event. Slide 2 Conditional

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3)

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) 1 Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) On this exam, questions may come from any of the following topic areas: - Union and intersection of sets - Complement of

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

A survey of Probability concepts. Chapter 5

A survey of Probability concepts. Chapter 5 A survey of Probability concepts Chapter 5 Learning Objectives Define probability. Explain the terms experiment, event, outcome. Define the terms conditional probability and joint probability. Calculate

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

2.4 Conditional Probability

2.4 Conditional Probability 2.4 Conditional Probability The probabilities assigned to various events depend on what is known about the experimental situation when the assignment is made. Example: Suppose a pair of dice is tossed.

More information

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad

MAT2377. Ali Karimnezhad. Version September 9, Ali Karimnezhad MAT2377 Ali Karimnezhad Version September 9, 2015 Ali Karimnezhad Comments These slides cover material from Chapter 1. In class, I may use a blackboard. I recommend reading these slides before you come

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Probability, Conditional Probability and Bayes Rule IE231 - Lecture Notes 3 Mar 6, 2018

Probability, Conditional Probability and Bayes Rule IE231 - Lecture Notes 3 Mar 6, 2018 Probability, Conditional Probability and Bayes Rule IE31 - Lecture Notes 3 Mar 6, 018 #Introduction Let s recall some probability concepts. Probability is the quantification of uncertainty. For instance

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. rofessor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Review of robability For additional review material, see http://eecs.mines.edu/courses/csci507/schedule/

More information

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment.

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment. Chapter 7 Probability 7.1 xperiments, Sample Spaces and vents Start with some definitions we will need in our study of probability. An XPRIMN is an activity with an observable result. ossing coins, rolling

More information

Solutions - Final Exam

Solutions - Final Exam Solutions - Final Exam Instructors: Dr. A. Grine and Dr. A. Ben Ghorbal Sections: 170, 171, 172, 173 Total Marks Exercise 1 7 Exercise 2 6 Exercise 3 6 Exercise 4 6 Exercise 5 6 Exercise 6 9 Total 40 Score

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 7 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card is red on one side and white

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics 5. Models of Random Behavior Math 40 Introductory Statistics Professor Silvia Fernández Chapter 5 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Outcome: Result or answer

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

2.3 Conditional Probability

2.3 Conditional Probability Arkansas Tech University MATH 3513: Applied Statistics I Dr. Marcel B. Finan 2.3 Conditional Probability In this section we introduce the concept of conditional probability. So far, the notation P (A)

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Professor Silvia Fernández Lecture 8 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. 5.1 Models of Random Behavior Outcome: Result or answer

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Inferences Based on Two Samples

Inferences Based on Two Samples Chapter 6 Inferences Based on Two Samples Frequently we want to use statistical techniques to compare two populations. For example, one might wish to compare the proportions of families with incomes below

More information

MTH4451Test#2-Solutions Spring 2009

MTH4451Test#2-Solutions Spring 2009 Pat Rossi Instructions. MTH4451Test#2-Solutions Spring 2009 Name Show CLEARLY how you arrive at your answers. 1. A large jar contains US coins. In this jar, there are 350 pennies ($0.01), 300 nickels ($0.05),

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

Lecture 4. Selected material from: Ch. 6 Probability

Lecture 4. Selected material from: Ch. 6 Probability Lecture 4 Selected material from: Ch. 6 Probability Example: Music preferences F M Suppose you want to know what types of CD s males and females are more likely to buy. The CD s are classified as Classical,

More information

Baye s theorem. Baye s Theorem Let E and F be two possible events of an experiment, then P (F ) P (E F ) P (F ) P (E F ) + P (F ) P (E F ).

Baye s theorem. Baye s Theorem Let E and F be two possible events of an experiment, then P (F ) P (E F ) P (F ) P (E F ) + P (F ) P (E F ). Baye s Theorem Assume that you know the probability that a child will be born with blond hair given that both his parents have blond hair. You might also be interested in knowing the probability that a

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

Math SL Day 66 Probability Practice [196 marks]

Math SL Day 66 Probability Practice [196 marks] Math SL Day 66 Probability Practice [96 marks] Events A and B are independent with P(A B) = 0.2 and P(A B) = 0.6. a. Find P(B). valid interpretation (may be seen on a Venn diagram) P(A B) + P(A B), 0.2

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Section 2.4 Bernoulli Trials

Section 2.4 Bernoulli Trials Section 2.4 Bernoulli Trials A bernoulli trial is a repeated experiment with the following properties: 1. There are two outcomes of each trial: success and failure. 2. The probability of success in each

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Introduction to probability

Introduction to probability Introduction to probability 4.1 The Basics of Probability Probability The chance that a particular event will occur The probability value will be in the range 0 to 1 Experiment A process that produces

