EPTAS for Maximum Clique on Disks and Unit Balls

Size: px
Start display at page:

Download "EPTAS for Maximum Clique on Disks and Unit Balls"

Transcription

1 EPTAS for Maximum Clique on Disks and Unit Balls Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé LIP, ENS Lyon May 18th 2018, Leiden

2 Find a largest collection of disks that pairwise intersect

3 Like this

4 or that

5 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Guess two farthest disks in an optimum solution S.

6 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Hence, all the centers of S lie inside the bold digon.

7 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j Two disks centered in the same-color region intersect.

8 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j We solve Max Clique in a co-bipartite graph.

9 Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, c i c j We solve Max Independent Set in a bipartite graph.

10 Disk graphs Inherits the NP-hardness of planar graphs.

11 So what is known for Max Clique on disk graphs? Polynomial-time 2-approximation For any clique there are 4 points hitting all the disks. Guess those points and remove the non-hit disks. The resulting graph is partitioned into 2 co-bipartite graphs. Solve exactly on both co-bipartite graphs. Output the best solution. No non-trivial exact algorithm known

12 And what is known about disk graphs? Every planar graph is a disk graph. Every triangle-free disk graph is planar (centers vertices). So a triangle-free non-planar graph like K 3,3 is not disk. A subdivision of a non-planar graph is not a disk graph (more generally not a string graph)....

13 And what is known about disk graphs? Every planar graph is a disk graph. Every triangle-free disk graph is planar (centers vertices). So a triangle-free non-planar graph like K 3,3 is not disk. A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).... Other ways of showing that a graph is not disk?

14 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4

15 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4 Then the two non-edges should be diagonal.

16 Say the 4 centers encoding a K 2,2 = 2K 2 are in convex position. c 3 c 2 c 1 c 4 Then the two non-edges should be diagonal. Suppose d(c 1, c 3 ) > r 1 + r 3 and d(c 2, c 4 ) > r 2 + r 4. But d(c 1, c 3 ) + d(c 2, c 4 ) d(c 1, c 2 ) + d(c 3, c 4 ) r 1 + r 2 + r 3 + r 4, a contradiction.

17 Conclusion: the 4 centers of an induced 2K 2 are either not in convex position or in convex position with the non-edges being diagonal. c 2 c 3 c4 or c 1 c 3 c 1 c 2 c 4

18 Conclusion: the 4 centers of an induced 2K 2 are either not in convex position or in convex position with the non-edges being diagonal. c 2 c 3 c4 or c 1 c 3 c 1 c 2 c 4 Reformulation: either the line l(c 1, c 2 ) crosses the segment c 3 c 4, or the line l(c 3, c 4 ) crosses the segment c 1 c 2, or both; equivalently, the segments c 1 c 2 and c 3 c 4 cross.

19 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

20 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

21 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

22 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i.

23 Assume C s + C t is a disk graph. Link consecutive centers of the two disjoint cycles (non-edges). s i For each red segment s i, we denote by: a i the number of blue segments crossed by l(s i ). b i the number of blue segments whose extension cross s i. c i the number of blue segments intersecting s i. It should be that a i + b i c i = t.

24 Σ a i + b i c i = st 1 i s 1) a i is even:

25 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ 1 i s b i =

26 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even:

27 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s

28 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s Σ a i + Σ a i Σ c i is even. 1 i s 1 i t 1 i s

29 Σ a i + b i c i = st 1 i s 1) a i is even: number of intersections of a line with a closed curve. 2) Σ b i = Σ a i is therefore even. (a j, b j, c j same for blue segments) 1 i s 1 i t 3) Σ 1 i s c i is even: number of intersections of two closed curves. Σ a i + b i c i = 1 i s Σ a i + Σ a i Σ c i is even. 1 i s 1 i t 1 i s Hence s and t cannot be both odd.

30 The complement of two odd cycles is not a disk graph. Are there other graphs of co-degree 2 which are not disk?

31 Complement of many even cycles and one odd cycle D 2i+1 D 2i+1 D 1 D 2s+1 D 2i

32 Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

33 Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph? Another way to see it: at least one edge between two vertex-disjoint odd cycles

34 Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph? Another way to see it: at least one edge between two vertex-disjoint odd cycles We can get a QPTAS and an exact subexponential algorithm in 2Õ(n2/3) with win-wins and known results.

