Siegel s formula via Stein s identities

Size: px
Start display at page:

Download "Siegel s formula via Stein s identities"

Transcription

1 Siegel s formula via Stein s identities Jun S. Liu Department of Statistics Harvard University Abstract Inspired by a surprising formula in Siegel (1993), we find it convenient to compute covariances, even for order statistics, by using Stein (1972) s identities. Generalizations of Siegel s formula to other order statistics as well as other distributions are obtained along this line. KEY WORDS: Exponential family; multivariate Stein s identity; covariance with order statistics. 1 Siegel s result and Stein s identities In a recent paper of Siegel (1993), a remarkable formula is found for the covariance of X 1 with the minimum of the multivariate normal vector (X 1,..., X n ). The theorem is stated as follows. Theorem [Siegel] Let (X 1,..., X n ) be multivariate normal, such that the variables are distinct, with arbitrary mean and variance structure. Then cov[x 1, min(x 1,..., X n )] = cov(x 1, X i )Pr[X i = min(x 1,..., X n )]. i=1 On the other hand, Stein (1972) observes that for Z N(µ, σ 2 ) and any function f such that E f (Z) <, E[(Z µ)f(z)] = σ 2 E[f (Z)]. (1) Similar identities hold for many other distributions. For example, if Z Poisson(λ), then E[(Z λ)f(z)] = λe[f(z + 1) f(z)]. 0 Address corresponds to: Jun S. Liu, Department of Statistics, Harvard University, Cambridge, MA

2 If Z t ν (0, σ 2 ), i.e., Z = Y/ W/ν, where Y N(0, σ 2 ) and W χ 2 ν, then E[Zf(Z)] = ν/(ν 2)σ 2 E[f (Z )], where Z t ν 2 (µ, σ 2 ). The above identities are directly proved as an application of integration by parts. To illustrate, we show the last identity when σ = 1: E[Zf(Z)] = = = = ( ) (ν+1)/2 Γ[(ν + 1)/2] zf(z) 1 + z2 dz νπγ(ν/2) ν ( ) ( Γ[(ν + 1)/2] ν f(z) νπγ(ν/2) ν z2 ν ) (ν 1)/2 ( ) ν (ν 1)/2 f Γ[(ν 1)/2] (z) 1 + z2 dz ν 2 (ν 2)πΓ(ν/2 1) ν 2 ν/(ν 2)E[f (Z )]. dz There is also a multivariate version of Stein s identity as follows. Lemma 1 Let X = (X 1,..., X n ) be multivariate normally distributed with arbitrary mean vector µ and covariance matrix Σ. For any function h(x 1,..., x n ) such that h/ x i exists almost everywhere and E x i h(x) <, i = 1,..., n, we write h(x) = ( h(x),..., h(x) x n ) T. Then the following identity is true: x 1 cov[x, h(x)] = Σ E[ h(x)]. (2) Specifically, cov[x 1, h(x 1,..., X n )] = i=1 cov(x 1, X i )E[ x i h(x 1,..., X n )]. (3) Proof: Let Z = (Z 1,..., Z n ), where the Z i are i.i.d. N(0, 1) random variables. It is straightforward to show by (1) that for any g(x), differentiable almost everywhere, cov[z i, g(z)] = E[ g(z)/ z i ]. Hence cov[z, g(z)] = E[ g(z)]. Also see Stein (1981) for a more elaborate proof. Now for the random vector X, we can write X = Σ 1/2 Z + µ, and g(z) = h(σ 1/2 Z + µ). Hence the left hand side of (2) is cov[x, h(x)] = cov[σ 1/2 Z, g(z)] = Σ 1/2 E[ g(z)]. Since g(z) = Σ 1/2 h(x), the identity (2) follows immediately. 2

