Maximum Clique on Disks

Size: px
Start display at page:

Download "Maximum Clique on Disks"

Transcription

1 Maximum Clique on Disks Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé LIP, ENS Lyon 20 mars 2018, LIGM

2 Find a largest collection of disks that pairwise intersect

3 Like this

4 or that

5 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Guess two farthest disks in an optimum solution S.

6 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Hence, all the centers of S lie inside the bold digon.

7 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Two disks centered in the same-color region intersect.

8 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j We solve Max Clique in a co-bipartite graph.

9 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j We solve Max Independent Set in a bipartite graph.

10 Disk graphs Inherits the NP-hardness of planar graphs.

11 So what is known for Max Clique on disk graphs? Polynomial-time 2-approximation For any clique there are 4 points hitting all the disks. Guess those points and remove the non-hit disks. The resulting graph is partitioned into 2 co-bipartite graphs. Solve exactly on both co-bipartite graphs. Output the best solution. No non-trivial exact algorithm known

12 And what is known about disk graphs? Every planar graph is a disk graph. Every triangle-free disk graph is planar (centers vertices). So a triangle-free non-planar graph like K 3,3 is not disk. A subdivision of a non-planar graph is not a disk graph (more generally not a string graph)....

13 And what is known about disk graphs? Every planar graph is a disk graph. Every triangle-free disk graph is planar (centers vertices). So a triangle-free non-planar graph like K 3,3 is not disk. A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).... Other ways of showing that a graph is not disk?

14 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4

15 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4 Then the two non-edges should be diagonal.

16 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4 Then the two non-edges should be diagonal. Suppose d(c 1, c 3 ) > r 1 + r 3 and d(c 2, c 4 ) > r 2 + r 4. But d(c 1, c 3 ) + d(c 2, c 4 ) d(c 1, c 2 ) + d(c 3, c 4 ) r 1 + r 2 + r 3 + r 4, a contradiction.

17 Conclusion: the 4 centers of an induced 2K 2 are either not in convex position or in convex position with the non-edges being diagonal. c 2 c 3 c4 or c 1 c 3 c 1 c 2 c 4

18 Conclusion: the 4 centers of an induced 2K 2 are either not in convex position or in convex position with the non-edges being diagonal. c 2 c 3 c4 or c 1 c 3 c 1 c 2 c 4 Reformulation: either the line l(c 1, c 2 ) crosses the segment c 3 c 4, or the line l(c 3, c 4 ) crosses the segment c 1 c 2, or both; equivalently, the segments c 1 c 2 and c 3 c 4 cross.

19 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

20 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

21 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

22 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

23 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i. It should be that a i + b i c i = t.

24 Σ a i + b i c i = st 1 i s 1) a i is even:

25 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ 1 i s b i =

26 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even:

27 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s

28 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s Σ a i + Σ a i Σ c i is even. 1 i s 1 i t 1 i s

29 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s Σ a i + Σ a i Σ c i is even. 1 i s 1 i t 1 i s Hence s and t cannot be both odd.

30 The complement of two odd cycles is not a disk graph. Are there other graphs of co-degree 2 which are not disk?

31 Complement of an even cycle 1, 2,..., 2s D 1 p 1 p p s p 1 p 2 s p p 3 p ps-2 s D 1 p s-3 D 2 D 2s We start by positioning D 1, D 2, D 2s. We draw a convex chain between p 1 and p s.

32 Complement of an even cycle 1, 2,..., 2s D 1 p 1 p p s p 1 p 2 s p p 3 p ps-2 s D 1 p s-3 D 2 D 2s We start by positioning D 1, D 2, D 2s. We draw a convex chain between p 1 and p s. D 2i : same radius and boundary crosses p i with tangent l(p i 1 p i+1 )

33 Complement of an even cycle 1, 2,..., 2s D 1 p 1 p p s p 1 p 2 s p p 3 p ps-2 s D 1 p s-3 D 2 D 2s We start by positioning D 1, D 2, D 2s. We draw a convex chain between p 1 and p s. D 2i : same radius and boundary crosses p i with tangent l(p i 1 p i+1 ) D 2i+1 : larger radius and "co-tangent" to D 2i and D 2i+2.

