SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 satisfy the condition 31 ω LO,a ω a = ω b ω LO,b. (4) doi: /nature07751 Tunable delay of Einstein-Podolsky-Rosen entanglement A. M. Marino 1, R. C. Pooser 1, V. Boyer 1, & P. D. Lett 1 1 Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 0899, USA MUARC, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 TT, United Kingdom 1 Envelopes of the correlation functions The cross-correlation between the quadratures of the fields is given by G XaXb (τ) = X a (t)x b (t + τ), (1) where here the brackets indicate time averaging. The measurement of the quadratures is done with homodyne detectors, which give a signal of the form X a (t) = E LO e i(ωlo,at+θ) Ea(t)e iωat + ELOe +i(ωlo,at+φ) E a (t)e iω at () X b (t) = E LO e i(ωlo,bt+θ) Eb(t)e iωbt + ELOe +i(ωlo,bt+φ) E b (t)e iωbt, (3) where E LO and ω LO are the amplitude and frequency of the local oscillators, respectively, and θ is the relative phase between the probe or conjugate and the corresponding local oscillator (phase of the homodyne detector). The center frequencies for modes a and b are given by ω a and ω b. In our experiment these frequencies correspond to the centre of the gain profiles for the probe and the conjugate, respectively. We find that the optimum squeezing is obtained at frequencies detuned from the centre of the gain profiles. The local oscillators, which are generated with a seeded fourwave mixing process 19, are tuned to the optimum squeezing and as a result their frequencies are different from the the center frequencies for modes a and b. The correlations present in the vacuum twin beams, modes a and b, are between sidebands with frequencies on opposite sides of the frequencies of the carriers of the probe and conjugate, ω a and ω b. In order to measure these correlations the frequencies of the local oscillators have to 1

2 (a) 0 (b) 0 Cross-Correlation [a.u.] Cross-Correlation [a.u.] Delay [ns] Delay [ns] Supplementary Figure 1: Envelope of cross-correlation function. (a) Cross-correlation as the phase θ of the homodyne detectors is scanned between 0 and π/. (b) The envelope of the crosscorrelation function, black curve, is obtained from the absolute value of the cross-correlation functions measured for different values of θ. a.u., arbitrary units. In our experiment this condition is automatically satisfied because the local oscillators are also generated with the four-wave mixing process. Taking these relations into account and performing the time averaging, we find that the correlation function takes the form G XaXb (τ) = ELORe{e i( τ θ) } E a (t)e b (t + τ), (5) where ELO E a (t)e b (t + τ) gives the envelope of the cross-correlation function. This is the quantity we are interested in calculating. As Eq. (5) shows, the offset of the local oscillator frequencies from the centre of the gain profile of the four-wave mixing process introduces oscillations in the correlation functions at a frequency. In addition, different phases θ of the homodyne detectors, corresponding to different quadratures, introduce an offset between the time origin of the oscillations and the envelope. This makes it possible to take data for different quadratures and obtain an accurate representation of the envelope of the cross-correlation function. Supplementary Figure 1(a) shows a set of typical curves that we obtain for the cross-correlation as we scan θ from 0 to π/. We take the absolute value of these curves and then calculate the envelope, as shown in Supplementary Fig. 1(b). Once we obtain the envelope of the cross-correlation, we use the mid-point between the values τ at half the maximum to measure the relative delay between the probe and the conjugate. In the paper, the cross-correlation functions are calculated after separating the dc portions