3 REMARK: A version of this lemma appears in Stein (1981) with Σ being the identity matrix. However, the search of an explicit formula as (2) is not successful, although it is believed that the form is well-known in the fields of sliced inverse regression and decision theory. Siegel (1993) s method can also be applied to prove the identity (2) but is less direct. We find that Siegel s theorem is closely related to Stein s identities and can be generalized to covariances of X 1 with other order statistics, other functionals, and for other distributions. 2 A simple proof of the generalized Siegel s formula Let f u (z) = min(z, u). Then f u is piecewise linear in z. Hence for Z N(µ, σ 2 ), Stein s identity can be applied to get that cov[z, f u (Z)] = σ 2 E[f u(z)] = σ 2 E(I {Z<u} ) = σ 2 Pr[Z = min(z, u)], which easily leads to Lemmas 2 and 3 of Siegel (1993). Then some more properties of the normal distribution are used in Siegel (1993) to obtain the proof of his theorem. We find, however, that it is convenient to use a multivariate version of Stein s identity directly to prove the following generalized Siegel s formula. Theorem 1 Let (X 1,..., X n ) be multivariate normal, such that the variables are distinct, with arbitrary mean and variance structure. Let X (i) be the ith largest among X 1,..., X n, then cov[x 1, X (i) ] = cov(x 1, X j )P r(x j = X (i) ). j=1 Proof: Define h(x 1,..., x n ) = x (i). Then h is piecewise linear and therefore almost everywhere differentiable. Also it is noticed that h(x 1,..., x n )/ x j is one if x j = x (i) and zero if x j x (i). Hence by applying identity (3) we obtain the result. REMARK: When X 1,..., X n are i.i.d., Carl Morris and I found the following ancillary argument to prove the above result. Since X (i) X is independent of X, cov( X, X(i) ) = cov( X, X) = var(x 1 )/n. On the other hand, since cov(x j, X (i) ) = cov(x k, X (i) ) for any j and k because of the i.i.d. assumption, we obtain that cov(x 1, X (i) ) = var(x 1 )/n. For a multivariate normal random vector, the covariance of X 1 with min( X 1,..., X n ) can also be computed similarly. Define h(x 1,..., x n ) = min( x 1,..., x n ), then h(x)/ x j is equal to 3

4 1 if 0 < x j < u; 1 if u < x j < 0; and 0 if x j > u, where u = min( X k, k j). Hence Stein s identity (3) leads to the following corollary. Corollary 1 Let Y = min( X 1,..., X n ), where (X 1,..., X n ) is multivariate normal with arbitrary mean and covariance structure. Then cov(x 1, Y ) = cov(x 1, X i )[Pr( X i = Y, X i > 0) Pr( X i = Y, X i < 0)]. i=1 When X 1,..., X n have mean zero, the above covariance equals zero. 3 Generalizations to other distributions Stein s identities for other distributions can also be used to obtain similar results. Corollary 2 Let X 1 Poisson(λ 1 ) be independent of X 2,..., X n, then cov[x 1, min(x 1,..., X n )] = λ 1 P r[x 1 < X j, for all j 1). Proof: Define f u (x) the same way as before, then by Stein s identity for a Poisson distribution: cov[x 1, f u (X 1 )] = λ 1 E[f u (X 1 + 1) f u (X 1 )] = λ 1 Pr(X 1 < u). Hence conditionally cov[x 1, f u (X 1 ) X 2,..., X n ] = λ 1 Pr[X 1 < min(x 2,..., X n ) X 2,... X n ]. Since cov(u, V )=E[cov(U, V W )]+cov[e(u W ), E(V W )], and X 1 is independent of X j, j 1, the conclusion follows. Corollary 3 Let X 1 t ν (0, σ 2 ) be independent of X 2,..., X n, then ν cov[x 1, min(x 1,..., X n )] = ν 2 σ2 P r[x1 < min(x 2,..., X n )], where X 1 t ν 2(0, σ 2 ). Let X (i) be the ith order statistics, then more generally, ν cov[x 1, X (i) ] = ν 2 σ2 P r[x (i 1) < X1 < X (i+1) ]. Proof: Use Stein s identity for t-distribution. 4

