the configuration space of Branched polymers R. Kenyon, P. Winkler

Size: px
Start display at page:

Download "the configuration space of Branched polymers R. Kenyon, P. Winkler"

Transcription

1 the configuration space of Branched polymers R. Kenyon, P. Winkler

2 artificial blood catalyst recovery Branched polymers (dendrimers) in modern science artificial photosynthesis

3 A branched polymer is a connected collection of unit disks with non-overlapping interiors (generically, a tree of disks) X n = space of branched polymers with n labelled disks.

4 2D examples: 1 2 Volume(X 2 ) = 2π π 4π Volume(X 3 ) = 2(2π) 2 2π 4π π 4π 3

5 1 (2π) 3 5 (2π) (2π)4 27 (2π)4 27 (2π)4

6 Questions 1. What does a random BP looks like? ( diameter? number of leaves? scaling limit? ) 2. Does the space X n have a nice geometric structure? Theorem [Brydges/Imbrie 2002] 2D: The volume of X n, measured in terms of angles, is (2π) n 1 (n 1)!. 3D: The volume of X n, measured in terms of angles, is (2π) n 1 n n 1. Generally, they related BPs in R D+2 with the hard sphere model in R D.

7 Questions 1. What does a random BP looks like? ( diameter? number of leaves? scaling limit? ) 2. Does the space X n have a nice geometric structure? Theorem [Brydges/Imbrie 2002] 2D: The volume of X n, measured in terms of angles, is (2π) n 1 (n 1)!. 3D: The volume of X n, measured in terms of angles, is (2π) n 1 n n 1. Generally, they related BPs in R D+2 with the hard sphere model in R D.

8 Key observation: Invariance Lemma in 2D: The volume of X n doesn t change when you change the radii. ([BI] proved this using localization/ equivariant cohomology) 3 2 1

9 Key observation: Invariance Lemma in 2D: The volume of X n doesn t change when you change the radii. ([BI] proved this using localization/ equivariant cohomology)

10 Key observation: Invariance Lemma in 2D: The volume of X n doesn t change when you change the radii. ([BI] proved this using localization/ equivariant cohomology) 3 2 θ 3 θ 2 1 θ 1 Vol=2π(2π 2θ 1 )

11 Key observation: Invariance Lemma in 2D: The volume of X n doesn t change when you change the radii. ([BI] proved this using localization/ equivariant cohomology) 3 2 θ 3 θ 2 1 θ 1 Vol=2π(2π 2θ 1 ) 2π(2π 2θ 2 ) + 2π(2π 2θ 3 ) 2π(6π 2π)

12 Assuming this Lemma, we can compute Vol(X n ) as follows: Take disks of radii 1, ɛ, ɛ 2,..., ɛ n 1. In this case, we can ignore BPs like: since they have small volume ( 0 as ɛ 0). So we need consider only configurations where balls are attached in order of decreasing radius.

13 Attach i to one of 1, 2,..., i 1 2π (i 1) + O(ɛ) choices Total volume n i=2 2π(i 1) = (2π)n 1 (n 1)! in limit ɛ 0.

14 Proof of Invariance Lemma The proof is based on the following (trivial) fact: Lemma: If v 1,..., v n R n 1 ( ) A = v 1 v 2... v n and the n n matrix is singular, then n ( 1) j v 1 v j v n = 0. j=1 Now, change the radii of the disks continuously. The volumes of the components of X n (one for each tree) change because their boundaries in the space of angles move.

15 Codimension-1 boundaries are where the BP has a cycle: A BP with a k-cycle is in the boundary of k components (break one of the k edges of the cycle). Show using Lemma that the net volume lost to each component sums to zero:

16 Codimension-1 boundaries are where the BP has a cycle: θ 2 θ 1 P θ 3 θ 4 θ 5 Let θ i be the angle of edge i of P.

17 θ 2 P θ 1 θ 3 θ 4 R When increasing R, this component loses volume near P.

18 θ 2 θ 1 R P θ 5 θ 4 When increasing R, this componenet gains volume near P.