34 Stacking complements of even cycles D 2i+1 D 1 D 2i

35 Stacking complements of even cycles D 2i+1 D 1 D 2i

36 Stacking complements of even cycles D 2i+1 D 1 D 2i

37 Disks of different cycle complements intersect D 1 D 2i

38 Complement of odd cycle by unit disks (Atminas & Zamaraev)

39 Complement of odd cycle by unit disks (Atminas & Zamaraev)

40 Complement of odd cycle by unit disks (Atminas & Zamaraev)

41 Different representation with non-unit disks D 2i+1 D 1 D 2s+1 D 2i Same construction except D 1 intersects D 2s and D 2s+1 is "co-tangent" to D 1 and D 2s.

42 Complement of many even cycles and one odd cycle D 2i+1 D 2i+1 D 1 D 2s+1 D 2i

43 Sanity check: trying to stack complements of odd cycles D 2i+1 D 1 D 2s+1 D 2s +1 D 2i D 2s +1 cannot possibly intersect D 1

44 Going back to algorithms. Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

45 Going back to algorithms. Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph? Another way to see it: at least one edge between two vertex-disjoint odd cycles

46 Quasi-polynomial time approximation-scheme (QPTAS) ocp(g): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for ocp = o(n/ log n).

47 Quasi-polynomial time approximation-scheme (QPTAS) ocp(g): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for ocp = o(n/ log n). Lemma Let H complement of a disk graph with n vertices. If ocp(h) > n/ log 2 n, then vertex of degree at least n/ log 4 n. Proof.

48 Quasi-polynomial time approximation-scheme (QPTAS) ocp(g): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for ocp = o(n/ log n). Lemma Let H complement of a disk graph with n vertices. If ocp(h) > n/ log 2 n, then vertex of degree at least n/ log 4 n. Proof. The shortest odd cycle has size at most log 2 n.

49 Quasi-polynomial time approximation-scheme (QPTAS) ocp(g): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for ocp = o(n/ log n). Lemma Let H complement of a disk graph with n vertices. If ocp(h) > n/ log 2 n, then vertex of degree at least n/ log 4 n. Proof. The shortest odd cycle has size at most log 2 n. There is a vertex of this cycle with degree at least n/ log 4 n.

50 Quasi-polynomial time approximation-scheme (QPTAS) ocp(g): maximum size of an odd cycle packing. Theorem (Bock et al. 2014) PTAS for Max Independent Set for ocp = o(n/ log n). Lemma Let H complement of a disk graph with n vertices. If ocp(h) > n/ log 2 n, then vertex of degree at least n/ log 4 n. Proof. The shortest odd cycle has size at most log 2 n. There is a vertex of this cycle with degree at least n/ log 4 n. Branching factor (1, n/ log 4 n) (in 2 log5 n ), and PTAS otherwise.

51 Subexponential algorithm Theorem (Györi et al. 1997) A graph of odd girth c has an odd cycle cover of size Õ(n/c).

52 Subexponential algorithm Theorem (Györi et al. 1997) A graph of odd girth c has an odd cycle cover of size Õ(n/c). Let H be a complement of disk graph, its degree, c its odd girth. We can: branch in time 2Õ(n/ ). solve in time 2 O( c). solve in time 2Õ(n/c).

53 Subexponential algorithm Theorem (Györi et al. 1997) A graph of odd girth c has an odd cycle cover of size Õ(n/c). Let H be a complement of disk graph, its degree, c its odd girth. We can: branch in time 2Õ(n/ ). solve in time 2 O( c). solve in time 2Õ(n/c). 2Õ(min(n/,n/c,c )) 2Õ(n2/3) for = c = n 1/3.

54 Filled ellipses and triangles 2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions Lemma (technical) For some α > 1, Max Independent Set on 2-subdivisions is not α-approximable algorithm in 2 n0.99, unless the ETH fails.

55 Filled ellipses and triangles 2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions Lemma (technical) For some α > 1, Max Independent Set on 2-subdivisions is not α-approximable algorithm in 2 n0.99, unless the ETH fails. Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.

56 Filled triangles

57 Filled ellipses

58 The QPTAS and subexponential algorithm only work for intersection graphs of 2D-objects that are exactly disks. Approximation scheme with better running time? Have higher-dimensional disks the same obstruction?

59 EPTAS VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. α(g) = size of a maximum independent set in G. iocp(g) = same as ocp but induced.