5 More generally, Morris (1983) provides Stein-type identities (theorem 5.2) for natural exponential families with quadratic variance functions (NEF-QVF), which can be used to generalize the above arguments to a broader class of distributions (NEF-QVF) without much difficulty. To illustrate, we compute cov[y 1, min(y 1,..., Y n )] where Y i Exponential(θ i ) are independent, E(Y i ) = 1/θ i, and var(y i ) = 1/θi 2. Stein s identity takes the form cov[y 1, f(y 1 )] = 1 θ 1 E[Y 1 f (Y 1 )]. Let f u (x) = min(x, u), then cov[y 1, f u (Y 1 )] = (1/θ 1 )E(Y 1 I {Y1 <u}). Since U = min(y 2,..., Y n ) Exponential(θ θ n ), cov[y 1, min(y 1,..., Y n )] = 1 θ 1 E[E(Y 1 I {Y1 <U} U)] = 1 θ 1 E[Y 1 Pr(U > Y 1 Y 1 )] = 1 (θ θ n ) 2. REMARK: Firstly, it is noted that this covariance does not depend on θ 1 at all, and a more general version is cov[y i, min(y 1,..., Y n )] = var[min(y 1,..., Y n )]. Secondly, Professor Carl Morris provides another ancillary argument for the result: consider a location shift family of exponential distributions with known scale parameters θ 1,..., θ n. Then Y (1) = min(y 1,..., Y n ) is complete sufficient for the location parameter. Hence by Basu s theorem, Y 1 Y (1) is independent of Y (1), and therefore the result holds. Acknowledgement: The author thanks Professors Hal Stern and Carl Morris for bringing up the problem and providing very stimulating discussions. Professor Morris also suggested the computations for the exponential distribution. REFERENCES Morris, C.N. (1983) Natural exponential families with quadratic variance functions: statistical theory, Ann. Statist., 11, Siegel, A.F. (1993) A surprising covariance involving the minimum of multivariate normal variables, J. Amer. Statist. Assoc., 88, Stein, C.M. (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Proc. Sixth Berkeley Symp. Math. Statist. Probab., 2,

6 Stein, C.M. (1981) Estimation of the mean of a multivariate normal distribution, Ann. Statist., 6,

ECE Lecture #9 Part 2 Overview

ECE Lecture #9 Part 2 Overview ECE 450 - Lecture #9 Part Overview Bivariate Moments Mean or Expected Value of Z = g(x, Y) Correlation and Covariance of RV s Functions of RV s: Z = g(x, Y); finding f Z (z) Method : First find F(z), by

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Lecture Note 12: Kalman Filter

Lecture Note 12: Kalman Filter ECE 645: Estimation Theory Spring 2015 Instructor: Prof. Stanley H. Chan Lecture Note 12: Kalman Filter LaTeX prepared by Stylianos Chatzidakis) May 4, 2015 This lecture note is based on ECE 645Spring

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh

Journal of Statistical Research 2007, Vol. 41, No. 1, pp Bangladesh Journal of Statistical Research 007, Vol. 4, No., pp. 5 Bangladesh ISSN 056-4 X ESTIMATION OF AUTOREGRESSIVE COEFFICIENT IN AN ARMA(, ) MODEL WITH VAGUE INFORMATION ON THE MA COMPONENT M. Ould Haye School

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Stat 5101 Notes: Algorithms

Stat 5101 Notes: Algorithms Stat 5101 Notes: Algorithms Charles J. Geyer January 22, 2016 Contents 1 Calculating an Expectation or a Probability 3 1.1 From a PMF........................... 3 1.2 From a PDF...........................

More information

A Short Introduction to Stein s Method

A Short Introduction to Stein s Method A Short Introduction to Stein s Method Gesine Reinert Department of Statistics University of Oxford 1 Overview Lecture 1: focusses mainly on normal approximation Lecture 2: other approximations 2 1. The

More information

Let X and Y be two real valued stochastic variables defined on (Ω, F, P). Theorem: If X and Y are independent then. . p.1/21

Let X and Y be two real valued stochastic variables defined on (Ω, F, P). Theorem: If X and Y are independent then. . p.1/21 Multivariate transformations The remaining part of the probability course is centered around transformations t : R k R m and how they transform probability measures. For instance tx 1,...,x k = x 1 +...

