Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5 ,

6 t = 0, 1,... δ [0, 1) c 0

7 G 0 [c 0, c 0 ] g 0 (c 0 ) > 0 c 0 (c 0, c 0 ) c 0 δ [0, 1) B π π B ( ) B B π B = B π B B (1 π) B B v 0 F 0 [v 0, v 0 ] f 0 (v 0 ) > 0 v 0 (v 0, v 0 ) v 0 v := K B + ˆK B v 0 K B ˆK B K B ˆK B v F [v, v] c := K S + ˆK S c 0 G [c, c] G(c) := G 0 ((c K S )/ ˆK S ) [c, c] F (v) := F 0 ((v K B )/ ˆK B ) [v, v] c := ˆK S c 0 +K S c := ˆK S c 0 +K S v := ˆK B v 0 + K B v := ˆK B v 0 + K B

8 f g F G Φ(v) := v 1 F (v) f(v) Γ(c) := c + G(c) g(c) Φ(v) Γ(c) c = v c = v ω = (ω t ) t=0 ω t( p) t p p t t p t G(p) 1 F (p) Φ(p) Γ(p) c 0 = v 0 c 0 = v 0 c v c v c > v v < c [c, v] G F 1 δ F

9 δ = 0 B > 1 B = 1 δ = 0 δ > 0 B πb δ = 0 ω t R ωt (p t ) t p t R ωt (p t ) = (p t ω t (p t ))(F (2) (p t ) F (1) (p t )) + v p t ( p ω t ( p))df (2) ( p), 1 F (1) (p t ) F (1) (v) := B=0 π BF (v) B F (2) (v) := F (1) (v) + (1 F (v)) B=1 π BBF (v) B 1

10 c ω p = (p t ) t=0 W S (c, p, ω) := t 1 (R ωt (p t ) c)(1 F (1) (p t )) δf (1) (p τ ), t=0 τ=0 x 1 τ=x y τ = 1 (y t ) T t=1 P (c) = (P t (c)) t=0 W S(c, p, ω) ω t t c p t = P t (c) ω t (p t )(F (2) (p t ) F (1) (p t )) + v p t ω t ( p)df (2) ( p) c p ω W I (c, p, ω) := ( v ) t 1 ω t (P t (c))(f (2) (P t (c)) F (1) (P t (c))) + ω t ( p)df (2) ( p) δf (1) (P τ (c)). P t(c) t=0 ω W I W I + W S τ=0 W (α, ω) := E c G [αw I (c, P (c), ω) + (1 α)(w I (c, P (c), ω) + W S (c, P (c), ω))], α [0, 1] α = 0 α = 1 α = 0 ω P (c) ω 1 F (1) (p t ) F (2) (p t ) F (1) (p t ) p F (2) W (α, ω) E c [α 0 W I (c, P (c), ω) + (1 α 0 )W S (c, P (c), ω)] α 0 = 1/(2 α)

11 F G α > 0 ω = (ω t ) t=0 p = (p t ) t=0

12 ω t = ω p t = p t ω p W S (c, p, ω) = (R ω (p) c)(1 F (p)), ( ) 1 F (p) := (1 F (1) (p)) δ t F (1) (p) t t=0 = 1 F (1)(p) 1 δf (1) (p) Φ ω (p) := p ω(p) (1 ω (p)) 1 F (p) f(p) ω Φ ω (p) := v ω(v) v p 1 δf (1) (v) Φ 1 δ ω(v)dv. Φ ω (p) Φ ω (p) p W S ω Φ ω (p) c P (c) = 1 Φ ω (c) 1 F 1 δ

13 Φ ω Φ ω Φ ω Φ ω Φ(v) := Φ 0 (v) R(p) := R 0 (p) Φ ω Φ ω (v) = v δ = 0 Φ ω Φ ω ω(p) = 0 p Φ ω(p) = bp b [0, 1] Φ b (v) := Φ ω (v) ω(p)=bp Φ b (v) := Φ ω (v) ω(p)=bp Φ b (v) = (1 b)φ(v) Φ b (p) = (1 b) Φ(p) b c P (c) = Φ 1 (c/(1 b)). P (c) ω ω P (c) ω P (c) W (α, ω) ω

14 Γ α (c) := αγ(c) + (1 α)c Γ(c) c t max b t Φ(vbt ) Γ α (c), v c

15 Γ α (c) Φ(v) Γ(c) Φ(v) Γ α (c) c P (c) := Φ 1 (Γ α (c)) P (c) Φ Γ α (c) c P (c) 1 F (P (c)) Γ 1 α (v) v V (c) c [c, Γ 1 α (v)] P (c) V (c) = Γ 1 α (v) c (1 F (P (y)))dy. ω t ( p) t = 0, 1,.. ω t (p) = ω(p) := p v p [ ] Γ 1 α ( Φ(v)) + δv (Γ 1 α ( Φ(v))) 1 F (p) f(v)dv.

16 c P (c) p P (c) δv (c) ω(p) (R ωt (p) c)(1 F 1 (p)) F 1 (p)δv (c) (p ω(p))[f (2) (p) F (1) (p)] + v p [y ω(y)f (2) (y)dy + F (1) (p)[c + δv (c)]. [ ] 0 = f (1) (p) Γ 1 α ( Φ(p)) δv (Γ 1 α ( Φ(p))) + c + δv (c), F (2) (p) F (1) (p) = f (1) (p)(1 F (p))/f(p) p = P (c) p δ = 0 π 1 = 1 α = 1 F G [0, 1] 1/24 B π B = 1 F P (c) = Φ 1 (c) α = 0 G(c) = c σ c [0, 1] σ > 0 ω(p) = p/(1 + σ) F π

17 F 0 G 0 v 0 c 0 [0, 1] K j := (K S j, ˆK S j, K B j, ˆK B j ) j 0 K 0 = (0, 1, 0, 1) c = Kj S + ˆK j S c 0 G j (c) = G 0 ((c Kj S )/ ˆK j S ) v = Kj B + ˆK j B v 0 F j ((v Kj B )/ ˆK j B )