60 EPTAS VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. α(g) = size of a maximum independent set in G. iocp(g) = same as ocp but induced. Theorem Max Independent Set can be 1 + ε-approximated in time 2Õ(1/ε3) n O(1) on graphs G with VCdim(G) = O(1), α(g) = Ω( V (G) ), and iocp(g) = 1.

61 First step of the algorithm: sampling I is a fixed maximum solution. G I Select randomly a subset S of Õ(1/ε 3 ) vertices.

62 First step of the algorithm: sampling I is a fixed maximum solution. G I S With probability 1/2Õ(1/ε3), S I.

63 First step of the algorithm: sampling I is a fixed maximum solution. G N(S) I S Remove the neighborhood of S.

64 Classic result of Haussler and Welzl in VC dimension theory Theorem A set-system (S, U) with VC dimension d and only sets of size at least ε U has a hitting set of size O( d ε log 1 ε ). Furthermore, any sample of size 10d ε log 1 ε is a hitting set w.h.p.

65 Classic result of Haussler and Welzl in VC dimension theory Theorem A set-system (S, U) with VC dimension d and only sets of size at least ε U has a hitting set of size O( d ε log 1 ε ). Furthermore, any sample of size 10d ε log 1 ε is a hitting set w.h.p. We apply that result to the set-system ({N(u) I u V (G), N(u) I ε 3 I }, I). In words, the large neighborhoods over I.

66 Second step of the algorithm: win-win on odd girth Now we removed N(S), all the vertices have degree < ε 3 I in I.

67 Second step of the algorithm: win-win on odd girth Now we removed N(S), all the vertices have degree < ε 3 I in I. We compute a shortest odd cycle C. If C 1/ε 2, we remove N[C] from the graph. The resulting graph is bipartite and N(C) < ε3 I = ε I. ε 2 If C > 1/ε 2, we need a fresh slide.

68 Finding a small odd cycle transversal Columns are the successive neighborhoods of C, layers. Rows indicate the closest vertex on C, strata.

69 Finding a small odd cycle transversal bipartite We delete the lightest among the first 1/ε layers.

70 Finding a small odd cycle transversal bipartite bipartite 1/ε consecutive strata are an odd cycle transversal.

71 Regarding the higher-dimensional question: unit 4D-disk graphs ball (3D-disk) graphs with radii arbitrary close to 1 contain all the co-2-subdivisions (so, no approximation scheme and no subexponential algorithm) p(v 1 ) P 3 ε P π(p + (e 1 )) O 1 C π(p (e 1 ))

72 What about unit ball graph? Let x 1,..., x s be the consecutive centers in R 3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk. Start at vector ab with a = x 1 and b = x 2. move continuously a from x 1 to x 3 following the segment x 1 x 3. move continuously b from x 2 to x 4 following the segment x 2 x 4. and so on, until back to x 1 x 2.

73 What about unit ball graph? Let x 1,..., x s be the consecutive centers in R 3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk. Start at vector ab with a = x 1 and b = x 2. move continuously a from x 1 to x 3 following the segment x 1 x 3. move continuously b from x 2 to x 4 following the segment x 2 x 4. and so on, until back to x 1 x 2. As s is odd, half-way through we reach x 2 x 1. Hence the curve drawn on the 2-sphere is antipodal.

74 As two antipodal curves intersect, we have one of the following configurations: x y x y j x i y j x i y

75 Open questions Is Max Clique NP-hard on disk and unit ball graphs? A first step might be to show NP-hardness for Max Independent Set with iocp 1. Actually what about ocp 1?

76 Open questions Is Max Clique NP-hard on disk and unit ball graphs? A first step might be to show NP-hardness for Max Independent Set with iocp 1. Actually what about ocp 1? Thank you for your attention!

EPTAS for Maximum Clique on Disks and Unit Balls

EPTAS for Maximum Clique on Disks and Unit Balls EPTAS for Maximum Clique on Disks and Unit Balls Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit,

More information

Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable

Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable Maria Chudnovsky Princeton University, Princeton, NJ 08544 Chun-Hung Liu Princeton University, Princeton, NJ 08544

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Parameterized Domination in Circle Graphs

Parameterized Domination in Circle Graphs Parameterized Domination in Circle Graphs Nicolas Bousquet 1, Daniel Gonçalves 1, George B. Mertzios 2, Christophe Paul 1, Ignasi Sau 1, and Stéphan Thomassé 3 1 AlGCo project-team, CNRS, LIRMM, Montpellier,