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Final Exam. Economics 835: Econometrics. Fall 2010

Final Exam. Economics 835: Econometrics. Fall 2010 Final Exam Economics 835: Econometrics Fall 2010 Please answer the question I ask - no more and no less - and remember that the correct answer is often short and simple. 1 Some short questions a) For each

More information

A Gentle Introduction to Stein s Method for Normal Approximation I

A Gentle Introduction to Stein s Method for Normal Approximation I A Gentle Introduction to Stein s Method for Normal Approximation I Larry Goldstein University of Southern California Introduction to Stein s Method for Normal Approximation 1. Much activity since Stein

More information

Lecture 7: February 6

Lecture 7: February 6 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 7: February 6 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

IMPROVING TWO RESULTS IN MULTIPLE TESTING

IMPROVING TWO RESULTS IN MULTIPLE TESTING IMPROVING TWO RESULTS IN MULTIPLE TESTING By Sanat K. Sarkar 1, Pranab K. Sen and Helmut Finner Temple University, University of North Carolina at Chapel Hill and University of Duesseldorf October 11,

More information

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18

Variance reduction. Michel Bierlaire. Transport and Mobility Laboratory. Variance reduction p. 1/18 Variance reduction p. 1/18 Variance reduction Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Variance reduction p. 2/18 Example Use simulation to compute I = 1 0 e x dx We

More information

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS

LECTURE-15 : LOGARITHMS AND COMPLEX POWERS LECTURE-5 : LOGARITHMS AND COMPLEX POWERS VED V. DATAR The purpose of this lecture is twofold - first, to characterize domains on which a holomorphic logarithm can be defined, and second, to show that

More information

Practice Examination # 3

Practice Examination # 3 Practice Examination # 3 Sta 23: Probability December 13, 212 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use a single

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

1 Complete Statistics

1 Complete Statistics Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X P θ, θ Θ. Let (X (1),..., X (n) ) denote the order statistics. Definition 1. A statistic T = T (X) is complete if E θ g(t

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator

Kalman Filtering. Namrata Vaswani. March 29, Kalman Filter as a causal MMSE estimator Kalman Filtering Namrata Vaswani March 29, 2018 Notes are based on Vincent Poor s book. 1 Kalman Filter as a causal MMSE estimator Consider the following state space model (signal and observation model).

More information

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods

Nonlife Actuarial Models. Chapter 14 Basic Monte Carlo Methods Nonlife Actuarial Models Chapter 14 Basic Monte Carlo Methods Learning Objectives 1. Generation of uniform random numbers, mixed congruential method 2. Low discrepancy sequence 3. Inversion transformation

More information

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics,

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 6: Probability and Random Processes Problem Set 3 Spring 9 Self-Graded Scores Due: February 8, 9 Submit your self-graded scores

More information

STA 2101/442 Assignment 3 1

STA 2101/442 Assignment 3 1 STA 2101/442 Assignment 3 1 These questions are practice for the midterm and final exam, and are not to be handed in. 1. Suppose X 1,..., X n are a random sample from a distribution with mean µ and variance

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

arxiv: v1 [math.st] 9 Feb 2014

arxiv: v1 [math.st] 9 Feb 2014 Degrees of Freedom and Model Search Ryan J. Tibshirani arxiv:1402.1920v1 [math.st] 9 Feb 2014 Abstract Degrees of freedom is a fundamental concept in statistical modeling, as it provides a quantitative

More information

The Delta Method and Applications

The Delta Method and Applications Chapter 5 The Delta Method and Applications 5.1 Local linear approximations Suppose that a particular random sequence converges in distribution to a particular constant. The idea of using a first-order

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh October 20, 2005 1. Large-sample inference based on ML Let θ is the MLE, then the large-sample theory implies

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics. Probability Distributions Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 07/8 Gaussian g(x; µ, )= p exp (x µ) https://en.wikipedia.org/wiki/normal_distribution

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Elements of Asymptotic Theory. James L. Powell Department of Economics University of California, Berkeley

Elements of Asymptotic Theory. James L. Powell Department of Economics University of California, Berkeley Elements of Asymtotic Theory James L. Powell Deartment of Economics University of California, Berkeley Objectives of Asymtotic Theory While exact results are available for, say, the distribution of the