35 EPTAS VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. α(g) = size of a maximum independent set in G. iocp(g) = same as ocp but induced.

36 EPTAS VC dim of S = maximum size of a set with all intersections with S. VCdim(G) = VC dimension of the neighborhood set-system. α(g) = size of a maximum independent set in G. iocp(g) = same as ocp but induced. Theorem Max Independent Set can be 1 + ε-approximated in time 2Õ(1/ε3) n O(1) on graphs G with VCdim(G) = O(1), α(g) = Ω( V (G) ), and iocp(g) = 1.

37 Classic result of Haussler and Welzl in VC dimension theory Theorem (ε-nets) A set-system (S, U) with VC dimension d and only sets of size at least ε U has a hitting set of size O( d ε log 1 ε ). Furthermore, any sample of size 10d ε log 1 ε is a hitting set w.h.p.

38 Classic result of Haussler and Welzl in VC dimension theory Theorem (ε-nets) A set-system (S, U) with VC dimension d and only sets of size at least ε U has a hitting set of size O( d ε log 1 ε ). Furthermore, any sample of size 10d ε log 1 ε is a hitting set w.h.p. We will apply that result to the set-system ({N(u) I u V (G), N(u) I ε 3 I }, I). In words, the large neighborhoods over I.

39 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G I We pick randomly S of Õ(1/ε 3 ) vertices.

40 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G I S With probability f (ε) > 0, S I.

41 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S We delete the neighborhood of S.

42 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S < ε 3 I The remaining vertices have few vertices in I.

43 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S < ε 3 I This is due to the theorem of ε-nets.

44 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S We compute a shortest odd cycle C.

45 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S < ε I If C 1/ε 2, we delete its neighborhood.

46 First step: sampling I is a fixed maximum independent set. We can assume that I = Θ(n). G N(S) I S So, we might assume that C > 1/ε 2.

47 Second step: find a small odd cycle transversal In column, the successive neighborhood of C, layers. Rows indicate the closest neighbor on C, strata.

48 Second step: find a small odd cycle transversal bipartite Deleting a j-th neighborhood of C, leaves a bipartite to the right.

49 Second step: find a small odd cycle transversal bipartite Deleting a j-th neighborhood of C, leaves a bipartite to the right.

50 Second step: find a small odd cycle transversal bipartite Deleting a j-th neighborhood of C, leaves a bipartite to the right.

51 Second step: find a small odd cycle transversal bipartite We delete the lightest of the 1/ε first layers.

52 Second step: find a small odd cycle transversal bipartite bipartite The 1/ε consecutive layers form an odd cycle transversal.

53 Second step: find a small odd cycle transversal bipartite bipartite The 1/ε consecutive layers form an odd cycle transversal.

54 Second step: find a small odd cycle transversal bipartite bipartite The 1/ε consecutive layers form an odd cycle transversal.

55 Second step: find a small odd cycle transversal bipartite bipartite We remove the lightest block of strata.

56 Filled ellipses and triangles 2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions Lemma For some α > 1, Max Independent Set on 2-subdivisions is not α-approximable algorithm in 2 n0.99, unless the ETH fails.

57 Filled ellipses and triangles 2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions Lemma For some α > 1, Max Independent Set on 2-subdivisions is not α-approximable algorithm in 2 n0.99, unless the ETH fails. Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.

58 Filled triangles

59 Filled ellipses

60 Higher dimensions: unit 4D-disk graphs ball (3D-disk) graphs with radii arbitrary close to 1 contain all the co-2-subdivisions (so, no approximation scheme and no subexponential algorithm) p(v 1 ) P 3 ε P π(p + (e 1 )) O 1 C π(p (e 1 ))

61 What about unit ball graph? Let x 1,..., x s be the consecutive centers in R 3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk. Start at vector ab with a = x 1 and b = x 2. move continuously a from x 1 to x 3 following the segment x 1 x 3. move continuously b from x 2 to x 4 following the segment x 2 x 4. and so on, until back to x 1 x 2.

62 What about unit ball graph? Let x 1,..., x s be the consecutive centers in R 3 of a co-odd-cycle. Consider the trace on the 2-sphere of the following vector walk. Start at vector ab with a = x 1 and b = x 2. move continuously a from x 1 to x 3 following the segment x 1 x 3. move continuously b from x 2 to x 4 following the segment x 2 x 4. and so on, until back to x 1 x 2. As s is odd, half-way through we reach x 2 x 1. Hence the curve drawn on the 2-sphere is antipodal.