18 F F j G G j K B j > 0 ˆKB j = 0 x v = λ j x + (1 λ j )v 0 λ j K B j = λ j x ˆK B j = 1 λ j K S j ˆK S j K B j ˆKB j K S j ˆK S j u B j u S j K j u B j u S j [c j, c j ] [v j, v j ] [c j, v j ] u S j := (v j c j )/(c j c j ) u B j := (v j c j )/(v j v j ) (c j, u S j, v j, u B j ) K j (c j, u S j, v j, u B j ) c > v j c v j c 0 u S j G 0 (u S j ) 1 F 0 (1 u B j ) c := (c 0 c j )/(v j c j ) ṽ := (v 0 c j )/(v j c j ) p := (p c j )/(v j c j ) c ṽ [c j, v j ] Gj F j G j ( c) := G 0(u S j c) G 0 (u S j ) Fj (ṽ) := 1 1 F 0(1 u B j (1 ṽ)) 1 F 0 (1 u B j ),

19 ω j ( p) = ω(p)/(v j c j ) c j v j c j < v j j u S j u B j j j lim j Fj (ṽ) = F (ṽ) := 1 (1 ṽ) β lim j Gj ( c) = G ( c) := c σ ω j ( p) α p/(α + σ) lim ω j( p) = j α α + σ p. G 0 F 0 [0, 1] G 0 (c 0 ) = c σ 0 σ > 0 F 0 (v 0 ) = 1 (1 v 0 ) β β > 0 G j ( c) = G 0 (u S j c)/g 0 (u S j ) = c σ 1 F j (ṽ) = (1 F 0 (1 u B j (1 ṽ))/(1 F 0 (1 u B j )) = (1 ṽ) β j G j F j j F j Φ F j

20 G 0 g 0 (c 0 ) c 4 0(1 c 0 ) 4 [0, 1] c 0 [0, u] u {1, 0.7, 0.5, 0.3, 0.2} u

21 u = 1 u = 0.7 u = 0.5 u = 0.3 u = 0.2 G u (c) = G 0 (c+u(c c))/g 0 (c+u(c c)) u {1, 0.7, 0.5, 0.3, 0.2} [0, 1] g 0 (c) c 4 (1 c) 4 [0, 1] G(1) = 1 G 0 (0.7) = 0.9 G 0 (0.5) = 0.5 G 0 (0.3) = 0.1 G 0 (0.2) = 0.02 δ = 0 G 0 G 0 (c 0 ) = c σ 0 c 0 [0, 1] Γ α,0 (c 0 ) := c 0 + αg 0 (c 0 )/g 0 (c 0 ) = c 0 (1 + α/σ) ω(p) = p E v0 F 0 [Γ 1 α,0(φ 0 (v 0 )) v 0 p] = p Γ 1 α,0(e v0 F 0 [Φ 0 (v 0 ) v 0 p]). Γ 1 α,0 E v0 F 0 [Φ 0 (v 0 ) v 0 p] = p ω(p) = p Γ 1 α,0(p) = pα/(α + σ) j G 0

22 u = 1 u = 0.7 u = 0.5 u = 0.3 u = 0.2 ω( ) F u (v) = 1 [1 F 0 (v u(v v))]/[1 F 0 (v u(v v))], G u (c) = G 0 (c + u(c c))/g 0 (c + u(c c)) u {1, 0.7, 0.5, 0.3, 0.2} [0, 1] f(x) = g(x) x 4 (1 x) 4 V ( ) G 0 (u) 1 F 0 (1 u) 0 u ω(p) j u S j u B j G (c) := ( ) σ c c 1 F (v) := c c ( ) β v v, v v c = v = c j v = c = v j G (c)

23 Γ α(c) = c(1 + α/σ) αc/σ p ω(p) = p Γ 1 α (p), v G (ˆp) Γ 1 α (v) G( c) = c σ σ σ ω( p) = α p/(σ + α) [c, v] G j ( c) Φ 1 (Γ α (c)) δ > 0 Γ α (c) v p E[c c p] (v (αp + (1 α)e[c c p]))g (p) (v Γ α(p))g (p) = 0

24 Kj B Kj S Kj B +Kj S v 0 c 0 p p µ p µ µ µ 0 β = e βµ γ = e γµ

25 δ = e δµ v 0 t=0 (v 0 p) β(1 β) t δt = (v 0 p)β β = β/[1 (1 β δ)] v = v 0 β(v 0 p) = βp+(1 β)v 0 K B = βp ˆK B = 1 β v = βp + (1 β)v 0 p µ c = c 0 + γ(p c 0 ) = γp + (1 γ)c 0 γ = γ/[1 (1 γ) δ] c = γp + (1 γ)c 0 p µ 0 µ 0 [c, v] p v F v F v = v 0 δv B (v 0 ) V B (v 0 )

26 δ δ v = v 0 δv B (v 0 ) [c, v] π 1 = 1 δ = 0 F G v c Φ Γ 1 α δ = 0 ω(p) = p E[Γ 1 α (Φ(v)) v p]. G(p) 1 F (p) p v η d (v) := vf(v)/(1 F (v)) c η s (c) := cg(c)/g(c)

27 η s α η s (c) α Γ α (c) = c(1 + α/η s (c)) α η s (c) η d Φ(v) = v(1 1/η d (v)) G Γ α ω η d Γ η d Γ 1 α (x) v p ω(p) = + {}}{{}}{ Γ 1 [Γ 1 α (v)] α (p) + v F [Φ(v) v v p] 2 [Γ α (v)] (n) {E v F [(Φ(v) v) n v p] E v F [Φ(v) v v p] n }, n! n=3 }{{} [Γ 1 α (v)] (n) n Γ 1 α (v) x Γ 1 α (x) p Γ 1 α (p) Γ α Γ α p η d G Γ α ω(p) F α = 1 Γ 1 1 (x) [Γ 1 1 (x)] = γ 2 G Γ 1 1 Γ 1