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

4. Conditional Probability

4. Conditional Probability 1 of 13 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 4. Conditional Probability Definitions and Interpretations The Basic Definition As usual, we start with a random experiment

More information

Chapter 3 Probability Distribution

Chapter 3 Probability Distribution Chapter 3 Probability Distribution Probability Distributions A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted

More information

Math P (A 1 ) =.5, P (A 2 ) =.6, P (A 1 A 2 ) =.9r

Math P (A 1 ) =.5, P (A 2 ) =.6, P (A 1 A 2 ) =.9r Math 3070 1. Treibergs σιι First Midterm Exam Name: SAMPLE January 31, 2000 (1. Compute the sample mean x and sample standard deviation s for the January mean temperatures (in F for Seattle from 1900 to

More information

Probability 5-4 The Multiplication Rules and Conditional Probability

Probability 5-4 The Multiplication Rules and Conditional Probability Outline Lecture 8 5-1 Introduction 5-2 Sample Spaces and 5-3 The Addition Rules for 5-4 The Multiplication Rules and Conditional 5-11 Introduction 5-11 Introduction as a general concept can be defined

More information

[ z = 1.48 ; accept H 0 ]

[ z = 1.48 ; accept H 0 ] CH 13 TESTING OF HYPOTHESIS EXAMPLES Example 13.1 Indicate the type of errors committed in the following cases: (i) H 0 : µ = 500; H 1 : µ 500. H 0 is rejected while H 0 is true (ii) H 0 : µ = 500; H 1

More information

PROBABILITY.

PROBABILITY. PROBABILITY PROBABILITY(Basic Terminology) Random Experiment: If in each trial of an experiment conducted under identical conditions, the outcome is not unique, but may be any one of the possible outcomes,

More information

a. The sample space consists of all pairs of outcomes:

a. The sample space consists of all pairs of outcomes: Econ 250 Winter 2009 Assignment 1 Due at Midterm February 11, 2009 There are 9 questions with each one worth 10 marks. 1. The time (in seconds) that a random sample of employees took to complete a task

More information

Axioms of Probability

Axioms of Probability MAT 2379 3X (Spring 2012) (Introduction to Probability (part II)) The theory of probability as a mathematical discipline can and should be developed from axioms in exactly the same way as geometry and

More information

Chapter 01: Probability Theory (Cont d)

Chapter 01: Probability Theory (Cont d) Chapter 01: Probability Theory (Cont d) Section 1.5: Probabilities of Event Intersections Problem (01): When a company receives an order, there is a probability of 0.42 that its value is over $1000. If

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

2.4. Conditional Probability

2.4. Conditional Probability 2.4. Conditional Probability Objectives. Definition of conditional probability and multiplication rule Total probability Bayes Theorem Example 2.4.1. (#46 p.80 textbook) Suppose an individual is randomly

More information

Estadística I Exercises Chapter 4 Academic year 2015/16

Estadística I Exercises Chapter 4 Academic year 2015/16 Estadística I Exercises Chapter 4 Academic year 2015/16 1. An urn contains 15 balls numbered from 2 to 16. One ball is drawn at random and its number is reported. (a) Define the following events by listing

More information

P ( A B ) = P ( A ) P ( B ) 1. The probability that a randomly selected student at Anytown College owns a bicycle is

P ( A B ) = P ( A ) P ( B ) 1. The probability that a randomly selected student at Anytown College owns a bicycle is STAT 400 UIUC Answers for.4 Stepanov Dalpiaz Events A and B are independent if and only if P ( B A ) = P ( B ) P ( A B ) = P ( A ) P ( A B ) = P ( A ) P ( B ) ote that if two events, A and B, are mutually

More information

1. Let A and B be two events such that P(A)=0.6 and P(B)=0.6. Which of the following MUST be true?

1. Let A and B be two events such that P(A)=0.6 and P(B)=0.6. Which of the following MUST be true? 1 UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004 Exercises with Solutions Topic 2 Introduction to Probability Due: Monday

More information

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information.

CHAPTER 4. Probability is used in inference statistics as a tool to make statement for population from sample information. CHAPTER 4 PROBABILITY Probability is used in inference statistics as a tool to make statement for population from sample information. Experiment is a process for generating observations Sample space is

More information

Conditional Probability

Conditional Probability Example 2.24 Complex components are assembled in a plant that uses two different assembly lines, A and B. Line A uses older equipment than B, so it is somewhat slower and less reliable. Suppose on a given

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

Chapter 7 Sampling Distributions

Chapter 7 Sampling Distributions Statistical inference looks at how often would this method give a correct answer if it was used many many times. Statistical inference works best when we produce data by random sampling or randomized comparative

More information

Chapter 6. Probability

Chapter 6. Probability Chapter 6 robability Suppose two six-sided die is rolled and they both land on sixes. Or a coin is flipped and it lands on heads. Or record the color of the next 20 cars to pass an intersection. These

More information

Probability Exercises. Problem 1.