63 As two antipodal curves intersect, we have one of the following configurations: x y x y j x i y j x i y

64 Open questions Is Max Clique NP-hard on disk and unit ball graphs? A first step might be to show NP-hardness for Max Independent Set with iocp 1. Actually what about ocp 1? What is the complexity of Max Independent Set on the Moebius grid? on quadrangulations of the projective plane?

65 Open questions Is Max Clique NP-hard on disk and unit ball graphs? A first step might be to show NP-hardness for Max Independent Set with iocp 1. Actually what about ocp 1? What is the complexity of Max Independent Set on the Moebius grid? on quadrangulations of the projective plane? Thank you for your attention!

Maximum Clique on Disks

Maximum Clique on Disks Maximum Clique on Disks Édouard Bonnet joint work with Panos Giannopoulos, Eunjung Kim, Paweł Rzążewski, and Florian Sikora and Marthe Bonamy, Nicolas Bousquet, Pierre Chabit, and Stéphan Thomassé LIP,

More information

Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable

Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable Triangle-free graphs that do not contain an induced subdivision of K 4 are 3-colorable Maria Chudnovsky Princeton University, Princeton, NJ 08544 Chun-Hung Liu Princeton University, Princeton, NJ 08544

More information

Coloring square-free Berge graphs

Coloring square-free Berge graphs Coloring square-free Berge graphs Maria Chudnovsky Irene Lo Frédéric Maffray Nicolas Trotignon Kristina Vušković September 30, 2015 Abstract We consider the class of Berge graphs that do not contain a

More information

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs

Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Partial characterizations of clique-perfect graphs II: diamond-free and Helly circular-arc graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Matemática, Facultad

More information

arxiv: v1 [cs.ds] 2 Oct 2018

arxiv: v1 [cs.ds] 2 Oct 2018 Contracting to a Longest Path in H-Free Graphs Walter Kern 1 and Daniël Paulusma 2 1 Department of Applied Mathematics, University of Twente, The Netherlands w.kern@twente.nl 2 Department of Computer Science,

More information

Parameterized Domination in Circle Graphs

Parameterized Domination in Circle Graphs Parameterized Domination in Circle Graphs Nicolas Bousquet 1, Daniel Gonçalves 1, George B. Mertzios 2, Christophe Paul 1, Ignasi Sau 1, and Stéphan Thomassé 3 1 AlGCo project-team, CNRS, LIRMM, Montpellier,

More information

Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm

Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm Three-coloring triangle-free graphs on surfaces VII. A linear-time algorithm Zdeněk Dvořák Daniel Král Robin Thomas Abstract We give a linear-time algorithm to decide 3-colorability of a trianglefree graph

More information

Wheel-free planar graphs

Wheel-free planar graphs Wheel-free planar graphs Pierre Aboulker Concordia University, Montréal, Canada email: pierreaboulker@gmail.com Maria Chudnovsky Columbia University, New York, NY 10027, USA e-mail: mchudnov@columbia.edu

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

On subgraphs of large girth

On subgraphs of large girth 1/34 On subgraphs of large girth In Honor of the 50th Birthday of Thomas Vojtěch Rödl rodl@mathcs.emory.edu joint work with Domingos Dellamonica May, 2012 2/34 3/34 4/34 5/34 6/34 7/34 ARRANGEABILITY AND

More information

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1 List of Problems jacques@ucsd.edu Those question with a star next to them are considered slightly more challenging. Problems 9, 11, and 19 from the book The probabilistic method, by Alon and Spencer. Question

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H, K) with H K = G and E(H K) = and V (H) V (K) = k. Such a separation is proper if V (H) \ V (K) and V (K)

More information

Even Pairs and Prism Corners in Square-Free Berge Graphs

Even Pairs and Prism Corners in Square-Free Berge Graphs Even Pairs and Prism Corners in Square-Free Berge Graphs Maria Chudnovsky Princeton University, Princeton, NJ 08544 Frédéric Maffray CNRS, Laboratoire G-SCOP, University of Grenoble-Alpes, France Paul

More information

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected. 4 Connectivity 2-connectivity Separation: A separation of G of order k is a pair of subgraphs (H 1, H 2 ) so that H 1 H 2 = G E(H 1 ) E(H 2 ) = V (H 1 ) V (H 2 ) = k Such a separation is proper if V (H

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Paul Erdős and Graph Ramsey Theory

Paul Erdős and Graph Ramsey Theory Paul Erdős and Graph Ramsey Theory Benny Sudakov ETH and UCLA Ramsey theorem Ramsey theorem Definition: The Ramsey number r(s, n) is the minimum N such that every red-blue coloring of the edges of a complete

More information

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V.