28 ω(p) = p Γ 1 (p) (γ 2 /2) [Φ(v) v v p] Γ 1 1 γ 2 < 0 Γ 1 1 Γ 1 1 F γ 2 < 0 γ 2 > 0 γ 2 = 0 Γ 1 α Γ Γ(c) = c + G(c)/g(c) G(c) = 1 G G ˆF F ˆη d (v) η d (v) ˆη d (v) > η d (v) v < v Φ(v) = v(1 1/η d (v)) ˆΦ(v) > Φ(v) (ˆΦ(v) v) 2 < (Φ(v) v) 2 v < v F ˆF ˆf(v)/(1 ˆF (v)) = ˆη d (v)/v > η d (v)/v = f(v)/(1 F (v)) E[ˆv ˆv p] E[v v p] p (ˆΦ(v) v) 2 < (Φ(v) v) 2 E[(ˆΦ(ˆv) v) 2 ˆv p] E[(Φ(v) v) 2 v p] ˆF F γ 2 < 0 [Φ(v) v v p] = E[(Φ(v) v) 2 v p] E[Φ(v) v v p] 2 = E[(Φ(v) v) 2 v p] (p v) 2

29 δ t F t πb t ω t t

30 ω p

31 σ

32

33

34

35

36 [(R ω (p) c)(1 F (p))] = [ Φ ω (p) c]f (p) Φ ω (p) := R ω (p) R ω(p) 1 F (p). f (p) Φ ω R ω (p) = (p ω(p))(f (2)(p) F (1) (p)) + v p (v ω(v))df (2)(v) 1 F (1) (p) R ω (p) = v p Φ ω(v)df (1) (v) 1 F (1) (p) Φ ω (p) := p ω(p) (1 ω (p)) 1 F (p) f(p) R ω R ω (v) = v [R ω (p)(1 F (1) (p))] R ω F (2) (p) F (1) (p) f (1) (p) = 1 F (p). f(p) f (1) (v) f (1) (v) = f(v) B=1 π BBF (v) B 1 F (2) (v) F (1) (v) = (1 F (v)) B=1 π BBF (v) B 1

37 R ω(p) = f (1)(p) 1 F (1) (p) (R ω(p) Φ ω (p)) f (1) (p) 1 F (p) 1 F (1) (p) f (p) = 1 δf (1)(p) 1 δ Φ ω (p) = R ω (p) (R ω (p) Φ ω (p)) 1 δf (1)(p) 1 δ Φ ω(p) = 1 δf (1)(p) Φ 1 δ ω(p) Φ ω Φ ω Φ ω (p) v p = v Φ ω ( Φ ω (p) c)f (p) = 0 1 Φ ω (c) c Φ β lim v v d dv [ ] 1 F (v) f(v) = lim v v d [v Φ(v)] = β. dv F F F j F (ṽ) = 1 (1 ṽ) β ṽ G j

38 β := lim v v 1 Φ (v) σ := lim c c Γ (c) 1 β := 1/β σ := 1/σ (v v)f(v) lim v v 1 F (v) = lim v v v v v Φ(v) = lim v v 1 1 Φ (v) = β. p k = R(p) k 1 F (k) := 1 F (R 1 (k)) ω(k) k ω(k) ω(k) = k v k Γ 1 α (Φ(v))f(v)dv. 1 F (k) ω (1 F (k))(k ω(k) c). ω(k) v max Γ 1 α (Φ(v))f(v)dv (1 F (k))c. k k 0 = f(k(c)) [ Γ 1 α (Φ(k)) c ], Φ(k) = Γ α (c) Φ(v)

39 F G ω α p ω α+σ α p α+σ F G [v, v] [c, c] F (v) = 1 [(v v)/(v v)] β G (c) = [(c c)/(c c)] σ Γ α(c) = c+(c c)α/σ ω (p) = p E v [Γ 1 α (Φ (v)) v p] = p Γ 1 (E v [Φ (v) v p]) = p Γ 1 (p), α α Γ α p F Φ E v [Φ(v) v p] = p Γ α [ ] α ω (p) = (p c). α + σ ω F G ω p F G [c j, (v j c j )/u S j + c j ] [0, 1] [v j (v j c j )/u B j, v j ] [u j 1, u j ] u j > 0 j u j 0 j u 0 F G ˆF j Ĝj

40 Ĝ j (ĉ) = G(ĉ) ˆF j (ˆv) = F (ˆv + (1 u)) ˆω(ˆp) = uˆp 1ˆp ˆΓ 1 α (ˆΦ(uˆv))d ˆF (uˆv) 1 ˆF (uˆp) uˆp p ˆω β [ 1 lim ˆF ] (uˆv) u 0 (uˆv) ˆf(uˆv) = lim v 1 [ 1 1 ˆF ] (uˆv) u 0 ˆv u f(uˆv) β 1 u 0 ˆΦ(uˆv) ˆv 1 ˆv u β [ 1 F (v ) f(v ) ] = 1 β. 1 u ˆΓ α (uĉ) u 0 ( ĉ 1 + α ) σ 1 1 ˆΓ α (ux) u 0 u x 1 + α/σ, ˆ F (k) = ˆF ( ˆR 1 (k)), ˆF (p) = 1 ˆF (1) (p) 1 δ ˆF (1) (p), ˆF(1) (p) = ˆR j (p) = uj p π B ˆF (p) B B=0 ˆΦ(v)d ˆF (1) (v) 1 ˆF. (1) (p) ˆR 1 j ˆR 1 j ˆR j

41 ˆR j ˆω ˆR ˆR ˆR j (p) ˆR j (p) = uj p ˆΦ(v)d ˆF (1) (v) 1 ˆF (1) (p) = 1 p+1 u j (Φ(y) (1 u j ))f (1) (y)dy 1 F (1) (p + 1 u j ) j u j ˆR j ˆω ω ω(p) = ω(p) ˆω ω(p) v p ω(p) = p [Γ 1 α ( Φ(v)) + δv (Γ 1 α ( Φ(v)))]dF (v), 1 F (p) V (c) = Γ 1 α A := v p Γ 1 α (v) Γ 1 α c (v) (1 F ( Φ 1 (Γ α (y))))dy B := v p Γ 1 α ( Φ(v))dF (v) ( Φ(p)) (1 F ( Φ 1 (Γ α (y))))dydf (v) ω(p) ω(p) = p (B + δa)/(1 F (p)) Φ(p) = Φ(R(p)) B B A A = = Γ 1 α Γ 1 α (p) Γ 1 α (v) Γ 1 α (p) (v) Φ(Γα(y)) p df (v)(1 F ( Φ 1 (Γ α (y))))dy (F ( Φ(Γ α (y))) F (p))(1 F ( Φ 1 (Γ α (y))))dy. A ˆω F G