Probability Exercises. Problem 1. Probability Exercises. Ma 162 Spring 2010 Ma 162 Spring 2010 April 21, 2010 Problem 1. ˆ Conditional Probability: It is known that a student who does his online homework on a regular basis has a chance

More information

Probability Distributions

Probability Distributions EXAMPLE: Consider rolling a fair die twice. Probability Distributions Random Variables S = {(i, j : i, j {,...,6}} Suppose we are interested in computing the sum, i.e. we have placed a bet at a craps table.

More information

7.5: Conditional Probability and Independent Events

7.5: Conditional Probability and Independent Events c Dr Oksana Shatalov, Spring 2012 1 7.5: Conditional Probability and Independent Events EXAMPLE 1. Two cards are drawn from a deck of 52 without replacement. (a) What is the probability of that the first

More information

Conditional Probability and Independence

Conditional Probability and Independence Conditional Probability and Independence September 3, 2009 1 Restricting the Sample Space - Conditional Probability How do we modify the probability of an event in light of the fact that something is known?

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Q1 Own your learning with flash cards.

Q1 Own your learning with flash cards. For this data set, find the mean, mode, median and inter-quartile range. 2, 5, 6, 4, 7, 4, 7, 2, 8, 9, 4, 11, 9, 9, 6 Q1 For this data set, find the sample variance and sample standard deviation. 89, 47,

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except in problem 1. Work neatly.

The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except in problem 1. Work neatly. Introduction to Statistics Math 1040 Sample Final Exam - Chapters 1-11 6 Problem Pages Time Limit: 1 hour and 50 minutes Open Textbook Calculator Allowed: Scientific Name: The point value of each problem

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 020, Exam II October, 206 The Honor Code is in effect for this examination. All work is to be your own. You may use a calculator. The exam lasts for hour 5 minutes. Be sure that your name is on every

More information

Probability and Discrete Distributions

Probability and Discrete Distributions AMS 7L LAB #3 Fall, 2007 Objectives: Probability and Discrete Distributions 1. To explore relative frequency and the Law of Large Numbers 2. To practice the basic rules of probability 3. To work with the

More information

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels.

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. Contingency Tables Definition & Examples. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. (Using more than two factors gets complicated,

More information

b. Find P(it will rain tomorrow and there will be an accident). Show your work. c. Find P(there will be an accident tomorrow). Show your work.

b. Find P(it will rain tomorrow and there will be an accident). Show your work. c. Find P(there will be an accident tomorrow). Show your work. Algebra II Probability Test Review Name Date Hour ) A study of traffic patterns in a large city shows that if the weather is rainy, there is a 50% chance of an automobile accident occurring during the

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 06 McGraw-Hill/Irwin Copyright 2013 by The McGraw-Hill Companies, Inc. All rights reserved. LEARNING OBJECTIVES LO 6-1 Identify the characteristics of a probability

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Chapter. Probability

Chapter. Probability Chapter 3 Probability Section 3.1 Basic Concepts of Probability Section 3.1 Objectives Identify the sample space of a probability experiment Identify simple events Use the Fundamental Counting Principle

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

Probability. On the first day of Christmas. Notation. Literacy. Impossible Certain Event Outcome Equally likely

Probability. On the first day of Christmas. Notation. Literacy. Impossible Certain Event Outcome Equally likely Impossible Certain Event Outcome Equally likely Literacy On the first day of Probability Notation Mathematicians write the probability of an event as: P(event) = The event being the outcomes you want to

More information

Lecture Notes. 15MA301-Probability & Statistics. Prepared by S ATHITHAN

Lecture Notes. 15MA301-Probability & Statistics. Prepared by S ATHITHAN Lecture Notes 5MA3-Probability & Statistics Prepared by S ATHITHAN Assistant Professor Department of of Mathematics Faculty of Engineering and Technology SRM UNIVERSITY Kattankulathur-633, Kancheepuram

More information

Math 243 Section 3.1 Introduction to Probability Lab

Math 243 Section 3.1 Introduction to Probability Lab Math 243 Section 3.1 Introduction to Probability Lab Overview Why Study Probability? Outcomes, Events, Sample Space, Trials Probabilities and Complements (not) Theoretical vs. Empirical Probability The

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Please do NOT write in this box. Multiple Choice Total

Please do NOT write in this box. Multiple Choice Total Name: Instructor: ANSWERS Bullwinkle Math 1010, Exam I. October 14, 014 The Honor Code is in effect for this examination. All work is to be your own. Please turn off all cellphones and electronic devices.