3 of the photocurrents, which are used to normlise them. As a result, the figures show the crosscorrelation functions between the fluctuations of the probe and the conjugate. The quantum correlations between the beams are contained in these fluctuations. Inseparability and EPR criteria The entanglement properties of a two-mode Gaussian state can be completely characterised through its mean values and correlation matrix, or second order moments. For the case of the electromagnetic field we look at the noise properties of different combinations of the quadratures of the fields. In particular, the inseparability criterion allows for a rescaling of the individual quadratures when calculating the joint quadratures, that is ˆX g, = 1 ( ˆXa g ˆX b ) Ŷ g,+ = 1 (Ŷa + gŷb), (7) such that the standard quantum limit (SQL) of these joint quadratures is now (1 + g )/. Here, the individual quadratures have been normalised such that their SQL is equal to one. Experimentally, g corresponds to a variable electronic gain in one of the homodyne detectors. Given these quadratures, the inseparability criterion states that for a Gaussian state ˆX g, + Ŷ g,+ < ( 1 + g ) (8) is a necessary and sufficient condition for the state to be inseparable or entangled 16,1. We can normalise Eq. (8) to the SQL obtained when rescaling the individual quadratures such that it takes the form I = ˆX g, N + Ŷ g,+ N <, (9) where the N subindex indicates that the variances have been normalised to the corresponding SQL. The variances shown throughout the paper have been normalised in this way, such that the inseparability criterion in the form of Eq. (9) is appropriate. When performing the measurements, the variable electronic gain in the detector for the probe is used to minimise ˆX g, N = Ŷ g,+ N and thus obtain the optimum inseparability parameter I. (6) In order to directly use the measured noise properties of our system in the inseparability criterion the following conditions need to be satisfied 16,1 ˆX a 1 ˆX b 1 = Ŷ a 1 Ŷ b 1 (10) 3

4 ( ˆX a 1)( ˆX b 1) ˆX a ˆXb = ( Ŷ a 1)( Ŷ b (11) ˆX a Ŷ a + Ŷa ˆX a = ˆX b Ŷ b + Ŷb ˆX b = 0 (1) ˆX a Ŷ b = ˆX b Ŷ a = 0. (13) If these conditions are not satisfied the inseparability criterion can still be used, however, the correlation matrix has to be transformed to the appropriate form. The set of measurements that we perform for each delay include the noise of the joint quadratures and of the probe and conjugate individually as we scan the phase θ of the homodyne detectors, as well as the corresponding SQL levels. We find that our system behaves as a phase insensitive amplifier. That is, the noise on each beam by itself is phase insensitive, such that the single beam noise ( ˆX (a,b) θ ) is independent of θ, and both joint quadratures have the same noise properties, ˆX = Ŷ +. These results are sufficient to show that conditions (10-13) are satisfied. The fact that the noise on each beam, individually, is phase independent implies that ˆX a = Ŷ a and ˆX b = Ŷ b, and thus condition (10) is satisfied. This property also reduces condition (11) to ˆX a ˆXb = ŶaŶb. These quantities can be obtained from the variances of the joint quadratures, which are of the form ˆX = ( ˆX a + ˆX b )/ ˆX a ˆXb (14) Ŷ + = ( Ŷ a + Ŷ b )/ + ŶaŶb. (15) Given the phase insensitivity of the process, both for the single beams and the joint quadratures ( ˆX = Ŷ + ), it follows from the relations above that ˆX a ˆXb = ŶaŶb, thus satisfying condition (11). Conditions (1-13) imply that there are no cross-quadrature correlations in a single beam and between beams, respectively. In order to verify condition (1) we look at ( ˆX θ (a,b) ) and find that for mode a, for example, ˆX a Ŷ a + Ŷa ˆX a = ( The phase insensitivity of a single beam implies that ( ˆX a Ŷ a + Ŷa ˆX a = 0 and similarly for mode b. ˆX θ=45 a ) ( ˆX a + Ŷ a )/. (16) ˆX θ=45 a ) = ˆX a = Ŷ a, such that Condition (13) can be verified through the joint quadratures when the phase of the homodyne 4