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V. Dynamic Programming on Trees Example: Independent Set on T = (V, E) rooted at r V. For v V let T v denote the subtree rooted at v. Let f + (v) be the size of a maximum independent set for T v that contains

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Testing Cluster Structure of Graphs. Artur Czumaj

Testing Cluster Structure of Graphs. Artur Czumaj Testing Cluster Structure of Graphs Artur Czumaj DIMAP and Department of Computer Science University of Warwick Joint work with Pan Peng and Christian Sohler (TU Dortmund) Dealing with BigData in Graphs

More information

Acyclic subgraphs with high chromatic number

Acyclic subgraphs with high chromatic number Acyclic subgraphs with high chromatic number Safwat Nassar Raphael Yuster Abstract For an oriented graph G, let f(g) denote the maximum chromatic number of an acyclic subgraph of G. Let f(n) be the smallest

More information

arxiv: v1 [cs.dm] 4 May 2018

arxiv: v1 [cs.dm] 4 May 2018 Connected greedy colouring in claw-free graphs arxiv:1805.01953v1 [cs.dm] 4 May 2018 Ngoc Khang Le and Nicolas Trotignon November 9, 2018 Abstract An ordering of the vertices of a graph is connected if

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph G = (V, E). V ={vertices}, E={edges}. V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Graph Theory Graph G = (V, E). V ={vertices}, E={edges}. a b c h k d g f e V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} E =16. Digraph D = (V, A). V ={vertices}, E={edges}.

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies Zdeněk Dvořák Daniel Král Robin Thomas Abstract We settle a problem of Havel by showing that there exists

More information

4-coloring P 6 -free graphs with no induced 5-cycles

4-coloring P 6 -free graphs with no induced 5-cycles 4-coloring P 6 -free graphs with no induced 5-cycles Maria Chudnovsky Department of Mathematics, Princeton University 68 Washington Rd, Princeton NJ 08544, USA mchudnov@math.princeton.edu Peter Maceli,

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz

Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov Abstract For a graph G, let χ(g) denote its chromatic number and σ(g) denote

More information

On the Approximability of Partial VC Dimension

On the Approximability of Partial VC Dimension On the Approximability of Partial VC Dimension Cristina Bazgan 1 Florent Foucaud 2 Florian Sikora 1 1 LAMSADE, Université Paris Dauphine, CNRS France 2 LIMOS, Université Blaise Pascal, Clermont-Ferrand

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Planar Graphs (1) Planar Graphs (3) Planar Graphs (2) Planar Graphs (4)

Planar Graphs (1) Planar Graphs (3) Planar Graphs (2) Planar Graphs (4) S-72.2420/T-79.5203 Planarity; Edges and Cycles 1 Planar Graphs (1) Topological graph theory, broadly conceived, is the study of graph layouts. Contemporary applications include circuit layouts on silicon

More information

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA

Robin Thomas and Peter Whalen. School of Mathematics Georgia Institute of Technology Atlanta, Georgia , USA Odd K 3,3 subdivisions in bipartite graphs 1 Robin Thomas and Peter Whalen School of Mathematics Georgia Institute of Technology Atlanta, Georgia 30332-0160, USA Abstract We prove that every internally

More information

Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles

Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles Mathematics Publications Mathematics 2017 Fine Structure of 4-Critical Triangle-Free Graphs II. Planar Triangle-Free Graphs with Two Precolored 4-Cycles Zdeněk Dvořák Charles University Bernard Lidicky

More information

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs

Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Partial characterizations of clique-perfect graphs I: subclasses of claw-free graphs Flavia Bonomo a,1, Maria Chudnovsky b,2 and Guillermo Durán c,3 a Departamento de Computación, Facultad de Ciencias

More information

RON AHARONI, NOGA ALON, AND ELI BERGER

RON AHARONI, NOGA ALON, AND ELI BERGER EIGENVALUES OF K 1,k -FREE GRAPHS AND THE CONNECTIVITY OF THEIR INDEPENDENCE COMPLEXES RON AHARONI, NOGA ALON, AND ELI BERGER Abstract. Let G be a graph on n vertices, with maximal degree d, and not containing