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

Name: Math 29 Probability. Practice Final Exam. 1. Show all work. You may receive partial credit for partially completed problems.

Name: Math 29 Probability. Practice Final Exam. 1. Show all work. You may receive partial credit for partially completed problems. Name: Math 29 Probability Practice Final Exam Instructions: 1. Show all work. You may receive partial credit for partially completed problems. 2. You may use calculators and a two-sided sheet of reference

More information

STAT 201 Chapter 5. Probability

STAT 201 Chapter 5. Probability STAT 201 Chapter 5 Probability 1 2 Introduction to Probability Probability The way we quantify uncertainty. Subjective Probability A probability derived from an individual's personal judgment about whether

More information

Topic 2 Probability. Basic probability Conditional probability and independence Bayes rule Basic reliability

Topic 2 Probability. Basic probability Conditional probability and independence Bayes rule Basic reliability Topic 2 Probability Basic probability Conditional probability and independence Bayes rule Basic reliability Random process: a process whose outcome can not be predicted with certainty Examples: rolling

More information

Tutorial 3 - Discrete Probability Distributions

Tutorial 3 - Discrete Probability Distributions Tutorial 3 - Discrete Probability Distributions 1. If X ~ Bin(6, ), find (a) P(X = 4) (b) P(X 2) 2. If X ~ Bin(8, 0.4), find (a) P(X = 2) (b) P(X = 0) (c)p(x > 6) 3. The probability that a pen drawn at

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright 2012 by The McGraw-Hill Companies, Inc. All rights reserved. LO5 Describe and compute probabilities for a binomial distribution.

More information

Review. More Review. Things to know about Probability: Let Ω be the sample space for a probability measure P.

Review. More Review. Things to know about Probability: Let Ω be the sample space for a probability measure P. 1 2 Review Data for assessing the sensitivity and specificity of a test are usually of the form disease category test result diseased (+) nondiseased ( ) + A B C D Sensitivity: is the proportion of diseased

More information

Probability and Conditional Probability

Probability and Conditional Probability Probability and Conditional Probability Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison September 27 29, 2011 Probability 1 / 33 Parasitic Fish Case Study Example 9.3

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

Date: Pd: Unit 4. GSE H Analytic Geometry EOC Review Name: Units Rewrite ( 12 3) 2 in simplest form. 2. Simplify

Date: Pd: Unit 4. GSE H Analytic Geometry EOC Review Name: Units Rewrite ( 12 3) 2 in simplest form. 2. Simplify GSE H Analytic Geometry EOC Review Name: Units 4 7 Date: Pd: Unit 4 1. Rewrite ( 12 3) 2 in simplest form. 2. Simplify 18 25 3. Which expression is equivalent to 32 8? a) 2 2 27 4. Which expression is

More information

Exercises on Chapter 2: Linear Regression with one independent variable:

Exercises on Chapter 2: Linear Regression with one independent variable: Exercises on Chapter 2: Linear Regression with one independent variable: Summary: Simple Linear Regression Model: (distribution of error terms unspecified) (2.1) where, value of the response variable in

More information

2014 SM4 Revision Questions Distributions

2014 SM4 Revision Questions Distributions 2014 SM4 Revision Questions Distributions Normal Q1. Professor Halen has 184 students in his college mathematics class. The scores on the semester exam are normally distributed with a mean of 72.3 and

More information

Chapter Goals. To introduce you to data collection

Chapter Goals. To introduce you to data collection Chapter Goals To introduce you to data collection You will learn to think critically about the data collected or presented learn various methods for selecting a sample Formulate Theories Interpret Results/Make

More information

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II Week 4 Classical Probability, Part II Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools

More information

Topic 5 Part 3 [257 marks]

Topic 5 Part 3 [257 marks] Topic 5 Part 3 [257 marks] Let 0 3 A = ( ) and 2 4 4 0 B = ( ). 5 1 1a. AB. 1b. Given that X 2A = B, find X. The following table shows the probability distribution of a discrete random variable X. 2a.

More information

P (A B ) = P (B ) =.58

P (A B ) = P (B ) =.58 Review Exam 1 This is a sample of problems that would be good practice for the exam. This is by no means a guarantee that the problems on the exam will look identical to those on the exam but it should

More information

Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule

Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule Stat 225 Week 2, 8/27/12-8/31/12, Notes: Independence and Bayes Rule The Fall 2012 Stat 225 T.A.s September 7, 2012 1 Monday, 8/27/12, Notes on Independence In general, a conditional probability will change

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

Notes 10.1 Probability

Notes 10.1 Probability Notes 10.1 Probability I. Sample Spaces and Probability Functions A. Vocabulary: 1. The Sample Space is all possible events 2. An event is a subset of the sample space 3. Probability: If E is an event

More information