More information

KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS

KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS Bull. Korean Math. Soc. 5 (24), No. 3, pp. 7 76 http://dx.doi.org/34/bkms.24.5.3.7 KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS Yicheng Hong and Sungchul Lee Abstract. The limiting

More information

Advanced topics from statistics

Advanced topics from statistics Advanced topics from statistics Anders Ringgaard Kristensen Advanced Herd Management Slide 1 Outline Covariance and correlation Random vectors and multivariate distributions The multinomial distribution

More information

Math 181B Homework 1 Solution

Math 181B Homework 1 Solution Math 181B Homework 1 Solution 1. Write down the likelihood: L(λ = n λ X i e λ X i! (a One-sided test: H 0 : λ = 1 vs H 1 : λ = 0.1 The likelihood ratio: where LR = L(1 L(0.1 = 1 X i e n 1 = λ n X i e nλ

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

Lecture 28: Asymptotic confidence sets

Lecture 28: Asymptotic confidence sets Lecture 28: Asymptotic confidence sets 1 α asymptotic confidence sets Similar to testing hypotheses, in many situations it is difficult to find a confidence set with a given confidence coefficient or level

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Statistics 252 Mathematical Statistics Lecture Notes Winter 2005 Michael Kozdron kozdron@math.uregina.ca www.math.uregina.ca/ kozdron Contents 1 The Basic Idea of Statistics: Estimating

More information

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment.

Course information: Instructor: Tim Hanson, Leconte 219C, phone Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Course information: Instructor: Tim Hanson, Leconte 219C, phone 777-3859. Office hours: Tuesday/Thursday 11-12, Wednesday 10-12, and by appointment. Text: Applied Linear Statistical Models (5th Edition),

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

Covariance function estimation in Gaussian process regression

Covariance function estimation in Gaussian process regression Covariance function estimation in Gaussian process regression François Bachoc Department of Statistics and Operations Research, University of Vienna WU Research Seminar - May 2015 François Bachoc Gaussian

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

Lectures 6: Degree Distributions and Concentration Inequalities

Lectures 6: Degree Distributions and Concentration Inequalities University of Washington Lecturer: Abraham Flaxman/Vahab S Mirrokni CSE599m: Algorithms and Economics of Networks April 13 th, 007 Scribe: Ben Birnbaum Lectures 6: Degree Distributions and Concentration

More information

Plugin Confidence Intervals in Discrete Distributions

Plugin Confidence Intervals in Discrete Distributions Plugin Confidence Intervals in Discrete Distributions T. Tony Cai Department of Statistics The Wharton School University of Pennsylvania Philadelphia, PA 19104 Abstract The standard Wald interval is widely

More information

STAT 4385 Topic 01: Introduction & Review

STAT 4385 Topic 01: Introduction & Review STAT 4385 Topic 01: Introduction & Review Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Spring, 2016 Outline Welcome What is Regression Analysis? Basics

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions An Introduction to Signal Detection and Estimation - Second Edition Chapter III: Selected Solutions H. V. Poor Princeton University March 17, 5 Exercise 1: Let {h k,l } denote the impulse response of a

More information

Final Solutions Fri, June 8

Final Solutions Fri, June 8 EE178: Probabilistic Systems Analysis, Spring 2018 Final Solutions Fri, June 8 1. Small problems (62 points) (a) (8 points) Let X 1, X 2,..., X n be independent random variables uniformly distributed on

More information

Summary of EE226a: MMSE and LLSE

Summary of EE226a: MMSE and LLSE 1 Summary of EE226a: MMSE and LLSE Jean Walrand Here are the key ideas and results: I. SUMMARY The MMSE of given Y is E[ Y]. The LLSE of given Y is L[ Y] = E() + K,Y K 1 Y (Y E(Y)) if K Y is nonsingular.