More information

Cycles with consecutive odd lengths

Cycles with consecutive odd lengths Cycles with consecutive odd lengths arxiv:1410.0430v1 [math.co] 2 Oct 2014 Jie Ma Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Abstract It is proved that there

More information

GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE. 1. Introduction

GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE. 1. Introduction GRAPHS WITH MAXIMAL INDUCED MATCHINGS OF THE SAME SIZE PHILIPPE BAPTISTE, MIKHAIL Y. KOVALYOV, YURY L. ORLOVICH, FRANK WERNER, IGOR E. ZVEROVICH Abstract. A graph is well-indumatched if all its maximal

More information

On the hardness of losing width

On the hardness of losing width On the hardness of losing width Marek Cygan 1, Daniel Lokshtanov 2, Marcin Pilipczuk 1, Micha l Pilipczuk 1, and Saket Saurabh 3 1 Institute of Informatics, University of Warsaw, Poland {cygan@,malcin@,mp248287@students}mimuwedupl

More information

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS

HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS HAMILTONICITY AND FORBIDDEN SUBGRAPHS IN 4-CONNECTED GRAPHS FLORIAN PFENDER Abstract. Let T be the line graph of the unique tree F on 8 vertices with degree sequence (3, 3, 3,,,,, ), i.e. T is a chain

More information

Tree-width. September 14, 2015

Tree-width. September 14, 2015 Tree-width Zdeněk Dvořák September 14, 2015 A tree decomposition of a graph G is a pair (T, β), where β : V (T ) 2 V (G) assigns a bag β(n) to each vertex of T, such that for every v V (G), there exists

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

Kernelization by matroids: Odd Cycle Transversal

Kernelization by matroids: Odd Cycle Transversal Lecture 8 (10.05.2013) Scribe: Tomasz Kociumaka Lecturer: Marek Cygan Kernelization by matroids: Odd Cycle Transversal 1 Introduction The main aim of this lecture is to give a polynomial kernel for the

More information

Jacques Verstraëte

Jacques Verstraëte 2 - Turán s Theorem Jacques Verstraëte jacques@ucsd.edu 1 Introduction The aim of this section is to state and prove Turán s Theorem [17] and to discuss some of its generalizations, including the Erdős-Stone

More information

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five

Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Three-coloring triangle-free graphs on surfaces III. Graphs of girth five Zdeněk Dvořák Daniel Král Robin Thomas Abstract We show that the size of a 4-critical graph of girth at least five is bounded by

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo

A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A lower bound for the Laplacian eigenvalues of a graph proof of a conjecture by Guo A. E. Brouwer & W. H. Haemers 2008-02-28 Abstract We show that if µ j is the j-th largest Laplacian eigenvalue, and d

More information

A taste of perfect graphs

A taste of perfect graphs A taste of perfect graphs Remark Determining the chromatic number of a graph is a hard problem, in general, and it is even hard to get good lower bounds on χ(g). An obvious lower bound we have seen before

More information

18.5 Crossings and incidences

18.5 Crossings and incidences 18.5 Crossings and incidences 257 The celebrated theorem due to P. Turán (1941) states: if a graph G has n vertices and has no k-clique then it has at most (1 1/(k 1)) n 2 /2 edges (see Theorem 4.8). Its

More information

Balanced bipartitions of graphs

Balanced bipartitions of graphs 2010.7 - Dedicated to Professor Feng Tian on the occasion of his 70th birthday Balanced bipartitions of graphs Baogang Xu School of Mathematical Science, Nanjing Normal University baogxu@njnu.edu.cn or

More information

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings

M-saturated M={ } M-unsaturated. Perfect Matching. Matchings Matchings A matching M of a graph G = (V, E) is a set of edges, no two of which are incident to a common vertex. M-saturated M={ } M-unsaturated Perfect Matching 1 M-alternating path M not M M not M M

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

Odd independent transversals are odd

Odd independent transversals are odd Odd independent transversals are odd Penny Haxell Tibor Szabó Dedicated to Béla Bollobás on the occasion of his 60th birthday Abstract We put the final piece into a puzzle first introduced by Bollobás,