5 detectors is θ = 45. After taking condition (1) into account we find that ( ˆXθ=45 a ) θ=45 ˆX b = ( ˆX a + ˆX b ˆX a ˆXb ) ( Ŷ a + Ŷ b ŶaŶb ) 1 ˆX a Ŷ b + ˆX b Ŷ a. (17) The first term in parenthesis on the right hand side corresponds to the minimum noise level of the oscillations obtained when measuring the joint quadratures (see Supplementary Fig. ) while the second one corresponds to the maximum noise level. In Supplementary Fig., the noise at θ = 45 corresponds to the intersection of the red and blue curves, while the dashed line gives the mean value. As can be seen, the noise level at θ = 45 is equal to the mean value, which implies that ˆX a Ŷ b + ˆX b Ŷ a = 0. This, combined with the fact that ˆX a Ŷ b = ˆX b Ŷ a as a result of the phase insensitivity of the system proves that condition (13) is satisfied. The EPR criterion requires the conditional variances. In particular, for the case in which we want to use the measurements on the quadratures of mode b to estimate the properties of mode a, the conditional variance can be calculated according to 17 V Xa X b = ( ˆX a g ˆX b ) gmin, (18) where g is a parameter used to minimise ( ˆX a g ˆX b ). Experimentally, g corresponds to the variable electronic gain used in the homodyne detector for the probe. The optimum value of g is such that the minimum value for the conditional variance is given by V Xa X b = ˆX a ˆX a ˆXb ˆX b. (19) The same procedure can be used to calculate the conditional variance V Ya Yb. These conditional variances are then used to calculate E ab. It is also possible to estimate the properties of mode b through measurements on mode a. The EPR criterion can be asymmetric, such that E ab E ba. 15 We use the same data that was optimised for the inseparability criterion to calculate the conditional variances and thus the EPR parameter E ab. The variances ˆX a and ˆX b are given by the noise measurements performed on the individual beams normalised to the corresponding SQL, while ˆX a X b can be obtained from the variance of the joint quadratures. Experimentally we 5

6 Noise Power [db] Time [s] Supplementary Figure : Inseparability criterion. The inseparability criterion, Eq. (9), requires that there are no cross-quadrature correlations between beams. This is the case if the mean value between the maximum and minimum noise levels, dashed curve, is equal to the noise level for a homodyne detector phase θ = 45, or the point where the red and blue curves cross. measure the noise optimised with the variable electronic gain and normalised to the corresponding SQL, that is ˆX N = ˆX a + g ˆX b g ˆX a ˆXb 1 + g, (0) where the N subscript indicates that it is normalised. We thus have that ˆX a ˆXb = 1 ( ) 1 g ˆX a + g ˆX b 1 + g g ˆX N. (1) The experimental value of g can be directly estimated by comparing the noise levels that are measured by the homodyne detectors when the twin beams are blocked (i.e., the unnormalised SQL for the probe and the conjugate), such that g = ˆX b SQL ˆX a SQL. () We follow the same procedure with Ŷ + N to calculate the conditional variance for the phase quadrature, V Ya Y b. In our experimental setup, the delayed probe and its local oscillator follow similar paths in order to obtain good mode matching and phase stability for the homodyne detection. As a result, the local oscillator for the probe goes through the slow light medium and experiences the same gain as the delayed probe. This change in local oscillator power is equivalent to a change in the 6

7 electronic gain of the homodyne detector. Thus, the value of g is a combination of the optical gain of the local oscillator and the variable electronic gain of the homodyne detector for the probe and is given by Eq. (). 31. Marino, A. M., Stroud, C. R., Wong, V., Bennink, R. S. & Boyd, R. W. Bichromatic local oscillator for detection of two-mode squeezed states of light. J. Opt. Soc. Am. B 4, (007). 7

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

0.5 atoms improve the clock signal of 10,000 atoms

0.5 atoms improve the clock signal of 10,000 atoms 0.5 atoms improve the clock signal of 10,000 atoms I. Kruse 1, J. Peise 1, K. Lange 1, B. Lücke 1, L. Pezzè 2, W. Ertmer 1, L. Santos 3, A. Smerzi 2, C. Klempt 1 1 Institut für Quantenoptik, Leibniz Universität

More information

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks

Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Multipartite Einstein Podolsky Rosen steering and genuine tripartite entanglement with optical networks Seiji Armstrong 1, Meng Wang 2, Run Yan Teh 3, Qihuang Gong 2, Qiongyi He 2,3,, Jiri Janousek 1,

More information

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement

Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement 12/02/13 Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and Continuous-Variable entanglement Ryo Namiki Quantum optics group, Kyoto University 京大理 並木亮 求職中 arxiv:1109.0349 Quantum Entanglement

More information

Entanglement swapping using nondegenerate optical parametric amplifier

Entanglement swapping using nondegenerate optical parametric amplifier 15 July 00 Physics Letters A 99 (00 47 43 www.elsevier.com/locate/pla Entanglement swapping using nondegenerate optical parametric amplifier Jing Zhang Changde Xie Kunchi Peng The State Key Laboratory