19

20 Computing volume changes: Let t 1,..., t k 2 preserving edge lengths. be coordinates for perturbations of a k-gon P Let R be a perturbation of P increasing lengths at the same rate. θ 1 t 1... B =. θ 1 t k 2... θ 1 R... two adjacent edge θ k t 1. θ k t k 2 θ k R. Note that (1, 1..., 1) is in the span of the t i (rotate P ). So by the lemma, k j=1 ( 1)j dθ 1 dθ j dθ k = 0.

21 θ 2 θ 1 φ φ θ 5 θ 4 The volume changes are proportional to the projection lengths along the angle bisector. (Calculation omitted.)

22 Perfect simulation of a 2D branched polymer.

23

24

25 1000 balls balls

26 What if you weaken the hard core interaction? that is, allow certain pairs of disks to overlap each other. Define an interaction graph G: v v if v and v are not allowed to overlap. E.g. Two species of balls: blues & reds (G is complete bipartite graph) Bipartite polymers Theorem The volume of the configuration space is (2π) n 1 T G (1, 0). T G (1, 0) = spanning subgraphs ( 1) edges T G (x, y) is the Tutte polynomial of G.

27 Branched polymers in 3D Project the ball centers to the x-axis: x 1 x 2 x 3 x 4 x 5 Let G be the graph with vertices x i and edges when x i x j < 1.

28 Lemma: The n-dimensional volume of the set of 3DBP s whose centers project to x 1 < x 2 < < x n is (2π) n 1 n 2 i=1 n i where n i is the number of x j with j > i, with x j x i < 1. Proof: Compute T G (1, 0). Use Archimedes theorem. Theorem: [Archimedes] The Lebesgue measure on S 2 projects to uniform Lebesgue measure on a segment in the x-direction.

29 Question: when we project the points of a 3DBP, what is their distribution? Answer: (1) (2) (3) Construct a random labelled tree on n vertices. Assign a uniform [0,1] length to each edge, independently. Dangle the tree from the root. (4) Let x i be the distance of the ith vertex from the root. (and x 1 = 0) Theorem: These points are equidistributed with the projected points of a BP.

30 x 1... x n Corollary. The 3DBP with n balls has diameter of order n.

31

32 Proof of Theorem Let x 1,..., x n R be the projections of the centers. Build a tree by gluing each x k to some x j to its left with x k x j < 1 x 1 x 2 x n The number of ways to do this is n 1 i=1 n i Integrate over positions of the x i : Each tree contributes [0,1] n 1 dx So get n n 1 (total number of rooted trees).

33 Open questions 1. Dynamics on polymers 2. 4D polymers ( 2D hard disk model). 3. Diameter of a 2DBP 4. X n [0, 1] M T n 1 [0, 1] M

34 A puzzle: [Spitzer] Starting at origin in R 2, take a random walk, each step being a uniformly chosen unit vector. Show: the probability that you are within 1 of the origin after n steps is 1 n+1. Hint: Use G=n-cycle.

35 Computing Z 4D. Take points x 1,..., x n R 2, with x 1 = 0. Define a graph G by: x i x j if x i x j < 1. Z 4D = T G (1, 0)dx 2... dx n.

A Faber-Krahn type inequality for regular trees

A Faber-Krahn type inequality for regular trees A Faber-Krahn type inequality for regular trees Josef Leydold leydold@statistikwu-wienacat Institut für Statistik, WU Wien Leydold 2003/02/13 A Faber-Krahn type inequality for regular trees p0/36 The Faber-Krahn

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Lecture Notes Introduction to Cluster Algebra

Lecture Notes Introduction to Cluster Algebra Lecture Notes Introduction to Cluster Algebra Ivan C.H. Ip Update: July 11, 2017 11 Cluster Algebra from Surfaces In this lecture, we will define and give a quick overview of some properties of cluster