More information

Lecture 9: Random sampling, ɛ-approximation and ɛ-nets

Lecture 9: Random sampling, ɛ-approximation and ɛ-nets CPS296.2 Geometric Optimization February 13, 2007 Lecture 9: Random sampling, -approximation and -nets Lecturer: Pankaj K. Agarwal Scribe: Shashidhara K. Ganjugunte In the next few lectures we will be

More information

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms (a) Let G(V, E) be an undirected unweighted graph. Let C V be a vertex cover of G. Argue that V \ C is an independent set of G. (b) Minimum cardinality vertex

More information

Approximation Algorithms for Dominating Set in Disk Graphs

Approximation Algorithms for Dominating Set in Disk Graphs Approximation Algorithms for Dominating Set in Disk Graphs Matt Gibson 1 and Imran A. Pirwani 2 1 Dept. of Computer Science, University of Iowa, Iowa City, IA 52242, USA. mrgibson@cs.uiowa.edu 2 Dept.

More information

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: Solving the MWT Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP: max subject to e i E ω i x i e i C E x i {0, 1} x i C E 1 for all critical mixed cycles

More information

Induced subgraphs of graphs with large chromatic number. I. Odd holes

Induced subgraphs of graphs with large chromatic number. I. Odd holes Induced subgraphs of graphs with large chromatic number. I. Odd holes Alex Scott Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK Paul Seymour 1 Princeton University, Princeton, NJ 08544,

More information

Claw-free Graphs. III. Sparse decomposition

Claw-free Graphs. III. Sparse decomposition Claw-free Graphs. III. Sparse decomposition Maria Chudnovsky 1 and Paul Seymour Princeton University, Princeton NJ 08544 October 14, 003; revised May 8, 004 1 This research was conducted while the author

More information

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs Pinar Heggernes Pim van t Hof Daniel Meister Yngve Villanger Abstract Given two graphs G and H as input, the Induced Subgraph

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Near-domination in graphs

Near-domination in graphs Near-domination in graphs Bruce Reed Researcher, Projet COATI, INRIA and Laboratoire I3S, CNRS France, and Visiting Researcher, IMPA, Brazil Alex Scott Mathematical Institute, University of Oxford, Oxford

More information

Topological Graph Theory Lecture 4: Circle packing representations

Topological Graph Theory Lecture 4: Circle packing representations Topological Graph Theory Lecture 4: Circle packing representations Notes taken by Andrej Vodopivec Burnaby, 2006 Summary: A circle packing of a plane graph G is a set of circles {C v v V (G)} in R 2 such

More information

An approximate version of Hadwiger s conjecture for claw-free graphs

An approximate version of Hadwiger s conjecture for claw-free graphs An approximate version of Hadwiger s conjecture for claw-free graphs Maria Chudnovsky Columbia University, New York, NY 10027, USA and Alexandra Ovetsky Fradkin Princeton University, Princeton, NJ 08544,

More information

Chromatic number, clique subdivisions, and the conjectures of

Chromatic number, clique subdivisions, and the conjectures of Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov MIT UCLA UCLA Hajós conjecture Hajós conjecture Conjecture: (Hajós 1961) If

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

arxiv: v3 [cs.ds] 24 Jul 2018

arxiv: v3 [cs.ds] 24 Jul 2018 New Algorithms for Weighted k-domination and Total k-domination Problems in Proper Interval Graphs Nina Chiarelli 1,2, Tatiana Romina Hartinger 1,2, Valeria Alejandra Leoni 3,4, Maria Inés Lopez Pujato

More information

HW Graph Theory SOLUTIONS (hbovik) - Q

HW Graph Theory SOLUTIONS (hbovik) - Q 1, Diestel 3.5: Deduce the k = 2 case of Menger s theorem (3.3.1) from Proposition 3.1.1. Let G be 2-connected, and let A and B be 2-sets. We handle some special cases (thus later in the induction if these

More information

Painting Squares in 2 1 Shades

Painting Squares in 2 1 Shades Painting Squares in 1 Shades Daniel W. Cranston Landon Rabern May 1, 014 Abstract Cranston and Kim conjectured that if G is a connected graph with maximum degree and G is not a Moore Graph, then χ l (G

More information

The concentration of the chromatic number of random graphs

The concentration of the chromatic number of random graphs The concentration of the chromatic number of random graphs Noga Alon Michael Krivelevich Abstract We prove that for every constant δ > 0 the chromatic number of the random graph G(n, p) with p = n 1/2