42 Γ 1 α (x) v Γ 1 α (x) = Γ 1 α (v) + [Γ 1 α (v)] (x v) + [Γ 1 α (v)] (x v) n v γ n := [Γ 1 α (v)] (n) φ := Φ(v) p ω(p) =E[Γ 1 α (φ) v p] γ = n n! E[(φ v)n v p] = n=0 n=0 n=3 [Γ 1 α (v)] (n) n! (x v) n. γ n n! {(E[φ v p] v)n (E[φ v p] v) n + E[(φ v) n v p]} =Γ 1 α (E[φ v p]) + =Γ 1 α (p) + n=0 n=0 γ n n! {E[(φ v)n v p] (E[φ v p] v) n } γ n n! {E[(φ v)n v p] (E[φ v p] v) n }, E[Φ(v) v p] = p n = 0 n = 1 n = 2 [φ v v p] = E[(φ v) 2 v p] (E[φ v p] v) 2 t t 1 δ δ δ

43 c t v b [v, v] v b = v t = (vb t)b b=1 t b = 1,.., B v = (v t ) t=0 Q t S (v t, c) t Q t b (v t, c) b M t S (v t, c) b M t b (v t, c) (v t, c) B Q t b(v t, c) Q t S(v t, c) b=1 t (v t, c) t Q t S (v t, c) t+1 (1 δ)(1 Q t S (v t, c)) Q t B(v t, c) = (Q t 1(v t, c),.., Q t B (v t, c)) M t B(v t, c) = (M t 1(v t, c),.., M t B (v t, c)) (v, c) Q S (v, c) = ( Q t S(v t, c) ) t=0 Q B (v, c) = ( Q t B(v t, c) ) t=0 M S (v, c) = ( M t S(v t, c) ) t=0 M B (v, c) = ( M t B(v t, c) ) t=0. Q M {Q S (v, c), Q B (v, c)} {M S (v, c), M B (v, c)} (v, c) Q, M Q

44 t c [ ] t 1 q S (c) := E v Q t S(v t, c) δ(1 Q τ S(v τ, c)), t=0 τ=0 [ ] t 1 m S (c) := E v MS(v t t, c) δ(1 Q τ S(v τ, c)). t=0 τ=0 c W S (c) = m S (c) q S (c)c, c B t 1 W I (c) = E v Mb(v t t, c) δ(1 Q τ S(v τ, c)) m S (c), t=0 b=1 τ=0 W i (c) i = I, S max E c[αw I (c) + (1 α)(w I (c) + W S (c))] Q,M

45 ω α q S (c) c m S (c) = q S (c)c + c c q S (x)dc + W S (c) q S (c) c W S (c) 0 W S (c) αw S (c) W S (c) = 0 α [0, 1] t p t Q t b (v t, c) = 1 v b = max{v t } v b p t Q t i(v t, c) = 0 i = 1,.., B Q, M t p t ˆQ, ˆM t (v t, c) Q t b (v t, c) = 1 b b

46 t ˆQ, ˆM t ˆQ, ˆM ˆQ, ˆM W I (c) W S (c) ˆQ, ˆM Q p(c) = (p t (c)) t=0 c t p t (c) k t := R(p t ) t t p(c) k(c) = (k t (c)) t=0 k = (k t ) t=0 q t (k) := ( 1 F (1) (R 1 (k t )) ) t 1 δf (1) (R 1 (k τ )) δ t t=0 q t(k)k t k t=0 q t(k) k = τ=0 t=0 q t(k)k t t=0 q t(k) k 1 δ

47 k k ( t=0 q t(k)k t )/( t=0 q t(k)) t=0 q t(k) k [v, v] { T } 1 F T (k) := max q t (k) (k t) T t=0 t=0 T t=0 q t(k)k t T t=0 q t(k) 1 F (k) := lim 1 F T (k). T { T } (kt (k)) T t=0 max (kt) T t=0 t=0 q t(k) t=0 = k, T t=0 qt(k)kt T t=0 qt(k) kt (k) = k t ( T t 1 ) (1 1 F (k) = lim δf (1) (R 1 (k)) F(1)(R 1 (k)) ) T = lim T τ=0 1 δ T +1 F (1) (R 1 (k)) T +1 ( 1 F(1) (R 1 (k)) ) 1 δf (1) (R 1 (k)) = 1 F (1)(R 1 (k)) 1 δf (1) (R 1 (k)) = 1 F (R 1 (k)). = k c k W I (c) = k(c)(1 F (k(c))) m S (c) W S (c) = m S (c) q S (c)c W S (c) = 0 c αw I (c) + (1 α)(w I (c) + W S (c)) = k(1 F (k)) cq S (c) α c c q S (x)dx.

48 q S (k) = 1 F (k) max k(c) c c [k(c) Γ α (c)] (1 F (k(c)))g(c)dc Γ α (c) := c + α G(c) g(c). Γ(c) Γ α (c) k 0 = f(k(c)) [ Φ(k(c)) Γ α (c) ], k(c) = Φ 1 (Γ α (c)) Φ(v) Φ(k) Γ α (c). k (c) := Φ 1 (Γ α (c)) F (k) = F (R 1 (k)) Φ(k) = Φ(R 1 (k)) v R 1 (k (c)) Φ Φ(v) Γ α (c) δ = (δ t ) t=0 F = (F t ) t=0 δ t t F t t t Φ t (v) = v 1 Ft(v) f t(v) v δ τ = δ T δ τ = δ τ T δ τ = 0 τ > T π t B t F (1),t(v)

49 F (2),t (v) t p t t R t (p) = v p Φt(v)dF (1),t(v) 1 F (1),t (p) k t=0 q t(k) q t (k) := ( 1 F (1),t (R 1 t (k t )) ) t 1 τ=0 δ τ F (1),τ (R 1 τ (k τ )). 1 F (k) := lim T 1 F T (k) 1 F T (k) T t=1 q t(k) ( T t=0 q t(k)k t )/( T t=0 q t(k)) = k k(c) ω(k) G ω t (p) ω F 1 F (v u(v v)) lim 1 u 0 1 F (v u(v v)) = 1 ( ) β v v =: F (v), v v β v u(v v)