More information

Nonlinear Optics and Squeezed Light with 4WM

Nonlinear Optics and Squeezed Light with 4WM Nonlinear Optics and Squeezed Light with 4WM Paul D. Lett National Institute of Standards and Technology and Joint Quantum Institute NIST and U. Maryland outline (day 2) squeezed light non-classicallity;

More information

Continuous variable entanglement using cold atoms

Continuous variable entanglement using cold atoms Continuous variable entanglement using cold atoms Vincent Josse, Aurelien Dantan, Alberto Bramati, Michel Pinard, Elisabeth Giacobino To cite this version: Vincent Josse, Aurelien Dantan, Alberto Bramati,

More information

Deterministic secure communications using two-mode squeezed states

Deterministic secure communications using two-mode squeezed states Deterministic secure communications using twomode squeezed states Alberto M. Marino* and C. R. Stroud, Jr. The Institute of Optics, University of Rochester, Rochester, New York 467, USA Received 5 May

More information

*Williams College, Williamstown, MA **U. of Oklahoma funding from AFOSR, DARPA

*Williams College, Williamstown, MA **U. of Oklahoma funding from AFOSR, DARPA Quantum Imaging: Spooky images at a distance (and what to do with them) Paul D. Lett, Neil Corzo, Kevin Jones*, Alberto Marino**, Quentin Glorieux, Jeremy Clark, Ryan Glasser, Ulrich Vogl, Yan Hua Zhai

More information

arxiv: v1 [quant-ph] 10 Nov 2008

arxiv: v1 [quant-ph] 10 Nov 2008 Squeezed Light and Entangled Images from Four-Wave-Mixing in Hot Rubidium Vapor Raphael C Pooser, Vincent Boyer, Alberto M. Marino, Paul D. Lett Joint Quantum Institute, National Institute of Standards

More information

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium

Evaluation Method for Inseparability of Two-Mode Squeezed. Vacuum States in a Lossy Optical Medium ISSN 2186-6570 Evaluation Method for Inseparability of Two-Mode Squeezed Vacuum States in a Lossy Optical Medium Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Multimode Entanglement in. Continuous Variables

Multimode Entanglement in. Continuous Variables Multimode Entanglement in Continuous Variables Entanglement with continuous variables What are we measuring? How are we measuring it? Why are we using the Optical Parametric Oscillator? What do we learn?

More information

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements Quantum Control of States of Light (2) Optimization of information extraction from optical measurements C. Fabre Laboratoire Kastler Brossel Université Pierre et Marie Curie-Paris6, ENS Two levels in field

More information

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light

Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled Light T. Eberle 1, V. Händchen 1, F. Furrer 2, T. Franz 3, J. Duhme 3, R.F. Werner 3, R. Schnabel 1 Realization of Finite-Size Continuous-Variable Quantum Key Distribution based on Einstein-Podolsky-Rosen Entangled

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Einstein-Podolsky-Rosen entanglement t of massive mirrors

Einstein-Podolsky-Rosen entanglement t of massive mirrors Einstein-Podolsky-Rosen entanglement t of massive mirrors Roman Schnabel Albert-Einstein-Institut t i tit t (AEI) Institut für Gravitationsphysik Leibniz Universität Hannover Outline Squeezed and two-mode

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Continuous variable entanglement using cold atoms

Continuous variable entanglement using cold atoms Continuous variable entanglement using cold atoms Vincent Josse, Aurelien Dantan, Alberto Bramati, Michel Pinard, Elisabeth Giacobino To cite this version: Vincent Josse, Aurelien Dantan, Alberto Bramati,

More information

arxiv:quant-ph/ v1 19 Aug 2005

arxiv:quant-ph/ v1 19 Aug 2005 arxiv:quant-ph/050846v 9 Aug 005 WITNESSING ENTANGLEMENT OF EPR STATES WITH SECOND-ORDER INTERFERENCE MAGDALENA STOBIŃSKA Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Warszawa 00 68, Poland magda.stobinska@fuw.edu.pl