More information

Testing Cluster Structure of Graphs. Artur Czumaj

Testing Cluster Structure of Graphs. Artur Czumaj Testing Cluster Structure of Graphs Artur Czumaj DIMAP and Department of Computer Science University of Warwick Joint work with Pan Peng and Christian Sohler (TU Dortmund) Dealing with BigData in Graphs

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

Coloring square-free Berge graphs

Coloring square-free Berge graphs Coloring square-free Berge graphs Maria Chudnovsky Irene Lo Frédéric Maffray Nicolas Trotignon Kristina Vušković September 30, 2015 Abstract We consider the class of Berge graphs that do not contain a

More information

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Matemática, Facultad

More information

Wheel-free planar graphs

Wheel-free planar graphs Wheel-free planar graphs Pierre Aboulker Concordia University, Montréal, Canada email: pierreaboulker@gmail.com Maria Chudnovsky Columbia University, New York, NY 10027, USA e-mail: mchudnov@columbia.edu

More information

Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm

Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm Zdeněk Dvořák Daniel Král Robin Thomas Abstract We give a linear-time algorithm to decide 3-colorability of a trianglefree graph

More information

On subgraphs of large girth

On subgraphs of large girth 1/34 On subgraphs of large girth In Honor of the 50th Birthday of Thomas Vojtěch Rödl rodl@mathcs.emory.edu joint work with Domingos Dellamonica May, 2012 2/34 3/34 4/34 5/34 6/34 7/34 ARRANGEABILITY AND

More information

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1 List of Problems jacques@ucsd.edu Those question with a star next to them are considered slightly more challenging. Problems 9, 11, and 19 from the book The probabilistic method, by Alon and Spencer. Question

More information

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Graph Theory Graph G = (V, E). V ={vertices}, E={edges}. a b c h k d g f e V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} E =16. Digraph D = (V, A). V ={vertices}, E={edges}.

More information

Cycles with consecutive odd lengths

Cycles with consecutive odd lengths Cycles with consecutive odd lengths arxiv:1410.0430v1 [math.co] 2 Oct 2014 Jie Ma Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Abstract It is proved that there

More information

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and NON-PLANAR EXTENSIONS OF SUBDIVISIONS OF PLANAR GRAPHS Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada and Robin Thomas 1 School of Mathematics

More information

Approximation Algorithms for Dominating Set in Disk Graphs

Approximation Algorithms for Dominating Set in Disk Graphs Approximation Algorithms for Dominating Set in Disk Graphs Matt Gibson 1 and Imran A. Pirwani 2 1 Dept. of Computer Science, University of Iowa, Iowa City, IA 52242, USA. mrgibson@cs.uiowa.edu 2 Dept.

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H, K) with H K = G and E(H K) = and V (H) V (K) = k. Such a separation is proper if V (H) \ V (K) and V (K)

More information

arxiv: v1 [cs.dm] 4 May 2018

arxiv: v1 [cs.dm] 4 May 2018 Connected greedy colouring in claw-free graphs arxiv:1805.01953v1 [cs.dm] 4 May 2018 Ngoc Khang Le and Nicolas Trotignon November 9, 2018 Abstract An ordering of the vertices of a graph is connected if

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Advanced Topics in Discrete Math: Graph Theory Fall 2010 21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010 Prof. Andrzej Dudek notes by Brendan Sullivan October 18, 2010 Contents 0 Introduction 1 1 Matchings 1 1.1 Matchings in Bipartite Graphs...................................

More information

Induced subgraphs of graphs with large chromatic number. I. Odd holes

Induced subgraphs of graphs with large chromatic number. I. Odd holes Induced subgraphs of graphs with large chromatic number. I. Odd holes Alex Scott Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK Paul Seymour 1 Princeton University, Princeton, NJ 08544,

More information

GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE. 1. Introduction

GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE. 1. Introduction GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE PHILIPPE BAPTISTE, MIKHAIL Y. KOVALYOV, YURY L. ORLOVICH, FRANK WERNER, IGOR E. ZVEROVICH Abstract. A graph is well-indumatched if all its maximal

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H 1, H 2 ) so that H 1 H 2 = G E(H 1 ) E(H 2 ) = V (H 1 ) V (H 2 ) = k Such a separation is proper if V (H