50 F v u(v v) v F a n > 0 b n n = 1, 2,... lim [F (a nx + b n )] n = F (x) n x F F n (max{x 1, X 2,..., X n } b n )/a n n F f(v) > 0 v (v, v) F

51 1 F (v u(v v)) lim 1 u 0 1 F (v u(v v)) = 1 ( ) β v v, v v β F v u(v v) v f(v) > 0 v (v, v) F F F [ ] d 1 F (v) lim = β, v v dv f(v) β F (v) = 1 ( 1 + ) 1/ξ ξ(v µ). σ

52 ξ < 0 v = µ v = µ σ/ξ β = 1/ξ ξ 0 µ lim ξ 0 F (v) = 1 e (v µ)/σ ξ > 0 σ = µξ F (v) = 1 (µ/v) 1/ξ ξ > 0 ( 1 ) 1 F (u + x) F 1 F (u) u(x) u 0, F u [(1 F (v))/f(v)] = ξ ξ < 0 f(v)/(1 F (v)) ξ < 1 Φ (v) > 0

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story... Dv G W C T Gp, A T Af Hk T 39 Sp. M Mx Hk p j p v, f M P v...(!) Af Hk T 39 Sp, B,,, UNMISSABLE! T - f 4 p v 150 f-p f x v. Bf, k 4 p v 150. H k f f x? D,,,, v? W k, pf p f p? W f f f? W k k p? T p xp

More information

to Highbury via Massey University, Constellation Station, Smales Farm Station, Akoranga Station and Northcote

to Highbury via Massey University, Constellation Station, Smales Farm Station, Akoranga Station and Northcote b v Nc, g, F, C Uv Hgb p (p 4030) F g (p 4063) F (p 3353) L D (p 3848) 6.00 6.0 6.2 6.20 6.30 6.45 6.50 6.30 6.40 6.42 6.50 7.00 7.5 7.20 7.00 7.0 7.2 7.20 7.30 7.45 7.50 7.30 7.40 7.42 7.50 8.00 8.5 8.20

More information

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction

Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction 許展銓 1 2 3 R 4 R 4 R n n 4 R 4 ξ : E π M 2n J : E E R J J(v) = v v E ξ ξ ξ R ξ : E π M M ξ : Ē π M ξ ξ R = ξ R i : E Ē i(cv) = ci(v) c C v E ξ : E π M n M c(ξ) = c i (ξ) H 2n (M, Z) i 0 c 0 (ξ) = 1 c i

More information

Help us transform the Central Suburbs bus network Tell us what you think

Help us transform the Central Suburbs bus network Tell us what you think Hv F p p 1 p 2 p 3 b pp cg p f vc pg 5 6 Cc f vc f pg 3 T v: Fp fbc f pg 8, fbc f AT.gv.z/NN c f AT.gv.z/NN? C v ( pg 4) c (09) 366 6400. Hp f C Sbb b T Fbc p f 1 Ocb 10 Dcb 2015 vg pbc p f Ac f fg Ac

More information

Spring Newsletter 2016

Spring Newsletter 2016 2016 S Nw R T L 10 f 2 I bv ff f. I kw w w v w w I w f. f 2 10 w w 10 f 2 w v 10 f 2 b I k. f w 10 x x 2 b w b f. S v: Hw f v b k I k v w f b w w? Hw w b b? H k f w w f k f? 16 b 20 S k w w v w v f f b

More information

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma

Chapter 5 A priori error estimates for nonconforming finite element approximations 5.1 Strang s first lemma Chapter 5 A priori error estimates for nonconforming finite element approximations 51 Strang s first lemma We consider the variational equation (51 a(u, v = l(v, v V H 1 (Ω, and assume that the conditions

More information

What areas are affected? Bucklands. Beach. Eastern. Beach. Half Moon Bay. Mellons. Bay. Howick. Highland. Cockle Bay. Park. Shelly. Botany Downs.

What areas are affected? Bucklands. Beach. Eastern. Beach. Half Moon Bay. Mellons. Bay. Howick. Highland. Cockle Bay. Park. Shelly. Botany Downs. ? F S cb c w v w b w. c b vc w b c. ffc? w f c b w? Y b vc c I c b w c vc f vw vw w fqc, w 1. v w 2, wc fw b fqc b cc j c. Y Nw b Nw b Nw b c P w S c P c w P S P b O O 2: w P 3: f b f c, cc wb f f w v

More information

Junior Soldiers Unit 13 : Lesson 1

Junior Soldiers Unit 13 : Lesson 1 J S U 1 : L 1 R Bb PURPOSE: T v c pp xp pc f Bb f fm B Pc. Ev bf m, G v c C b f. Ep 1: NLT) C Pp R: Ep 1:-10 NLT) 1 C 8:6 CEV) Ep :-5 CEV) T Bb c b cf m, pc fc m p f. T v c B Pc m f Bb. W vc f G W, p v

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n Z-V. XX,, D 141.. 13 ' ' b v k ; D... k x 1 1 7 v f b k f f ' b,, b J 7 11:30 D... D. b " vv f, bv." x v..., bk, b v ff., b b Jk,., f ' v v z. b f. f f b v 123. k,., - f x 123. ' b 140-41, f " f" b - 141-42

More information

Density estimators for the convolution of discrete and continuous random variables

Density estimators for the convolution of discrete and continuous random variables Density estimators for the convolution of discrete and continuous random variables Ursula U Müller Texas A&M University Anton Schick Binghamton University Wolfgang Wefelmeyer Universität zu Köln Abstract

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

EXHIBIT LIST. No Exhibit Name Page. 1 P412 Location Map.pdf (P412) 2. 2 P413 Construction.pdf (P413) 3. 3 P414 Operation.