More information

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)}

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} Preliminaries Graphs G = (V, E), V : set of vertices E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) 1 2 3 5 4 V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} 1 Directed Graph (Digraph)

More information

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and

Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada. and NON-PLANAR EXTENSIONS OF SUBDIVISIONS OF PLANAR GRAPHS Sergey Norin Department of Mathematics and Statistics McGill University Montreal, Quebec H3A 2K6, Canada and Robin Thomas 1 School of Mathematics

More information

HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS. 1. Introduction

HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS. 1. Introduction HAMILTONIAN PROPERTIES OF TRIANGULAR GRID GRAPHS VALERY S. GORDON, YURY L. ORLOVICH, FRANK WERNER Abstract. A triangular grid graph is a finite induced subgraph of the infinite graph associated with the

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

IMA Preprint Series # 2385

IMA Preprint Series # 2385 LIST COLORINGS WITH DISTINCT LIST SIZES, THE CASE OF COMPLETE BIPARTITE GRAPHS By Zoltán Füredi and Ida Kantor IMA Preprint Series # 2385 ( October 2011 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

More information

1 Notation. 2 Sergey Norin OPEN PROBLEMS

1 Notation. 2 Sergey Norin OPEN PROBLEMS OPEN PROBLEMS 1 Notation Throughout, v(g) and e(g) mean the number of vertices and edges of a graph G, and ω(g) and χ(g) denote the maximum cardinality of a clique of G and the chromatic number of G. 2

More information

Dominator Colorings and Safe Clique Partitions

Dominator Colorings and Safe Clique Partitions Dominator Colorings and Safe Clique Partitions Ralucca Gera, Craig Rasmussen Naval Postgraduate School Monterey, CA 994, USA {rgera,ras}@npsedu and Steve Horton United States Military Academy West Point,

More information

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Advanced Topics in Discrete Math: Graph Theory Fall 2010 21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010 Prof. Andrzej Dudek notes by Brendan Sullivan October 18, 2010 Contents 0 Introduction 1 1 Matchings 1 1.1 Matchings in Bipartite Graphs...................................

More information

Nested Cycles in Large Triangulations and Crossing-Critical Graphs

Nested Cycles in Large Triangulations and Crossing-Critical Graphs Nested Cycles in Large Triangulations and Crossing-Critical Graphs César Hernández Vélez 1, Gelasio Salazar,1, and Robin Thomas,2 1 Instituto de Física, Universidad Autónoma de San Luis Potosí. San Luis

More information

THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION

THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION THE SZEMERÉDI REGULARITY LEMMA AND ITS APPLICATION YAQIAO LI In this note we will prove Szemerédi s regularity lemma, and its application in proving the triangle removal lemma and the Roth s theorem on

More information

On the hardness of losing width

On the hardness of losing width On the hardness of losing width Marek Cygan 1, Daniel Lokshtanov 2, Marcin Pilipczuk 1, Micha l Pilipczuk 1, and Saket Saurabh 3 1 Institute of Informatics, University of Warsaw, Poland {cygan@,malcin@,mp248287@students}mimuwedupl

More information

On the number of cycles in a graph with restricted cycle lengths

On the number of cycles in a graph with restricted cycle lengths On the number of cycles in a graph with restricted cycle lengths Dániel Gerbner, Balázs Keszegh, Cory Palmer, Balázs Patkós arxiv:1610.03476v1 [math.co] 11 Oct 2016 October 12, 2016 Abstract Let L be a

More information

arxiv: v3 [cs.dm] 18 Jan 2018

arxiv: v3 [cs.dm] 18 Jan 2018 On H-topological intersection graphs Steven Chaplick 1, Martin Töpfer 2, Jan Voborník 3, and Peter Zeman 3 1 Lehrstuhl für Informatik I, Universität Würzburg, Germany, www1.informatik.uni-wuerzburg.de/en/staff,

More information

6 Euler Circuits and Hamiltonian Cycles

6 Euler Circuits and Hamiltonian Cycles November 14, 2017 6 Euler Circuits and Hamiltonian Cycles William T. Trotter trotter@math.gatech.edu EulerTrails and Circuits Definition A trail (x 1, x 2, x 3,, x t) in a graph G is called an Euler trail