More information

Even Pairs and Prism Corners in Square-Free Berge Graphs

Even Pairs and Prism Corners in Square-Free Berge Graphs Even Pairs and Prism Corners in Square-Free Berge Graphs Maria Chudnovsky Princeton University, Princeton, NJ 08544 Frédéric Maffray CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France Paul

More information

4-coloring P 6 -free graphs with no induced 5-cycles

4-coloring P 6 -free graphs with no induced 5-cycles 4-coloring P 6 -free graphs with no induced 5-cycles Maria Chudnovsky Department of Mathematics, Princeton University 68 Washington Rd, Princeton NJ 08544, USA mchudnov@math.princeton.edu Peter Maceli,

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Claw-free Graphs. III. Sparse decomposition

Claw-free Graphs. III. Sparse decomposition Claw-free Graphs. III. Sparse decomposition Maria Chudnovsky 1 and Paul Seymour Princeton University, Princeton NJ 08544 October 14, 003; revised May 8, 004 1 This research was conducted while the author

More information

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS FLORIAN PFENDER Abstract. Let T be the line graph of the unique tree F on 8 vertices with degree sequence (3, 3, 3,,,,, ), i.e. T is a chain

More information

Paul Erdős and Graph Ramsey Theory

Paul Erdős and Graph Ramsey Theory Paul Erdős and Graph Ramsey Theory Benny Sudakov ETH and UCLA Ramsey theorem Ramsey theorem Definition: The Ramsey number r(s, n) is the minimum N such that every red-blue coloring of the edges of a complete

More information

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012 Discrete Geometry Austin Mohr April 26, 2012 Problem 1 Theorem 1 (Linear Programming Duality). Suppose x, y, b, c R n and A R n n, Ax b, x 0, A T y c, and y 0. If x maximizes c T x and y minimizes b T

More information

Planar Graphs (1) Planar Graphs (3) Planar Graphs (2) Planar Graphs (4)

Planar Graphs (1) Planar Graphs (3) Planar Graphs (2) Planar Graphs (4) S-72.2420/T-79.5203 Planarity; Edges and Cycles 1 Planar Graphs (1) Topological graph theory, broadly conceived, is the study of graph layouts. Contemporary applications include circuit layouts on silicon

More information

Probabilistic Method. Benny Sudakov. Princeton University

Probabilistic Method. Benny Sudakov. Princeton University Probabilistic Method Benny Sudakov Princeton University Rough outline The basic Probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain

More information

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Zdeněk Dvořák Daniel Král Robin Thomas Abstract We show that the size of a 4-critical graph of girth at least five is bounded by

More information

Near-domination in graphs

Near-domination in graphs Near-domination in graphs Bruce Reed Researcher, Projet COATI, INRIA and Laboratoire I3S, CNRS France, and Visiting Researcher, IMPA, Brazil Alex Scott Mathematical Institute, University of Oxford, Oxford

More information

A Pair in a Crowd of Unit Balls

A Pair in a Crowd of Unit Balls Europ. J. Combinatorics (2001) 22, 1083 1092 doi:10.1006/eujc.2001.0547 Available online at http://www.idealibrary.com on A Pair in a Crowd of Unit Balls K. HOSONO, H. MAEHARA AND K. MATSUDA Let F be a

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA Odd K 3,3 subdivisions in bipartite graphs 1 Robin Thomas and Peter Whalen School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA Abstract We prove that every internally

More information

Exact Algorithms for Dominating Induced Matching Based on Graph Partition

Exact Algorithms for Dominating Induced Matching Based on Graph Partition Exact Algorithms for Dominating Induced Matching Based on Graph Partition Mingyu Xiao School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 611731,

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

13 th Annual Harvard-MIT Mathematics Tournament Saturday 20 February 2010

13 th Annual Harvard-MIT Mathematics Tournament Saturday 20 February 2010 13 th Annual Harvard-MIT Mathematics Tournament Saturday 0 February 010 1. [3] Suppose that x and y are positive reals such that Find x. x y = 3, x + y = 13. 3+ Answer: 17 Squaring both sides of x y =

More information

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings Maria Chudnovsky 1 Princeton University, Princeton, NJ 08544 Alex Scott Oxford University, Oxford, UK Paul Seymour 2

More information

Problems for Putnam Training

Problems for Putnam Training Problems for Putnam Training 1 Number theory Problem 1.1. Prove that for each positive integer n, the number is not prime. 10 1010n + 10 10n + 10 n 1 Problem 1.2. Show that for any positive integer n,