EXHIBIT LIST. No Exhibit Name Page. 1 P412 Location Map.pdf (P412) 2. 2 P413 Construction.pdf (P413) 3. 3 P414 Operation. fc N: / : J c ub b : u -Ju-8 XII I g f N xb N g c ppf () ucpf () ppf () v g ppf () ggpf () - gg pf () 8 v_ppf (8) - 8 9 8pf (9) - // D I J w! Yx c w c f w Vcg f bu f ' K uc w g' K u g v p 8 9 w w V V p

More information

CATALOG. Children s Ministry International CMI. Celebrate the 500th Anniversary of. newly-revised and colorized HEROES of the REFORMATION REFORMATION

CATALOG. Children s Ministry International CMI. Celebrate the 500th Anniversary of. newly-revised and colorized HEROES of the REFORMATION REFORMATION g f M c b cc c k b 0 p () P & R pp p M M M 000 fg pg g cg b c b pp : b g (M ) 0000 00-0000 0-00000 00-00000% v 0000% P M p cg q cg PYM Y p b c ( p),, cck cc p 0 c v bjc f Fg c p p, cck v bk xcg cg RR pp

More information

Finite Elements for Elastic Shell Models in

Finite Elements for Elastic Shell Models in Elastic s in Advisor: Matthias Heinkenschloss Computational and Applied Mathematics Rice University 13 April 2007 Outline Elasticity in Differential Geometry of Shell Geometry and Equations The Plate Model

More information

26th Feb To 16th Apr 2017

26th Feb To 16th Apr 2017 ST EUPHRASIA SYRO-MALABAR PARISH ADELAIDE NORTH PARISH TEAM Rv F Bj J Cck [P P] M J & J M 26 Fb T 16 A 2017 B V1 I 1 S f L D 16 A 2017 W c c b f x f L f v, f g c g g g f [Kkk] j f f J P K MASS TIMES [Cc

More information

Level of Service Snow and Ice Control operations are intended to provide a reasonably safe traveling surface, not bare or dry pavement.

Level of Service Snow and Ice Control operations are intended to provide a reasonably safe traveling surface, not bare or dry pavement. C f v Sw Ic C P Ju 2017 Iuc I g f C f v v, ffc c-ffcv w c, w v c c ww C f v. T vc v f f bf f C ubc vg w c. T u f Sw Ic C P cb C w v g, g cu v f vc g. u w vb Og w, c / w v qu ff ff ub f c, wc, v w c, w

More information

arxiv:gr-qc/ v2 18 Feb 2004

arxiv:gr-qc/ v2 18 Feb 2004 5-Dimensional Kaluza-Klein Theory with a Source arxiv:gr-qc/0311015v2 18 Feb 2004 Yongge Ma 1 and Jun Wu 1,2 1 Department of Physics, Beijing Normal University, Beijing 100875, China 2 Department of Physics,

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

APPLICATIONS OF DIFFERENTIABILITY IN R n.

APPLICATIONS OF DIFFERENTIABILITY IN R n. APPLICATIONS OF DIFFERENTIABILITY IN R n. MATANIA BEN-ARTZI April 2015 Functions here are defined on a subset T R n and take values in R m, where m can be smaller, equal or greater than n. The (open) ball

More information

x 1 = x i1 x i2 y = x 1 β x K β K + ε, x i =

x 1 = x i1 x i2 y = x 1 β x K β K + ε, x i = x k T x k k = 1,, K T K X X 1 1 1 x 1 = 1 β 1 y T y 1 y T ε T T 1 x i1 x i2 y = x 1 β 1 + + x K β K + ε, x i = y T 1 = X T K β K 1 + ε T 1. x it T 1 y x 1 x K y = Xβ + ε X T K K E[ε i x j1, x j2,, x jk

More information

Singular Integrals. 1 Calderon-Zygmund decomposition

Singular Integrals. 1 Calderon-Zygmund decomposition Singular Integrals Analysis III Calderon-Zygmund decomposition Let f be an integrable function f dx 0, f = g + b with g Cα almost everywhere, with b

More information

Jyh-Jen Horng Shiau 1 and Lin-An Chen 1

Jyh-Jen Horng Shiau 1 and Lin-An Chen 1 Aust. N. Z. J. Stat. 45(3), 2003, 343 352 A MULTIVARIATE PARALLELOGRAM AND ITS APPLICATION TO MULTIVARIATE TRIMMED MEANS Jyh-Jen Horng Shiau 1 and Lin-An Chen 1 National Chiao Tung University Summary This

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

ers The Extraordinary Boogie and Swing Festival MUNICH GERMANY 9

ers The Extraordinary Boogie and Swing Festival MUNICH GERMANY 9 W!!! C, E p, C J 95 RT H v D L T BI 10 N P f B 70 5 z V D AY b T Ex B Fv 28.02. - 04.03. MUNICH 1 GERMANY 9 R O C KT H AT W I N G. C O M WING ENT F O LD DLY PRE R WO PROU 14 5 DAY HT G I N UIC M E LIV

More information

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality Math 67. umbos Fall 8 Solutions to eview Problems for Final Exam. In this problem, u and v denote vectors in n. (a) Use the triangle inequality to derive the inequality Solution: Write v u v u for all

More information

Errata Dynamic General Equilibrium Modelling, Springer: Berlin August 2015

Errata Dynamic General Equilibrium Modelling, Springer: Berlin August 2015 Errata Dynamic General Equilibrium Modelling, Springer: Berlin 2005 17 August 2015 Chapter 1.1 p. 9/10: Figure 1.1 was computed for the parameter values T = 59, α = 0.50, and ρ = 0.35 and not as stated

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable

ECE353: Probability and Random Processes. Lecture 7 -Continuous Random Variable ECE353: Probability and Random Processes Lecture 7 -Continuous Random Variable Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu Continuous

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

1. Tangent Vectors to R n ; Vector Fields and One Forms All the vector spaces in this note are all real vector spaces.

1. Tangent Vectors to R n ; Vector Fields and One Forms All the vector spaces in this note are all real vector spaces. 1. Tangent Vectors to R n ; Vector Fields and One Forms All the vector spaces in this note are all real vector spaces. The set of n-tuples of real numbers is denoted by R n. Suppose that a is a real number

More information

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Chapter 4 Replication Variance Estimation J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Jackknife Variance Estimation Create a new sample by deleting one observation n 1 n n ( x (k) x) 2 = x (k) = n

More information

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017.

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017. T c K Tb K p b b F H O N F H ff ff p V H G F Y 2 Rx G J J Kcbc T H F H p p p p H Hb Gc O R IOOO RTENT V Jc K Ox F Hb Ox F G x R b 6 1 R F R b c j p G E F 1 R p bb G H Gc Y Hb 2 F 3 4 b R K K V R H p Rbb

More information

Introduction to limits

Introduction to limits Introduction to limits 9 Secants and Tangents Let f be a function whose domain/codomain are intervals D and C. 9. Secant slope For r, s D, the secant line is the one through the graph points (r,f(r)),

More information

Strategies to Prevent Amplified Mold Growth in Schools. Glenn Neuschwender P.G., President Enviroscience Consultants, Inc.