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen

Beyond Heisenberg uncertainty principle in the negative mass reference frame. Eugene Polzik Niels Bohr Institute Copenhagen Beyond Heisenberg uncertainty principle in the negative mass reference frame Eugene Polzik Niels Bohr Institute Copenhagen Trajectories without quantum uncertainties with a negative mass reference frame

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Quantum Mechanical Noises in Gravitational Wave Detectors

Quantum Mechanical Noises in Gravitational Wave Detectors Quantum Mechanical Noises in Gravitational Wave Detectors Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Germany Introduction Test masses in GW interferometers are Macroscopic

More information

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007 al D. Bouwmeester et. al. Nature 390 575 (1997) Universiteit Utrecht 1th june 007 Outline 1 3 4 5 EPR Paradox 1935: Einstein, Podolsky & Rosen Decay of a π meson: π 0 e + e + Entangled state: ψ = 1 ( +

More information

arxiv:quant-ph/ v3 17 Jul 2005

arxiv:quant-ph/ v3 17 Jul 2005 Quantitative measures of entanglement in pair coherent states arxiv:quant-ph/0501012v3 17 Jul 2005 G. S. Agarwal 1 and Asoka Biswas 2 1 Department of Physics, Oklahoma state University, Stillwater, OK

More information

Experimental continuous-variable cloning of partial quantum information

Experimental continuous-variable cloning of partial quantum information Experimental continuous-variable cloning of partial quantum information Metin Sabuncu, 1,, * Gerd Leuchs, and Ulrik L. Andersen 1, 1 Department of Physics, Technical University of Denmark, 800 Kongens

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

High-fidelity continuous-variable quantum teleportation toward multistep quantum operations

High-fidelity continuous-variable quantum teleportation toward multistep quantum operations High-fidelity continuous-variable quantum teleportation toward multistep quantum operations Mitsuyoshi Yukawa,, Hugo Benichi,,3 and Akira Furusawa, Department of Applied Physics, School of Engineering,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction

Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Enhancing sensitivity of gravitational wave antennas, such as LIGO, via light-atom interaction Eugeniy E. Mikhailov The College of William & Mary, USA New Laser Scientists, 4 October 04 Eugeniy E. Mikhailov

More information

Continuous variable entanglement using cold atoms

Continuous variable entanglement using cold atoms Continuous variable entanglement using cold atoms Vincent Josse, Aurelien Dantan, Alberto Bramati, Michel Pinard, Elisabeth Giacobino To cite this version: Vincent Josse, Aurelien Dantan, Alberto Bramati,

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic

Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic M. Jasperse, 1,2, L. D. Turner, 2 and R. E. Scholten 1 1 ARC Centre of Excellence for Coherent

More information

Lectures on Quantum Optics and Quantum Information

Lectures on Quantum Optics and Quantum Information Lectures on Quantum Optics and Quantum Information Julien Laurat Laboratoire Kastler Brossel, Paris Université P. et M. Curie Ecole Normale Supérieure and CNRS julien.laurat@upmc.fr Taiwan-France joint

More information

Squeezing manipulation with atoms

Squeezing manipulation with atoms Squeezing manipulation with atoms Eugeniy E. Mikhailov The College of William & Mary March 21, 2012 Eugeniy E. Mikhailov (W&M) Squeezing manipulation LSC-Virgo (March 21, 2012) 1 / 17 About the college

More information

arxiv: v1 [gr-qc] 6 Jan 2017

arxiv: v1 [gr-qc] 6 Jan 2017 Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement E. Knyazev, 1 S. Danilishin, 2 S. Hild, 2 and F.Ya. Khalili 1, 1 M.V.Lomonosov Moscow State University, Faculty of Physics,

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Corrections to A Guide to Experiments in Quantum Optics

Corrections to A Guide to Experiments in Quantum Optics Corrections to A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy Ralph September 23, 2009 The following are corrections to errata within the Second Edition of A Guide to Experiments in

More information

Evaluation of Second Order Nonlinearity in Periodically Poled

Evaluation of Second Order Nonlinearity in Periodically Poled ISSN 2186-6570 Evaluation of Second Order Nonlinearity in Periodically Poled KTiOPO 4 Crystal Using Boyd and Kleinman Theory Genta Masada Quantum ICT Research Institute, Tamagawa University 6-1-1 Tamagawa-gakuen,