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

arxiv: v1 [math.co] 19 Aug 2016

arxiv: v1 [math.co] 19 Aug 2016 THE EXCHANGE GRAPHS OF WEAKLY SEPARATED COLLECTIONS MEENA JAGADEESAN arxiv:1608.05723v1 [math.co] 19 Aug 2016 Abstract. Weakly separated collections arise in the cluster algebra derived from the Plücker

More information

MATH730 NOTES WEEK 8

MATH730 NOTES WEEK 8 MATH730 NOTES WEEK 8 1. Van Kampen s Theorem The main idea of this section is to compute fundamental groups by decomposing a space X into smaller pieces X = U V where the fundamental groups of U, V, and

More information

Spectral Continuity Properties of Graph Laplacians

Spectral Continuity Properties of Graph Laplacians Spectral Continuity Properties of Graph Laplacians David Jekel May 24, 2017 Overview Spectral invariants of the graph Laplacian depend continuously on the graph. We consider triples (G, x, T ), where G

More information

A new proof of Gromov s theorem on groups of polynomial growth

A new proof of Gromov s theorem on groups of polynomial growth A new proof of Gromov s theorem on groups of polynomial growth Bruce Kleiner Courant Institute NYU Groups as geometric objects Let G a group with a finite generating set S G. Assume that S is symmetric:

More information

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and NON-PLANAR EXTENSIONS OF SUBDIVISIONS OF PLANAR GRAPHS Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada and Robin Thomas 1 School of Mathematics

More information

On the Logarithmic Calculus and Sidorenko s Conjecture

On the Logarithmic Calculus and Sidorenko s Conjecture On the Logarithmic Calculus and Sidorenko s Conjecture by Xiang Li A thesis submitted in conformity with the requirements for the degree of Msc. Mathematics Graduate Department of Mathematics University

More information

CONSTRAINED PERCOLATION ON Z 2

CONSTRAINED PERCOLATION ON Z 2 CONSTRAINED PERCOLATION ON Z 2 ZHONGYANG LI Abstract. We study a constrained percolation process on Z 2, and prove the almost sure nonexistence of infinite clusters and contours for a large class of probability

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

Building Graphs from Colored Trees

Building Graphs from Colored Trees Building Graphs from Colored Trees Rachel M. Esselstein CSUMB Department of Mathematics and Statistics 100 Campus Center Dr. Building 53 Seaside, CA 93955, U.S.A. resselstein@csumb.edu Peter Winkler Department

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H, K) with H K = G and E(H K) = and V (H) V (K) = k. Such a separation is proper if V (H) \ V (K) and V (K)

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p.

Definition We say that a topological manifold X is C p if there is an atlas such that the transition functions are C p. 13. Riemann surfaces Definition 13.1. Let X be a topological space. We say that X is a topological manifold, if (1) X is Hausdorff, (2) X is 2nd countable (that is, there is a base for the topology which

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

Recall: Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching

Recall: Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching Recall: Matchings A matching is a set of (non-loop) edges with no shared endpoints. The vertices incident to an edge of a matching M are saturated by M, the others are unsaturated. A perfect matching of

More information

TREE AND GRID FACTORS FOR GENERAL POINT PROCESSES

TREE AND GRID FACTORS FOR GENERAL POINT PROCESSES Elect. Comm. in Probab. 9 (2004) 53 59 ELECTRONIC COMMUNICATIONS in PROBABILITY TREE AND GRID FACTORS FOR GENERAL POINT PROCESSES ÁDÁM TIMÁR1 Department of Mathematics, Indiana University, Bloomington,

More information

Hyperbolic Analytic Geometry

Hyperbolic Analytic Geometry Chapter 6 Hyperbolic Analytic Geometry 6.1 Saccheri Quadrilaterals Recall the results on Saccheri quadrilaterals from Chapter 4. Let S be a convex quadrilateral in which two adjacent angles are right angles.