Strategies to Prevent Amplified Mold Growth in Schools. Glenn Neuschwender P.G., President Enviroscience Consultants, Inc. Pv Ap M Gw G Nw PG, P Ev C, I!" Bk G U L H U & W Nw p A Iv T W T L Nw E W Lv z 30 F F M b b N (p:// p =BENB & x & _ 60 NJ, w k N O I T A 4 TEAM DUC D/E N COVE A B RING G IL pp WHER LON 241 2 E 8 C q Y

More information

Uniqueness of ground states for quasilinear elliptic equations in the exponential case

Uniqueness of ground states for quasilinear elliptic equations in the exponential case Uniqueness of ground states for quasilinear elliptic equations in the exponential case Patrizia Pucci & James Serrin We consider ground states of the quasilinear equation (.) div(a( Du )Du) + f(u) = 0

More information

Applied Stochastic Models (SS 09)

Applied Stochastic Models (SS 09) University of Karlsruhe Institute of Stochastics Prof Dr P R Parthasarathy Dipl-Math D Gentner Applied Stochastic Models (SS 9) Problem Set Problem Let X, X 2 U(θ /2, θ + /2) be independent Show that the

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

TOOLS FROM HARMONIC ANALYSIS

TOOLS FROM HARMONIC ANALYSIS TOOLS FROM HARMONIC ANALYSIS BRADLY STADIE Abstract. The Fourier transform can be thought of as a map that decomposes a function into oscillatory functions. In this paper, we will apply this decomposition

More information

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember W Gmm S kk f m T m m m T f m T I mmb N m p f p f f G L A f b k, b k v M k b p:, bb m, m f m, v. A b m, f mm mm f v b G p. S m m z pp pv pm f, k mk, f v M. I m, I m, fm k p x. S f 45 m m CMS, I p mf,. B

More information

FULL PRESCRIBING INFORMATION

FULL PRESCRIBING INFORMATION HIGHLIGHTS OF PRESCRIBING INFORMATION T gg f G f ffv S f pbg f f G G (p p j) INJECTION, GEL f INTRAMUSCULAR SUBCUTANEOUS I US Appv: 192 ---------------------------------------INDICATIONS AND USAGE ---------------------------------------

More information

Paul Schrimpf. October 17, UBC Economics 526. Implicit and inverse function theorems. Paul Schrimpf. Inverse functions. Contraction mappings

Paul Schrimpf. October 17, UBC Economics 526. Implicit and inverse function theorems. Paul Schrimpf. Inverse functions. Contraction mappings and and UBC Economics 526 October 17, 2011 and 1 2 3 4 and Section 1 and f : R n R m When can we solve f (x) = y for x? Use derivative and what we know about linear equations to get a local answer and

More information

Investing in Brownfields: The Economic Benefits of the Clean Ohio Revitalization Fund

Investing in Brownfields: The Economic Benefits of the Clean Ohio Revitalization Fund v Bwf: T E Bf f C O Rvz G O P C 2013 E v 21 S Pj 1!! 3 2 4! 5! 6 7! 8!! 9 10!! 11! 12 17! 18! 19 14 15! 16 13 20! 21! 1. N C Pk 2. Rvf 3. Tw 4. G Lk Tw 5. C C C/ H 6. Bk -U Rv Pj 7. S R S C 8. C Rv C 9.

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION JORGE GARCÍA-MELIÁN, JULIO D. ROSSI AND JOSÉ C. SABINA DE LIS Abstract. In this paper we study existence and multiplicity of

More information

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main FOUNDATION STUDIES EXAMINATIONS November 203 PHYSICS Semester Two February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 5 questions printed on 0 pages. PLEASE CHECK

More information

Notes for Programs. 2. calculate moments.m: Calculates key theoretical moments given a set of parameters.

Notes for Programs. 2. calculate moments.m: Calculates key theoretical moments given a set of parameters. Notes for Programs 1 Introduction This document describes the programs used in Emerging Market Business Cycles: The Cycle is the Trend. The Matlab programs described below include: 1. solve uhlig.m: Solves

More information

II. FOURIER TRANSFORM ON L 1 (R)

II. FOURIER TRANSFORM ON L 1 (R) II. FOURIER TRANSFORM ON L 1 (R) In this chapter we will discuss the Fourier transform of Lebesgue integrable functions defined on R. To fix the notation, we denote L 1 (R) = {f : R C f(t) dt < }. The

More information

Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids

Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids Wendy Kress and Jonas Nilsson Department of Scientific Computing Uppsala University Box S-75 4 Uppsala Sweden

More information

Isothermal parameters

Isothermal parameters MTH.B402; Sect. 3 (20180626) 26 Isothermal parameters A Review of Complex Analysis. Let C be the complex plane. A C 1 -function 7 f : C D z w = f(z) C defined on a domain D is said to be holomorphic if

More information

Construction of Permutation Mixture Experiment Designs. Ben Torsney and Yousif Jaha University of Glasgow

Construction of Permutation Mixture Experiment Designs. Ben Torsney and Yousif Jaha University of Glasgow Construction of Permutation Mixture Experiment Designs Ben Torsney and Yousif Jaha University of Glasgow bent@stats.gla.ac.uk yousif@stats.gla.ac.uk 1 Background Mixture Experiments Canonical Polynomials

More information

MEEN 618: ENERGY AND VARIATIONAL METHODS

MEEN 618: ENERGY AND VARIATIONAL METHODS JN Reddy - 1 MEEN 618: ENERGY AND VARIATIONAL METHODS WORK, ENERGY, AND VARIATIONAL CALCULUS Read: Chapter 4 CONTENTS Work done External and internal work done Strain energy and strain energy density Complementary

More information

Index Models for Sparsely Sampled Functional Data. Supplementary Material.