More information

Fine structure of 4-critical triangle-free graphs III. General surfaces

Fine structure of 4-critical triangle-free graphs III. General surfaces Fine structure of 4-critical triangle-free graphs III. General surfaces Zdeněk Dvořák Bernard Lidický February 16, 2017 Abstract Dvořák, Král and Thomas [4, 6] gave a description of the structure of triangle-free

More information

Augmenting Outerplanar Graphs to Meet Diameter Requirements

Augmenting Outerplanar Graphs to Meet Diameter Requirements Proceedings of the Eighteenth Computing: The Australasian Theory Symposium (CATS 2012), Melbourne, Australia Augmenting Outerplanar Graphs to Meet Diameter Requirements Toshimasa Ishii Department of Information

More information

A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion

A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion Eduard Eiben a, Robert Ganian a, O-joung Kwon b a Algorithms and Complexity Group, TU Wien, Vienna, Austria b Logic

More information

Three-coloring triangle-free graphs on surfaces VI. 3-colorability of quadrangulations

Three-coloring triangle-free graphs on surfaces VI. 3-colorability of quadrangulations Three-coloring triangle-free graphs on surfaces VI. 3-colorability of quadrangulations Zdeněk Dvořák Daniel Král Robin Thomas Abstract We give a linear-time algorithm to decide 3-colorability (and find

More information

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012 Discrete Geometry Austin Mohr April 26, 2012 Problem 1 Theorem 1 (Linear Programming Duality). Suppose x, y, b, c R n and A R n n, Ax b, x 0, A T y c, and y 0. If x maximizes c T x and y minimizes b T

More information

Planar Ramsey Numbers for Small Graphs

Planar Ramsey Numbers for Small Graphs Planar Ramsey Numbers for Small Graphs Andrzej Dudek Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA Andrzej Ruciński Faculty of Mathematics and Computer Science

More information

Decompositions of graphs into cycles with chords

Decompositions of graphs into cycles with chords Decompositions of graphs into cycles with chords Paul Balister Hao Li Richard Schelp May 22, 2017 In memory of Dick Schelp, who passed away shortly after the submission of this paper Abstract We show that

More information

Coloring Simple Hypergraphs

Coloring Simple Hypergraphs Department of Mathematics, Statistics and Computer Science University of Illinois Chicago May 13, 2011 A Puzzle Problem Let n 2 and suppose that S [n] [n] with S 2n 1. Then some three points in S determine

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings

Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings Induced subgraphs of graphs with large chromatic number. V. Chandeliers and strings Maria Chudnovsky 1 Princeton University, Princeton, NJ 08544 Alex Scott Oxford University, Oxford, UK Paul Seymour 2

More information

On rank-width of (diamond, even hole)-free graphs

On rank-width of (diamond, even hole)-free graphs Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:1, 2017, #24 On rank-width of (diamond, even hole)-free graphs Isolde Adler 1 Ngoc Khang Le 2,3 Haiko Müller 1 Marko Radovanović 4 Nicolas

More information

arxiv: v1 [cs.dm] 26 Apr 2010

arxiv: v1 [cs.dm] 26 Apr 2010 A Simple Polynomial Algorithm for the Longest Path Problem on Cocomparability Graphs George B. Mertzios Derek G. Corneil arxiv:1004.4560v1 [cs.dm] 26 Apr 2010 Abstract Given a graph G, the longest path

More information

F. Roussel, I. Rusu. Université d Orléans, L.I.F.O., B.P. 6759, Orléans Cedex 2, France

F. Roussel, I. Rusu. Université d Orléans, L.I.F.O., B.P. 6759, Orléans Cedex 2, France A linear algorithm to color i-triangulated graphs F. Roussel, I. Rusu Université d Orléans, L.I.F.O., B.P. 6759, 45067 Orléans Cedex 2, France Abstract: We show that i-triangulated graphs can be colored

More information

Graph homomorphism into an odd cycle

Graph homomorphism into an odd cycle Graph homomorphism into an odd cycle Hong-Jian Lai West Virginia University, Morgantown, WV 26506 EMAIL: hjlai@math.wvu.edu Bolian Liu South China Normal University, Guangzhou, P. R. China EMAIL: liubl@hsut.scun.edu.cn

More information

Probabilistic Method. Benny Sudakov. Princeton University

Probabilistic Method. Benny Sudakov. Princeton University Probabilistic Method Benny Sudakov Princeton University Rough outline The basic Probabilistic method can be described as follows: In order to prove the existence of a combinatorial structure with certain

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information