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS Laboratoire Kastler Brossel A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) A. Dantan, E. Giacobino, M. Pinard (UPMC, Paris) NUCLEAR SPINS HAVE LONG RELAXATION

More information

Bright tripartite entanglement in triply concurrent parametric oscillation

Bright tripartite entanglement in triply concurrent parametric oscillation Bright tripartite entanglement in triply concurrent parametric oscillation A. S. Bradley and M. K. Olsen ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland,

More information

Study of a quantum nondemolition interferometer using ponderomotive squeezing

Study of a quantum nondemolition interferometer using ponderomotive squeezing Study of a quantum nondemolition interferometer using ponderomotive squeezing Ochanomizu University, National Astronomical Observatory of Japan A, and Max-Planck-Institut für Gravitationsphysik B Shihori

More information

Einstein-Podolsky-Rosen Entanglement between Separated. Atomic Ensembles

Einstein-Podolsky-Rosen Entanglement between Separated. Atomic Ensembles Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles Wei Zhang *, Ming-Xin Dong *, Dong-Sheng Ding, Shuai Shi, Kai Wang, Shi-Long Liu, Zhi-Yuan Zhou, Guang-Can Guo, Bao-Sen Shi # 1 Key

More information

Quântica Oscilador Paramétrico

Quântica Oscilador Paramétrico Luz e Átomos como ferramentas para Informação Quântica Oscilador Paramétrico Ótico Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Parametric Down Conversion Energy and

More information

Single-Mode Linear Attenuation and Phase-Insensitive Linear Amplification

Single-Mode Linear Attenuation and Phase-Insensitive Linear Amplification Massachusetts Institute of echnology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: hursday, October 20, 2016 Lecture Number 12 Fall 2016 Jeffrey H.

More information

Quantum Gaussian Noise

Quantum Gaussian Noise Quantum Gaussian Noise Jeffrey H. Shapiro Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139-4307 ABSTRACT In semiclassical theory, light is a classical electromagnetic

More information

arxiv: v1 [quant-ph] 29 May 2015

arxiv: v1 [quant-ph] 29 May 2015 Continuous variable entanglement on a chip arxiv:1505.07895v1 [quant-ph] 29 May 2015 Genta Masada, 1,2 Kazunori Miyata, 1 Alberto Politi, 3 Toshikazu Hashimoto, 4 Jeremy L. O Brien, 5 and Akira Furusawa

More information

Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels

Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels Continuous-Variable Quantum Key Distribution Protocols Over Noisy Channels The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator Research on optomechanical systems is of relevance to gravitational wave detection

More information

The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations

The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations The quest for three-color entanglement: experimental investigation of new multipartite quantum correlations K. N. Cassemiro, 1 A. S. Villar, 1,2 M. Martinelli, 1 and P. Nussenzveig 1 1 Instituto de Física,

More information

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University

Quantum optics. Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik. M. Suhail Zubairy Quaid-i-Azam University Quantum optics Marian O. Scully Texas A&M University and Max-Planck-Institut für Quantenoptik M. Suhail Zubairy Quaid-i-Azam University 1 CAMBRIDGE UNIVERSITY PRESS Preface xix 1 Quantum theory of radiation

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Chapter 2 Quantum Theory of Gravitational-Wave Detectors

Chapter 2 Quantum Theory of Gravitational-Wave Detectors Chapter 2 Quantum Theory of Gravitational-Wave Detectors 2.1 Preface This chapter gives an overview of the quantum theory of gravitational-wave (GW) detectors. It is a modified version of the chapter contributed

More information

Fast Light, Slow Light

Fast Light, Slow Light Light pulses can be made to propagate with group velocities exceeding the speed of light in a vacuum or, at the opposite extreme, to come to a complete stop. Fast Light, Slow Light Raymond Y. Chiao and

More information

Single-photon side bands

Single-photon side bands PHYSICAL REVIEW A 77, 6387 8 Single-photon side bands T. C. Ralph, E. H. Huntington, and T. Symul 3 Department of Physics, University of Queensland, Brisbane 47, QLD, Australia Centre for Quantum Computer