More information

Sufficiency 1. Sufficiency. Math Stat II

Sufficiency 1. Sufficiency. Math Stat II Sufficiency 1 Sufficiency Sufficiency 2 Outline for Sufficiency 1. Measures of Quality of Estimators 2. A sufficient Statistic for a Parameter 3. Properties of a Sufficient Statistic 4. Completeness and

More information

Prediction. Prediction MIT Dr. Kempthorne. Spring MIT Prediction

Prediction. Prediction MIT Dr. Kempthorne. Spring MIT Prediction MIT 18.655 Dr. Kempthorne Spring 2016 1 Problems Targets of Change in value of portfolio over fixed holding period. Long-term interest rate in 3 months Survival time of patients being treated for cancer

More information

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1 Stat 366 A1 Fall 6) Midterm Solutions October 3) page 1 1. The opening prices per share Y 1 and Y measured in dollars) of two similar stocks are independent random variables, each with a density function

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Optimization and Simulation

Optimization and Simulation Optimization and Simulation Variance reduction Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne M.

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression In simple linear regression we are concerned about the relationship between two variables, X and Y. There are two components to such a relationship. 1. The strength of the relationship.

More information

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University.

Yaming Yu Department of Statistics, University of California, Irvine Xiao-Li Meng Department of Statistics, Harvard University. Appendices to To Center or Not to Center: That is Not the Question An Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency Yaming Yu Department of Statistics, University of

More information

Economics 620, Lecture 2: Regression Mechanics (Simple Regression)

Economics 620, Lecture 2: Regression Mechanics (Simple Regression) 1 Economics 620, Lecture 2: Regression Mechanics (Simple Regression) Observed variables: y i ; x i i = 1; :::; n Hypothesized (model): Ey i = + x i or y i = + x i + (y i Ey i ) ; renaming we get: y i =

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 19, 2011 Lecture 17: UMVUE and the first method of derivation Estimable parameters Let ϑ be a parameter in the family P. If there exists

More information

Lecture 5. i=1 xi. Ω h(x,y)f X Θ(y θ)µ Θ (dθ) = dµ Θ X

Lecture 5. i=1 xi. Ω h(x,y)f X Θ(y θ)µ Θ (dθ) = dµ Θ X LECURE NOES 25 Lecture 5 9. Minimal sufficient and complete statistics We introduced the notion of sufficient statistics in order to have a function of the data that contains all information about the

More information

RESEARCH REPORT. A note on gaps in proofs of central limit theorems. Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen

RESEARCH REPORT. A note on gaps in proofs of central limit theorems.   Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING 2017 www.csgb.dk RESEARCH REPORT Christophe A.N. Biscio, Arnaud Poinas and Rasmus Waagepetersen A note on gaps in proofs of central limit theorems

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis When we have data x (i) R n that comes from a mixture of several Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting,

More information

LECTURES IN ECONOMETRIC THEORY. John S. Chipman. University of Minnesota

LECTURES IN ECONOMETRIC THEORY. John S. Chipman. University of Minnesota LCTURS IN CONOMTRIC THORY John S. Chipman University of Minnesota Chapter 5. Minimax estimation 5.. Stein s theorem and the regression model. It was pointed out in Chapter 2, section 2.2, that if no a

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

EXPLICIT MULTIVARIATE BOUNDS OF CHEBYSHEV TYPE

EXPLICIT MULTIVARIATE BOUNDS OF CHEBYSHEV TYPE Annales Univ. Sci. Budapest., Sect. Comp. 42 2014) 109 125 EXPLICIT MULTIVARIATE BOUNDS OF CHEBYSHEV TYPE Villő Csiszár Budapest, Hungary) Tamás Fegyverneki Budapest, Hungary) Tamás F. Móri Budapest, Hungary)

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

Lesson 4: Stationary stochastic processes

Lesson 4: Stationary stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Stationary stochastic processes Stationarity is a rather intuitive concept, it means

More information

Miscellaneous Errors in the Chapter 6 Solutions

Miscellaneous Errors in the Chapter 6 Solutions Miscellaneous Errors in the Chapter 6 Solutions 3.30(b In this problem, early printings of the second edition use the beta(a, b distribution, but later versions use the Poisson(λ distribution. If your

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini April 27, 2018 1 / 1 Table of Contents 2 / 1 Linear Algebra Review Read 3.1 and 3.2 from text. 1. Fundamental subspace (rank-nullity, etc.) Im(X ) = ker(x T ) R