More information

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that Problem 1A. Suppose that f is a continuous real function on [, 1]. Prove that lim α α + x α 1 f(x)dx = f(). Solution: This is obvious for f a constant, so by subtracting f() from both sides we can assume

More information

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY WEIMIN CHEN, UMASS, SPRING 07 1. Blowing up and symplectic cutting In complex geometry the blowing-up operation amounts to replace a point in

More information

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain 4. Poisson formula In fact we can write down a formula for the values of u in the interior using only the values on the boundary, in the case when E is a closed disk. First note that (3.5) determines the

More information

Szemerédi-Trotter theorem and applications

Szemerédi-Trotter theorem and applications Szemerédi-Trotter theorem and applications M. Rudnev December 6, 2004 The theorem Abstract These notes cover the material of two Applied post-graduate lectures in Bristol, 2004. Szemerédi-Trotter theorem

More information

2 hours THE UNIVERSITY OF MANCHESTER. 6 June :45 11:45

2 hours THE UNIVERSITY OF MANCHESTER. 6 June :45 11:45 2 hours THE UNIVERSITY OF MANCHESTER DISCRETE MATHEMATICS 6 June 2016 9:45 11:45 Answer ALL THREE questions in Section A (30 marks in total) and TWO of the THREE questions in Section B (50 marks in total).

More information

EPTAS for Maximum Clique on Disks and Unit Balls

EPTAS for Maximum Clique on Disks and Unit Balls EPTAS for Maximum Clique on Disks and Unit Balls Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit,

More information

Rigidity result for certain 3-dimensional singular spaces and their fundamental groups.

Rigidity result for certain 3-dimensional singular spaces and their fundamental groups. Rigidity result for certain 3-dimensional singular spaces and their fundamental groups. Jean-Francois Lafont May 5, 2004 Abstract In this paper, we introduce a particularly nice family of CAT ( 1) spaces,

More information

Circles. II. Radius - a segment with one endpoint the center of a circle and the other endpoint on the circle.

Circles. II. Radius - a segment with one endpoint the center of a circle and the other endpoint on the circle. Circles Circles and Basic Terminology I. Circle - the set of all points in a plane that are a given distance from a given point (called the center) in the plane. Circles are named by their center. II.

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

Complex Analysis for F2

Complex Analysis for F2 Institutionen för Matematik KTH Stanislav Smirnov stas@math.kth.se Complex Analysis for F2 Projects September 2002 Suggested projects ask you to prove a few important and difficult theorems in complex

More information

For Ramin. From Jonathan December 9, 2014

For Ramin. From Jonathan December 9, 2014 For Ramin From Jonathan December 9, 2014 1 Foundations. 1.0 Overview. Traditionally, knot diagrams are employed as a device which converts a topological object into a combinatorial one. One begins with

More information

The Complexity of Computing the Sign of the Tutte Polynomial

The Complexity of Computing the Sign of the Tutte Polynomial The Complexity of Computing the Sign of the Tutte Polynomial Leslie Ann Goldberg (based on joint work with Mark Jerrum) Oxford Algorithms Workshop, October 2012 The Tutte polynomial of a graph G = (V,

More information

Lecture VI: Projective varieties

Lecture VI: Projective varieties Lecture VI: Projective varieties Jonathan Evans 28th October 2010 Jonathan Evans () Lecture VI: Projective varieties 28th October 2010 1 / 24 I will begin by proving the adjunction formula which we still

More information

Group connectivity of certain graphs

Group connectivity of certain graphs Group connectivity of certain graphs Jingjing Chen, Elaine Eschen, Hong-Jian Lai May 16, 2005 Abstract Let G be an undirected graph, A be an (additive) Abelian group and A = A {0}. A graph G is A-connected

More information

Maximum Clique on Disks

Maximum Clique on Disks Maximum Clique on Disks Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé LIP,

More information

The Hierarchical Product of Graphs

The Hierarchical Product of Graphs The Hierarchical Product of Graphs Lali Barrière Francesc Comellas Cristina Dalfó Miquel Àngel Fiol Universitat Politècnica de Catalunya - DMA4 March 22, 2007 Outline 1 Introduction 2 The hierarchical

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017 LESSON 4: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 27 We continue to expand our understanding of solids of revolution. The key takeaway from today s lesson is that finding the volume of a solid of