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

arxiv: v2 [quant-ph] 29 Aug 2012

arxiv: v2 [quant-ph] 29 Aug 2012 Programmable Multimode Quantum Networks *Seiji Armstrong 1,,3, Jean-François Morizur 1,4, Jiri Janousek 1,, Boris Hage 1,, Nicolas Treps 4, Ping Koy Lam and Hans-A. Bachor 1 1 ARC Centre of Excellence

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Slow Light in Crystals

Slow Light in Crystals With Department of Physics & Astronomy Faculty of Science Utrecht University Photon Physics Course 2007 Outline Introduction 1 Introduction Slow Light Electromagnetically Induced Transparency 2 CPO Phenomenon

More information

The SQUID-tunable resonator as a microwave parametric oscillator

The SQUID-tunable resonator as a microwave parametric oscillator The SQUID-tunable resonator as a microwave parametric oscillator Tim Duty Yarema Reshitnyk Charles Meaney Gerard Milburn University of Queensland Brisbane, Australia Chris Wilson Martin Sandberg Per Delsing

More information

The Physics of Doppler Ultrasound. HET408 Medical Imaging

The Physics of Doppler Ultrasound. HET408 Medical Imaging The Physics of Doppler Ultrasound HET408 Medical Imaging 1 The Doppler Principle The basis of Doppler ultrasonography is the fact that reflected/scattered ultrasonic waves from a moving interface will

More information

arxiv:quant-ph/ v1 3 Dec 1999

arxiv:quant-ph/ v1 3 Dec 1999 Quantum Memory for Light A. E. Kozhekin, K. Mølmer and E. Polzik Institute of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8 Aarhus C, Denmark (March 8, 218) We propose an efficient method

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

arxiv: v2 [quant-ph] 30 Dec 2014

arxiv: v2 [quant-ph] 30 Dec 2014 Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb Raphael Pooser 1 and Jietai Jing 2 1 Quantum Information Science Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Criteria of quantum correlation in the measurement of continuous variables in optics

Criteria of quantum correlation in the measurement of continuous variables in optics Criteria of quantum correlation in the measurement of continuous variables in optics Nicolas Treps, Claude Fabre To cite this version: Nicolas Treps, Claude Fabre. Criteria of quantum correlation in the

More information

arxiv:quant-ph/ v1 30 May 2006

arxiv:quant-ph/ v1 30 May 2006 Non-Gaussian, Mixed Continuous-Variable Entangled States A. P. Lund and T. C. Ralph Centre for Quantum Computer Technology, Department of Physics, University of Queensland, St Lucia, QLD 407, Australia

More information

arxiv:quant-ph/ v1 14 Nov 1996

arxiv:quant-ph/ v1 14 Nov 1996 Quantum signatures of chaos in the dynamics of a trapped ion J.K. Breslin, C. A. Holmes and G.J. Milburn Department of Physics, Department of Mathematics arxiv:quant-ph/9611022v1 14 Nov 1996 The University

More information

Generation of squeezed vacuum with hot and ultra-cold Rb atoms

Generation of squeezed vacuum with hot and ultra-cold Rb atoms Generation of squeezed vacuum with hot and ultra-cold Rb atoms Eugeniy E. Mikhailov, Travis Horrom, Irina Novikova Salim Balik 2, Arturo Lezama 3, Mark Havey 2 The College of William & Mary, USA 2 Old

More information

Continuous-variable quantum key distribution with a locally generated local oscillator

Continuous-variable quantum key distribution with a locally generated local oscillator Continuous-variable quantum key distribution with a locally generated local oscillator Bing Qi, Pavel Lougovski, Raphael Pooser, Warren Grice, Miljko Bobrek, Charles Ci Wen Lim, and Philip G. Evans Quantum

More information

Entanglement and squeezing in a two-mode system: theory and experiment

Entanglement and squeezing in a two-mode system: theory and experiment Entanglement and squeezing in a two-mode system: theory and experiment V. Josse, A. Dantan, A. Bramati and E. Giacobino Laboratoire Kastler Brossel, Université Pierre et Marie Curie, 4 place Jussieu, F755