More information

Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles

Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles Mathematics Publications Mathematics 2017 Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles Zdeněk Dvořák Charles University Bernard Lidicky

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov Abstract For a graph G, let χ(g) denote its chromatic number and σ(g) denote

More information

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

On the hardness of losing width

On the hardness of losing width On the hardness of losing width Marek Cygan 1, Daniel Lokshtanov 2, Marcin Pilipczuk 1, Micha l Pilipczuk 1, and Saket Saurabh 3 1 Institute of Informatics, University of Warsaw, Poland {cygan@,malcin@,mp248287@students}mimuwedupl

More information

A taste of perfect graphs

A taste of perfect graphs A taste of perfect graphs Remark Determining the chromatic number of a graph is a hard problem, in general, and it is even hard to get good lower bounds on χ(g). An obvious lower bound we have seen before

More information

On the Approximability of Partial VC Dimension

On the Approximability of Partial VC Dimension On the Approximability of Partial VC Dimension Cristina Bazgan 1 Florent Foucaud 2 Florian Sikora 1 1 LAMSADE, Université Paris Dauphine, CNRS France 2 LIMOS, Université Blaise Pascal, Clermont-Ferrand

More information

Hardness of Approximation

Hardness of Approximation Hardness of Approximation We have seen several methods to find approximation algorithms for NP-hard problems We have also seen a couple of examples where we could show lower bounds on the achievable approxmation

More information

Topological Graph Theory Lecture 4: Circle packing representations

Topological Graph Theory Lecture 4: Circle packing representations Topological Graph Theory Lecture 4: Circle packing representations Notes taken by Andrej Vodopivec Burnaby, 2006 Summary: A circle packing of a plane graph G is a set of circles {C v v V (G)} in R 2 such

More information

EGMO 2016, Day 1 Solutions. Problem 1. Let n be an odd positive integer, and let x1, x2,..., xn be non-negative real numbers.

EGMO 2016, Day 1 Solutions. Problem 1. Let n be an odd positive integer, and let x1, x2,..., xn be non-negative real numbers. EGMO 2016, Day 1 Solutions Problem 1. Let n be an odd positive integer, and let x1, x2,..., xn be non-negative real numbers. Show that min (x2i + x2i+1 ) max (2xj xj+1 ), j=1,...,n i=1,...,n where xn+1

More information

Induced Cycles of Fixed Length

Induced Cycles of Fixed Length Induced Cycles of Fixed Length Terry McKee Wright State University Dayton, Ohio USA terry.mckee@wright.edu Cycles in Graphs Vanderbilt University 31 May 2012 Overview 1. Investigating the fine structure

More information

Szemerédi-Trotter theorem and applications

Szemerédi-Trotter theorem and applications Szemerédi-Trotter theorem and applications M. Rudnev December 6, 2004 The theorem Abstract These notes cover the material of two Applied post-graduate lectures in Bristol, 2004. Szemerédi-Trotter theorem

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

On S-packing edge-colorings of cubic graphs

On S-packing edge-colorings of cubic graphs On S-packing edge-colorings of cubic graphs arxiv:1711.10906v1 [cs.dm] 29 Nov 2017 Nicolas Gastineau 1,2 and Olivier Togni 1 1 LE2I FRE2005, CNRS, Arts et Métiers, Université Bourgogne Franche-Comté, F-21000

More information

Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems

Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems Fixed Parameter Algorithms for Interval Vertex Deletion and Interval Completion Problems Arash Rafiey Department of Informatics, University of Bergen, Norway arash.rafiey@ii.uib.no Abstract We consider

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

The Vapnik-Chervonenkis Dimension

The Vapnik-Chervonenkis Dimension The Vapnik-Chervonenkis Dimension Prof. Dan A. Simovici UMB 1 / 91 Outline 1 Growth Functions 2 Basic Definitions for Vapnik-Chervonenkis Dimension 3 The Sauer-Shelah Theorem 4 The Link between VCD and

More information

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V.