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS The state sum invariant of 3-manifolds constructed from the E 6 linear skein. RIMS-1776 The state sum invariant of 3-manifolds constructed from the E 6 linear skein By Kenta OKAZAKI March 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan THE STATE

More information

Final Exam - MATH 630: Solutions

Final Exam - MATH 630: Solutions Final Exam - MATH 630: Solutions Problem. Find all x R satisfying e xeix e ix. Solution. Comparing the moduli of both parts, we obtain e x cos x, and therefore, x cos x 0, which is possible only if x 0

More information

MINIMALLY NON-PFAFFIAN GRAPHS

MINIMALLY NON-PFAFFIAN GRAPHS MINIMALLY NON-PFAFFIAN GRAPHS SERGUEI NORINE AND ROBIN THOMAS Abstract. We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-pfaffian graphs minimal with respect

More information

Topics in Stochastic Geometry. Lecture 4 The Boolean model

Topics in Stochastic Geometry. Lecture 4 The Boolean model Institut für Stochastik Karlsruher Institut für Technologie Topics in Stochastic Geometry Lecture 4 The Boolean model Lectures presented at the Department of Mathematical Sciences University of Bath May

More information

Brownian surfaces. Grégory Miermont based on ongoing joint work with Jérémie Bettinelli. UMPA, École Normale Supérieure de Lyon

Brownian surfaces. Grégory Miermont based on ongoing joint work with Jérémie Bettinelli. UMPA, École Normale Supérieure de Lyon Brownian surfaces Grégory Miermont based on ongoing joint work with Jérémie Bettinelli UMPA, École Normale Supérieure de Lyon Clay Mathematics Institute conference Advances in Probability Oxford, Sept

More information

Local Kesten McKay law for random regular graphs

Local Kesten McKay law for random regular graphs Local Kesten McKay law for random regular graphs Roland Bauerschmidt (with Jiaoyang Huang and Horng-Tzer Yau) University of Cambridge Weizmann Institute, January 2017 Random regular graph G N,d is the

More information

Classification of effective GKM graphs with combinatorial type K 4

Classification of effective GKM graphs with combinatorial type K 4 Classiication o eective GKM graphs with combinatorial type K 4 Shintarô Kuroki Department o Applied Mathematics, Faculty o Science, Okayama Uniervsity o Science, 1-1 Ridai-cho Kita-ku, Okayama 700-0005,

More information

9 Radon-Nikodym theorem and conditioning

9 Radon-Nikodym theorem and conditioning Tel Aviv University, 2015 Functions of real variables 93 9 Radon-Nikodym theorem and conditioning 9a Borel-Kolmogorov paradox............. 93 9b Radon-Nikodym theorem.............. 94 9c Conditioning.....................

More information

Dimer Problems. Richard Kenyon. August 29, 2005

Dimer Problems. Richard Kenyon. August 29, 2005 Dimer Problems. Richard Kenyon August 29, 25 Abstract The dimer model is a statistical mechanical model on a graph, where configurations consist of perfect matchings of the vertices. For planar graphs,

More information

1. Four equal and positive charges +q are arranged as shown on figure 1.

1. Four equal and positive charges +q are arranged as shown on figure 1. AP Physics C Coulomb s Law Free Response Problems 1. Four equal and positive charges +q are arranged as shown on figure 1. a. Calculate the net electric field at the center of square. b. Calculate the

More information

Homology of a Cell Complex

Homology of a Cell Complex M:01 Fall 06 J. Simon Homology of a Cell Complex A finite cell complex X is constructed one cell at a time, working up in dimension. Each time a cell is added, we can analyze the effect on homology, by

More information

Abstract. 2. We construct several transcendental numbers.