More information

Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors. Eleonora Capocasa

Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors. Eleonora Capocasa Frequency dependent squeezing for quantum noise reduction in second generation Gravitational Wave detectors Eleonora Capocasa 10 novembre 2016 My thesis work is dived into two parts: Participation in the

More information

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz Luz e Átomos como ferramentas para Informação Quântica Ótica Quântica Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Question: Dividing the incident beam in two equal parts,

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state

Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state Oliver Glöckl, 1, * Stefan Lorenz, 1 Christoph Marquardt, 1 Joel Heersink, 1 Michael Brownnutt,

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Optical Waveguide Tap with Ideal Photodetectors

Optical Waveguide Tap with Ideal Photodetectors Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Tuesday, October 18, 2016 Lecture Number 11 Fall 2016 Jeffrey H.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer cience 6.453 Quantum Optical Communication Date: Thursday, December 1, 16 Lecture Number Fall 16 Jeffrey H. hapiro

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, September 8, 016 Lecture Number 1 Fall 016 Jeffrey H.

More information

Superluminal Light Pulses, Subluminal Information Transmission

Superluminal Light Pulses, Subluminal Information Transmission 1 Superluminal Light Pulses, Subluminal Information Transmission Dan Gauthier and Michael Stenner* Duke University, Department of Physics, Fitzpatrick Center for Photonics and Communication Systems Mark

More information

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime Bijita Sarma and Amarendra K Sarma Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039,

More information

Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum IARD2010 Limit 1 / 23

Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum IARD2010 Limit 1 / 23 Quantum Noise in Mirror-Field Systems: Beating the Standard Quantum Limit Da-Shin Lee Department of Physics National Dong Hwa University Hualien,Taiwan Presentation to Workshop on Gravitational Wave activities

More information

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky

QUANTUM INFORMATION with light and atoms. Lecture 2. Alex Lvovsky QUANTUM INFORMATION with light and atoms Lecture 2 Alex Lvovsky MAKING QUANTUM STATES OF LIGHT 1. Photons 2. Biphotons 3. Squeezed states 4. Beam splitter 5. Conditional measurements Beam splitter transformation

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Quantum difference parametric amplification and oscillation. Abstract

Quantum difference parametric amplification and oscillation. Abstract Quantum difference parametric amplification and oscillation M. K. Olsen School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia. (Dated: August 26, 2018) arxiv:1708.01840v1

More information

The Gouy phase shift in nonlinear interactions of waves

The Gouy phase shift in nonlinear interactions of waves The Gouy phase shift in nonlinear interactions of waves Nico Lastzka 1 and Roman Schnabel 1 1 Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik

More information

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Heedeuk Shin 1, Wenjun Qiu 2, Robert Jarecki 1, Jonathan A. Cox 1, Roy H. Olsson III 1, Andrew Starbuck 1, Zheng Wang 3, and

More information

arxiv: v2 [quant-ph] 7 Mar 2017

arxiv: v2 [quant-ph] 7 Mar 2017 Quantifying the mesoscopic quantum coherence of approximate NOON states and spin-squeezed two-mode Bose-Einstein condensates B. Opanchuk, L. Rosales-Zárate, R. Y. Teh and M. D. Reid Centre for Quantum

More information

QND for advanced GW detectors

QND for advanced GW detectors QND techniques for advanced GW detectors 1 for the MQM group 1 Lomonosov Moscow State University, Faculty of Physics GWADW 2010, Kyoto, Japan, May 2010 Outline Quantum noise & optical losses 1 Quantum

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

Light-to-matter entanglement transfer in optomechanics

Light-to-matter entanglement transfer in optomechanics Sete et al. Vol. 31, No. 11 / November 2014 / J. Opt. Soc. Am. B 2821 Light-to-matter entanglement transfer in optomechanics Eyob A. Sete, 1, * H. Eleuch, 2 and C. H. Raymond Ooi 3 1 Department of Electrical

More information

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME

RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME Chaire de Physique Mésoscopique Michel Devoret Année 1, 15 mai - 19 juin RÉSONATEURS NANOMÉCANIQUES DANS LE RÉGIME QUANTIQUE NANOMECHANICAL RESONATORS IN QUANTUM REGIME Troisième leçon / Third lecture

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information