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V. Dynamic Programming on Trees Example: Independent Set on T = (V, E) rooted at r V. For v V let T v denote the subtree rooted at v. Let f + (v) be the size of a maximum independent set for T v that contains

More information

18.5 Crossings and incidences

18.5 Crossings and incidences 18.5 Crossings and incidences 257 The celebrated theorem due to P. Turán (1941) states: if a graph G has n vertices and has no k-clique then it has at most (1 1/(k 1)) n 2 /2 edges (see Theorem 4.8). Its

More information

A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion

A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion Eduard Eiben a, Robert Ganian a, O-joung Kwon b a Algorithms and Complexity Group, TU Wien, Vienna, Austria b Logic

More information

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Computación, Facultad de Ciencias

More information

Contents. Typical techniques. Proving hardness. Constructing efficient algorithms

Contents. Typical techniques. Proving hardness. Constructing efficient algorithms Contents Typical techniques Proving hardness Constructing efficient algorithms Generating Maximal Independent Sets Consider the generation of all maximal sets of an independence system. Generating Maximal

More information

Approximation Algorithms for the k-set Packing Problem

Approximation Algorithms for the k-set Packing Problem Approximation Algorithms for the k-set Packing Problem Marek Cygan Institute of Informatics University of Warsaw 20th October 2016, Warszawa Marek Cygan Approximation Algorithms for the k-set Packing Problem

More information

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools

Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Finite Metric Spaces & Their Embeddings: Introduction and Basic Tools Manor Mendel, CMI, Caltech 1 Finite Metric Spaces Definition of (semi) metric. (M, ρ): M a (finite) set of points. ρ a distance function

More information

Game Theory and Algorithms Lecture 7: PPAD and Fixed-Point Theorems

Game Theory and Algorithms Lecture 7: PPAD and Fixed-Point Theorems Game Theory and Algorithms Lecture 7: PPAD and Fixed-Point Theorems March 17, 2011 Summary: The ultimate goal of this lecture is to finally prove Nash s theorem. First, we introduce and prove Sperner s

More information

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Haim Kaplan Tel-Aviv University, Israel haimk@post.tau.ac.il Nira Shafrir Tel-Aviv University, Israel shafrirn@post.tau.ac.il

More information

arxiv: v3 [cs.dm] 18 Jan 2018

arxiv: v3 [cs.dm] 18 Jan 2018 On H-topological intersection graphs Steven Chaplick 1, Martin Töpfer 2, Jan Voborník 3, and Peter Zeman 3 1 Lehrstuhl für Informatik I, Universität Würzburg, Germany, www1.informatik.uni-wuerzburg.de/en/staff,

More information

On improving matchings in trees, via bounded-length augmentations 1

On improving matchings in trees, via bounded-length augmentations 1 On improving matchings in trees, via bounded-length augmentations 1 Julien Bensmail a, Valentin Garnero a, Nicolas Nisse a a Université Côte d Azur, CNRS, Inria, I3S, France Abstract Due to a classical

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Dabrowski, K.K. and Lozin, V.V.

More information

Embeddings of finite metric spaces in Euclidean space: a probabilistic view

Embeddings of finite metric spaces in Euclidean space: a probabilistic view Embeddings of finite metric spaces in Euclidean space: a probabilistic view Yuval Peres May 11, 2006 Talk based on work joint with: Assaf Naor, Oded Schramm and Scott Sheffield Definition: An invertible

More information

UNC Charlotte Super Competition - Comprehensive test March 2, 2015

UNC Charlotte Super Competition - Comprehensive test March 2, 2015 March 2, 2015 1. triangle is inscribed in a semi-circle of radius r as shown in the figure: θ The area of the triangle is () r 2 sin 2θ () πr 2 sin θ () r sin θ cos θ () πr 2 /4 (E) πr 2 /2 2. triangle

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs

Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs Florent Foucaud Université Blaise Pascal, Clermont-Ferrand, France joint work with: George B. Mertzios

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

INDUCED CYCLES AND CHROMATIC NUMBER

INDUCED CYCLES AND CHROMATIC NUMBER INDUCED CYCLES AND CHROMATIC NUMBER A.D. SCOTT DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE, GOWER STREET, LONDON WC1E 6BT Abstract. We prove that, for any pair of integers k, l 1, there exists an integer

More information

An approximate version of Hadwiger s conjecture for claw-free graphs

An approximate version of Hadwiger s conjecture for claw-free graphs An approximate version of Hadwiger s conjecture for claw-free graphs Maria Chudnovsky Columbia University, New York, NY 10027, USA and Alexandra Ovetsky Fradkin Princeton University, Princeton, NJ 08544,