Abstract. 2. We construct several transcendental numbers. Abstract. We prove Liouville s Theorem for the order of approximation by rationals of real algebraic numbers. 2. We construct several transcendental numbers. 3. We define Poissonian Behaviour, and study

More information

Lecture 17 - Gyroscopes

Lecture 17 - Gyroscopes Lecture 17 - Gyroscopes A Puzzle... We have seen throughout class that the center of mass is a very powerful tool for evaluating systems. However, don t let yourself get carried away with how useful it

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H 1, H 2 ) so that H 1 H 2 = G E(H 1 ) E(H 2 ) = V (H 1 ) V (H 2 ) = k Such a separation is proper if V (H

More information

THE POINCARE-HOPF THEOREM

THE POINCARE-HOPF THEOREM THE POINCARE-HOPF THEOREM ALEX WRIGHT AND KAEL DIXON Abstract. Mapping degree, intersection number, and the index of a zero of a vector field are defined. The Poincare-Hopf theorem, which states that under

More information

Imprimitive symmetric graphs with cyclic blocks

Imprimitive symmetric graphs with cyclic blocks Imprimitive symmetric graphs with cyclic blocks Sanming Zhou Department of Mathematics and Statistics University of Melbourne Joint work with Cai Heng Li and Cheryl E. Praeger December 17, 2008 Outline

More information

The Minesweeper game: Percolation and Complexity

The Minesweeper game: Percolation and Complexity The Minesweeper game: Percolation and Complexity Elchanan Mossel Hebrew University of Jerusalem and Microsoft Research March 15, 2002 Abstract We study a model motivated by the minesweeper game In this

More information

On the Sensitivity of Cyclically-Invariant Boolean Functions

On the Sensitivity of Cyclically-Invariant Boolean Functions On the Sensitivity of Cyclically-Invariant Boolean Functions Sourav Charaborty University of Chicago sourav@csuchicagoedu Abstract In this paper we construct a cyclically invariant Boolean function whose

More information

Quantum walk algorithms

Quantum walk algorithms Quantum walk algorithms Andrew Childs Institute for Quantum Computing University of Waterloo 28 September 2011 Randomized algorithms Randomness is an important tool in computer science Black-box problems

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Cluster and virial expansions for multi-species models

Cluster and virial expansions for multi-species models Cluster and virial expansions for multi-species models Sabine Jansen Ruhr-Universität Bochum Yerevan, September 2016 Overview 1. Motivation: dynamic nucleation models 2. Statistical mechanics for mixtures

More information

, having a singularity. The line segment is attached, tangent to the ball, at one endpoint. O R = 4π. Figure 1: Ball and Stick to Scale

, having a singularity. The line segment is attached, tangent to the ball, at one endpoint. O R = 4π. Figure 1: Ball and Stick to Scale Abstract Let the model for the mass ratio of the proton to the electron begin with three objects: a ball of radius one; a line interval of length 4π; and, a gravitational force field ( Fg ), having a singularity.

More information

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation Notation Basics of permutation group theory Arc-transitive graphs Primitivity Normal subgroups of primitive groups Permutation Groups John Bamberg, Michael Giudici and Cheryl Praeger Centre for the Mathematics

More information

Lecture 17. In this lecture, we will continue our discussion on randomization.

Lecture 17. In this lecture, we will continue our discussion on randomization. ITCS:CCT09 : Computational Complexity Theory May 11, 2009 Lecturer: Jayalal Sarma M.N. Lecture 17 Scribe: Hao Song In this lecture, we will continue our discussion on randomization. 1 BPP and the Polynomial

More information

Root systems and optimal block designs

Root systems and optimal block designs Root systems and optimal block designs Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, UK p.j.cameron@qmul.ac.uk Abstract Motivated by a question

More information

Large scale conformal geometry

Large scale conformal geometry July 24th, 2018 Goal: perform conformal geometry on discrete groups. Goal: perform conformal geometry on discrete groups. Definition X, X metric spaces. Map f : X X is a coarse embedding if where α +,

More information

Multi-species virial expansions

Multi-species virial expansions Multi-species virial expansions Sabine Jansen Ruhr-Universität Bochum with S. J. Tate, D. Tsagarogiannis, D. Ueltschi Bilbao, June 2016 Overview 1. Motivation: dynamic nucleation models 2. Statistical