More information

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic

Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Chapter 3: Unbiased Estimation Lecture 22: UMVUE and the method of using a sufficient and complete statistic Unbiased estimation Unbiased or asymptotically unbiased estimation plays an important role in

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Studentization and Prediction in a Multivariate Normal Setting

Studentization and Prediction in a Multivariate Normal Setting Studentization and Prediction in a Multivariate Normal Setting Morris L. Eaton University of Minnesota School of Statistics 33 Ford Hall 4 Church Street S.E. Minneapolis, MN 55455 USA eaton@stat.umn.edu

More information

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences

Department of Large Animal Sciences. Outline. Slide 2. Department of Large Animal Sciences. Slide 4. Department of Large Animal Sciences Outline Advanced topics from statistics Anders Ringgaard Kristensen Covariance and correlation Random vectors and multivariate distributions The multinomial distribution The multivariate normal distribution

More information

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X.

Optimization. The value x is called a maximizer of f and is written argmax X f. g(λx + (1 λ)y) < λg(x) + (1 λ)g(y) 0 < λ < 1; x, y X. Optimization Background: Problem: given a function f(x) defined on X, find x such that f(x ) f(x) for all x X. The value x is called a maximizer of f and is written argmax X f. In general, argmax X f may

More information

STAT 350. Assignment 6 Solutions

STAT 350. Assignment 6 Solutions STAT 350 Assignment 6 Solutions 1. For the Nitrogen Output in Wallabies data set from Assignment 3 do forward, backward, stepwise all subsets regression. Here is code for all the methods with all subsets

More information

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer sheet.

Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer sheet. 2017 Booklet No. Test Code : PSA Forenoon Questions : 30 Time : 2 hours Write your Registration Number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer sheet.

More information

ON TWO RESULTS IN MULTIPLE TESTING

ON TWO RESULTS IN MULTIPLE TESTING ON TWO RESULTS IN MULTIPLE TESTING By Sanat K. Sarkar 1, Pranab K. Sen and Helmut Finner Temple University, University of North Carolina at Chapel Hill and University of Duesseldorf Two known results in

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

Ch4. Distribution of Quadratic Forms in y

Ch4. Distribution of Quadratic Forms in y ST4233, Linear Models, Semester 1 2008-2009 Ch4. Distribution of Quadratic Forms in y 1 Definition Definition 1.1 If A is a symmetric matrix and y is a vector, the product y Ay = i a ii y 2 i + i j a ij

More information

Variances and covariances

Variances and covariances Page 1 Chapter 4 Variances and covariances variance The expected value of a random variable gives a crude measure of the center of location of the distribution of that random variable. For instance, if

More information

Problem Solving. Correlation and Covariance. Yi Lu. Problem Solving. Yi Lu ECE 313 2/51

Problem Solving. Correlation and Covariance. Yi Lu. Problem Solving. Yi Lu ECE 313 2/51 Yi Lu Correlation and Covariance Yi Lu ECE 313 2/51 Definition Let X and Y be random variables with finite second moments. the correlation: E[XY ] Yi Lu ECE 313 3/51 Definition Let X and Y be random variables

More information

Stat 5101 Notes: Algorithms (thru 2nd midterm)

Stat 5101 Notes: Algorithms (thru 2nd midterm) Stat 5101 Notes: Algorithms (thru 2nd midterm) Charles J. Geyer October 18, 2012 Contents 1 Calculating an Expectation or a Probability 2 1.1 From a PMF........................... 2 1.2 From a PDF...........................

More information

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris

Simulation of truncated normal variables. Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Simulation of truncated normal variables Christian P. Robert LSTA, Université Pierre et Marie Curie, Paris Abstract arxiv:0907.4010v1 [stat.co] 23 Jul 2009 We provide in this paper simulation algorithms

More information

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance:

Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = The errors are uncorrelated with common variance: 8. PROPERTIES OF LEAST SQUARES ESTIMATES 1 Basic Distributional Assumptions of the Linear Model: 1. The errors are unbiased: E[ε] = 0. 2. The errors are uncorrelated with common variance: These assumptions

More information