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

8.5 Sequencing Problems

8.5 Sequencing Problems 8.5 Sequencing Problems Basic genres. Packing problems: SET-PACKING, INDEPENDENT SET. Covering problems: SET-COVER, VERTEX-COVER. Constraint satisfaction problems: SAT, 3-SAT. Sequencing problems: HAMILTONIAN-CYCLE,

More information

Kernelization by matroids: Odd Cycle Transversal

Kernelization by matroids: Odd Cycle Transversal Lecture 8 (10.05.2013) Scribe: Tomasz Kociumaka Lecturer: Marek Cygan Kernelization by matroids: Odd Cycle Transversal 1 Introduction The main aim of this lecture is to give a polynomial kernel for the

More information

Generating p-extremal graphs

Generating p-extremal graphs Generating p-extremal graphs Derrick Stolee Department of Mathematics Department of Computer Science University of Nebraska Lincoln s-dstolee1@math.unl.edu August 2, 2011 Abstract Let f(n, p be the maximum

More information

Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies Zdeněk Dvořák Daniel Král Robin Thomas Abstract We settle a problem of Havel by showing that there exists

More information

Math Level 2. Mathematics Level 2

Math Level 2. Mathematics Level 2 Math Reference Information THE FOLLOWING INFORMATION IS FOR YOUR REFERENCE IN ANSWERING SOME OF THE SAMPLE QUESTIONS. THIS INFORMATION IS ALSO PROVIDED ON THE ACTUAL SUBJECT TEST IN MATHEMATICS LEVEL.

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Graph Minor Theory. Sergey Norin. March 13, Abstract Lecture notes for the topics course on Graph Minor theory. Winter 2017.

Graph Minor Theory. Sergey Norin. March 13, Abstract Lecture notes for the topics course on Graph Minor theory. Winter 2017. Graph Minor Theory Sergey Norin March 13, 2017 Abstract Lecture notes for the topics course on Graph Minor theory. Winter 2017. Contents 1 Background 2 1.1 Minors.......................................

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

Painting Squares in 2 1 Shades

Painting Squares in 2 1 Shades Painting Squares in 1 Shades Daniel W. Cranston Landon Rabern May 1, 014 Abstract Cranston and Kim conjectured that if G is a connected graph with maximum degree and G is not a Moore Graph, then χ l (G

More information

Lecture 18: More NP-Complete Problems

Lecture 18: More NP-Complete Problems 6.045 Lecture 18: More NP-Complete Problems 1 The Clique Problem a d f c b e g Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) G is an undirected graph with

More information

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings Matchings A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex. M-saturated M={ } M-unsaturated Perfect Matching 1 M-alternating path M not M M not M M

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

RON AHARONI, NOGA ALON, AND ELI BERGER

RON AHARONI, NOGA ALON, AND ELI BERGER EIGENVALUES OF K 1,k -FREE GRAPHS AND THE CONNECTIVITY OF THEIR INDEPENDENCE COMPLEXES RON AHARONI, NOGA ALON, AND ELI BERGER Abstract. Let G be a graph on n vertices, with maximal degree d, and not containing

More information

Generalized Pigeonhole Properties of Graphs and Oriented Graphs

Generalized Pigeonhole Properties of Graphs and Oriented Graphs Europ. J. Combinatorics (2002) 23, 257 274 doi:10.1006/eujc.2002.0574 Available online at http://www.idealibrary.com on Generalized Pigeonhole Properties of Graphs and Oriented Graphs ANTHONY BONATO, PETER

More information

(a) How many pairs (A, B) are there with A, B [n] and A B? (The inclusion is required to be strict.)

(a) How many pairs (A, B) are there with A, B [n] and A B? (The inclusion is required to be strict.) 1 Enumeration 11 Basic counting principles 1 June 2008, Question 1: (a) How many pairs (A, B) are there with A, B [n] and A B? (The inclusion is required to be strict) n/2 ( ) n (b) Find a closed form

More information

On the number of edge-disjoint triangles in K 4 -free graphs

On the number of edge-disjoint triangles in K 4 -free graphs On the number of edge-disjoint triangles in K 4 -free graphs arxiv:1506.03306v1 [math.co] 10 Jun 2015 Ervin Győri Rényi Institute Hungarian Academy of Sciences Budapest, Hungary gyori.ervin@renyi.mta.hu

More information