More information

5 Flows and cuts in digraphs

5 Flows and cuts in digraphs 5 Flows and cuts in digraphs Recall that a digraph or network is a pair G = (V, E) where V is a set and E is a multiset of ordered pairs of elements of V, which we refer to as arcs. Note that two vertices

More information

Spectra of adjacency matrices of random geometric graphs

Spectra of adjacency matrices of random geometric graphs Spectra of adjacency matrices of random geometric graphs Paul Blackwell, Mark Edmondson-Jones and Jonathan Jordan University of Sheffield 22nd December 2006 Abstract We investigate the spectral properties

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

Constructions of Derived Equivalences of Finite Posets

Constructions of Derived Equivalences of Finite Posets Constructions of Derived Equivalences of Finite Posets Sefi Ladkani Einstein Institute of Mathematics The Hebrew University of Jerusalem http://www.ma.huji.ac.il/~sefil/ 1 Notions X Poset (finite partially

More information

The number of Euler tours of random directed graphs

The number of Euler tours of random directed graphs The number of Euler tours of random directed graphs Páidí Creed School of Mathematical Sciences Queen Mary, University of London United Kingdom P.Creed@qmul.ac.uk Mary Cryan School of Informatics University

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

Disjoint Hamiltonian Cycles in Bipartite Graphs

Disjoint Hamiltonian Cycles in Bipartite Graphs Disjoint Hamiltonian Cycles in Bipartite Graphs Michael Ferrara 1, Ronald Gould 1, Gerard Tansey 1 Thor Whalen Abstract Let G = (X, Y ) be a bipartite graph and define σ (G) = min{d(x) + d(y) : xy / E(G),

More information

Geometric Steiner Trees

Geometric Steiner Trees Geometric Steiner Trees From the book: Optimal Interconnection Trees in the Plane By Marcus Brazil and Martin Zachariasen Part 3: Computational Complexity and the Steiner Tree Problem Marcus Brazil 2015

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE

A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE A NOTE ON SPACES OF ASYMPTOTIC DIMENSION ONE KOJI FUJIWARA AND KEVIN WHYTE Abstract. Let X be a geodesic metric space with H 1(X) uniformly generated. If X has asymptotic dimension one then X is quasi-isometric

More information

DECOUPLING LECTURE 6

DECOUPLING LECTURE 6 18.118 DECOUPLING LECTURE 6 INSTRUCTOR: LARRY GUTH TRANSCRIBED BY DONGHAO WANG We begin by recalling basic settings of multi-linear restriction problem. Suppose Σ i,, Σ n are some C 2 hyper-surfaces in

More information

Physics 222, Spring 2010 Quiz 3, Form: A

Physics 222, Spring 2010 Quiz 3, Form: A Physics 222, Spring 2010 Quiz 3, Form: A Name: Date: Instructions You must sketch correct pictures and vectors, you must show all calculations, and you must explain all answers for full credit. Neatness

More information

Regular factors of regular graphs from eigenvalues

Regular factors of regular graphs from eigenvalues Regular factors of regular graphs from eigenvalues Hongliang Lu Center for Combinatorics, LPMC Nankai University, Tianjin, China Abstract Let m and r be two integers. Let G be a connected r-regular graph

More information

Convergence in shape of Steiner symmetrized line segments. Arthur Korneychuk

Convergence in shape of Steiner symmetrized line segments. Arthur Korneychuk Convergence in shape of Steiner symmetrized line segments by Arthur Korneychuk A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Zdeněk Dvořák Daniel Král Robin Thomas Abstract We show that the size of a 4-critical graph of girth at least five is bounded by

More information

arxiv: v2 [math.gt] 27 Mar 2009

arxiv: v2 [math.gt] 27 Mar 2009 ODD KHOVANOV HOMOLOGY IS MUTATION INVARIANT JONATHAN M. BLOOM arxiv:0903.3746v2 [math.gt] 27 Mar 2009 Abstract. We define a link homology theory that is readily seen to be both isomorphic to reduced odd

More information

Quasiconformal Maps and Circle Packings

Quasiconformal Maps and Circle Packings Quasiconformal Maps and Circle Packings Brett Leroux June 11, 2018 1 Introduction Recall the statement of the Riemann mapping theorem: Theorem 1 (Riemann Mapping). If R is a simply connected region in

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 3.5: Deduce the k = 2 case of Menger s theorem (3.3.1) from Proposition 3.1.1. Let G be 2-connected, and let A and B be 2-sets. We handle some special cases (thus later in the induction if these

More information

MATH5685 Assignment 3

MATH5685 Assignment 3 MATH5685 Assignment 3 Due: Wednesday 3 October 1. The open unit disk is denoted D. Q1. Suppose that a n for all n. Show that (1 + a n) converges if and only if a n converges. [Hint: prove that ( N (1 +

More information

A note on dimers and T-graphs

A note on dimers and T-graphs A note on dimers and T-graphs Nathanaël Berestycki Benoit Laslier Gourab Ray October 25, 2016 Abstract The purpose of this note is to give a succinct summary of some basic properties of T-graphs which

More information

NEW BALANCING PRINCIPLES APPLIED TO CIRCUMSOLIDS OF REVOLUTION, AND TO n-dimensional SPHERES, CYLINDROIDS, AND CYLINDRICAL WEDGES

NEW BALANCING PRINCIPLES APPLIED TO CIRCUMSOLIDS OF REVOLUTION, AND TO n-dimensional SPHERES, CYLINDROIDS, AND CYLINDRICAL WEDGES NEW BALANCING PRINCIPLES APPLIED TO CIRCUMSOLIDS OF REVOLUTION, AND TO n-dimensional SPERES, CYLINDROIDS, AND CYLINDRICAL WEDGES Tom M. Apostol and Mamikon A. Mnatsakanian 1 INTRODUCTION The sphere and

More information

MATH 31BH Homework 1 Solutions

MATH 31BH Homework 1 Solutions MATH 3BH Homework Solutions January 0, 04 Problem.5. (a) (x, y)-plane in R 3 is closed and not open. To see that this plane is not open, notice that any ball around the origin (0, 0, 0) will contain points

More information

Lecture 15: The Hidden Subgroup Problem

Lecture 15: The Hidden Subgroup Problem CS 880: Quantum Information Processing 10/7/2010 Lecture 15: The Hidden Subgroup Problem Instructor: Dieter van Melkebeek Scribe: Hesam Dashti The Hidden Subgroup Problem is a particular type of symmetry

More information

Jacobi Identities in Low-dimensional Topology

Jacobi Identities in Low-dimensional Topology Jacobi Identities in Low-dimensional Topology James Conant, Rob Schneiderman and Peter Teichner Abstract The Jacobi identity is the key relation in the definition of a Lie algebra. In the last decade,

More information

From continua to R trees

From continua to R trees 1759 1784 1759 arxiv version: fonts, pagination and layout may vary from AGT published version From continua to R trees PANOS PAPASOGLU ERIC SWENSON We show how to associate an R tree to the set of cut

More information

Simultaneous reconstruction of outer boundary shape and conductivity distribution in electrical impedance tomography

Simultaneous reconstruction of outer boundary shape and conductivity distribution in electrical impedance tomography Simultaneous reconstruction of outer boundary shape and conductivity distribution in electrical impedance tomography Nuutti Hyvönen Aalto University nuutti.hyvonen@aalto.fi joint work with J. Dardé, A.

More information

On the Riemann surface type of Random Planar Maps

On the Riemann surface type of Random Planar Maps On the Riemann surface type of Random Planar Maps Department of Mathematics University of Washington Seattle, WA 98195 gill or rohde@math.washington.edu March 24, 2011 UIPT Infinite Necklace Riemann Surface

More information

Vertex opposition in spherical buildings

Vertex opposition in spherical buildings Vertex opposition in spherical buildings Anna Kasikova and Hendrik Van Maldeghem Abstract We study to which extent all pairs of opposite vertices of self-opposite type determine a given building. We provide

More information