Index Models for Sparsely Sampled Functional Data. Supplementary Material. Index Models for Sparsely Sampled Functional Data. Supplementary Material. May 21, 2014 1 Proof of Theorem 2 We will follow the general argument in the proof of Theorem 3 in Li et al. 2010). Write d =

More information

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems

On Dominant Poles and Model Reduction of Second Order Time-Delay Systems On Dominant Poles and Model Reduction of Second Order Time-Delay Systems Maryam Saadvandi Joint work with: Prof. Karl Meerbergen and Dr. Elias Jarlebring Department of Computer Science, KULeuven ModRed

More information

Contraction Coefficients for Noisy Quantum Channels

Contraction Coefficients for Noisy Quantum Channels Contraction Coefficients for Noisy Quantum Channels Mary Beth Ruskai ruskai@member.ams.org joint work with F. Hiai Daejeon February, 2016 1 M. B. Ruskai Contraction of Quantum Channels Recall Relative

More information

Vector Algebra and Geometry. r = a + tb

Vector Algebra and Geometry. r = a + tb Vector Algebra and Geometry Differentiation of Vectors Vector - valued functions of a real variable We have met the equation of a straight line in the form r = a + tb r therefore varies with the real variables

More information

Lagrangian and Hamiltonian mechanics on Lie algebroids

Lagrangian and Hamiltonian mechanics on Lie algebroids Lagrangian and Hamiltonian mechanics on Lie algebroids Mechanics and Lie Algebroids Eduardo Martínez University of Zaragoza emf@unizar.es Lisbon, September 11 2007 Abstract I will review the most relevant

More information

Borel Summability in PDE initial value problems

Borel Summability in PDE initial value problems Borel Summability in PDE initial value problems Saleh Tanveer (Ohio State University) Collaborator Ovidiu Costin & Guo Luo Research supported in part by Institute for Math Sciences (IC), EPSRC & NSF. Main

More information

Mathematical and Information Technologies, MIT-2016 Mathematical modeling

Mathematical and Information Technologies, MIT-2016 Mathematical modeling 473 474 ρ u,t = p,x q,y, ρ v,t = q,x p,y, ω,t = 2 q + µ x,x + µ y,y, φ,t = ω, p,t = k u,x + v,y + β T,t, q,t = α v,x u,y 2 α ω + q/η, µ x,t = γ ω,x, µ y,t = γ ω,y, c T,t = 11 T,x + 12 T,y,x + 12 T,x +

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Theory of Cosmological Perturbations

Theory of Cosmological Perturbations Theory of Cosmological Perturbations Part III CMB anisotropy 1. Photon propagation equation Definitions Lorentz-invariant distribution function: fp µ, x µ ) Lorentz-invariant volume element on momentum

More information

e sinϑ dθ dt θ ˆ,!!!!!!!!!!!!(10.1)! dt! ˆk + x dt dt dt ˆk = ( u r , v r , w r )!!!!!!!!!!!!(10.5)!

e sinϑ dθ dt θ ˆ,!!!!!!!!!!!!(10.1)! dt! ˆk + x dt dt dt ˆk = ( u r , v r , w r )!!!!!!!!!!!!(10.5)! Chapter(10.((The(Effect(of(the(Earth s(rotation( Inthischapter,wewilldeveloptheequationofmotionandvorticity equationinarotatingframeofreference. 10.1.MotioninaRotatingFrameofReference Letusconsiderafixedvector

More information

sup F N (x) F(x) 0 almost surely as N

sup F N (x) F(x) 0 almost surely as N HOW EFFICIET ARE DECETRALIZED AUCTIO PLATFORMS? 1 Appendix A. OLIE SUPPLEMETAL MATERIALS FOR How Efficient are Decentralized Auction Platforms? by Aaron L. Bodoh-Creed, Jörn Boehnke, and Brent R. Hickman

More information

Physics Dec Time Independent Solutions of the Diffusion Equation

Physics Dec Time Independent Solutions of the Diffusion Equation Physics 301 10-Dec-2004 33-1 Time Independent Solutions of the Diffusion Equation In some cases we ll be interested in the time independent solution of the diffusion equation Why would be interested in

More information

SYLPH E D I T I O N S 2016

SYLPH E D I T I O N S 2016 SYLPH EDITIONS 2016 A WORD FROM THE PUBLISHER J k, z b bk: J Pk T P Hz, v z P b Hz b J Pk. I, bk z b v : b. Sbq b v v vv b v vb. W k b bk, bk b b. T bk b v bj : v T C S Rk v - bk. N b T M,, 29, T C S v.

More information

Theoretical Statistical Correlation for Biometric Identification Performance

Theoretical Statistical Correlation for Biometric Identification Performance Theoretical Statistical Correlation for Biometric Identification Performance Michael E. Schuckers schuckers@stlawu.edu Theoretical Statistical Correlation for Biometric Identification Performance p. 1/20

More information

The convergence limit of the temporal difference learning

The convergence limit of the temporal difference learning The convergence limit of the temporal difference learning Ryosuke Nomura the University of Tokyo September 3, 2013 1 Outline Reinforcement Learning Convergence limit Construction of the feature vector

More information

Sticky News. Also our Facebook page is now live.

Sticky News. Also our Facebook page is now live. Sk Nw k j v #07 WINTER 2011 Fm Ow C W! W w bk w v b v m m b k w v m m Y w m m w v v m! T P C Sm B, T C, Gvv H K R w b v M C S A Fbk w v YI v v w m bk m b m w A H O w bk w w v w m m b m v qk w I w k ABC

More information

Anisotropic elastoplasticity for cloth, knit and hair frictional contact supplementary technical document

Anisotropic elastoplasticity for cloth, knit and hair frictional contact supplementary technical document Anisotroic elastolasticity for cloth, knit and hair frictional contact sulementary technical document Chenfanfu Jiang, Theodore Gast, Joseh Teran 1 QR differentiation Here we discuss how to comute δq and

More information

t [0, ) N 2 S s > 0 R IR\0 h > 0 θ 0, 1 θ = 1 λ 1 > 0 θ = 0 λ 0 0 λ 0 < λ 1 θ t = 0,, 2,... > 0 S r 0 e r t s dt = (1 δ)s δ = e r r > 0 [ θ R ] E r 0 e r t h dn θ,t N θ,t λ θ N θ,t λ θ t 0 r e r t h λ

More information

Linearization. (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018

Linearization. (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018 Linearization (Lectures on Solution Methods for Economists V: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018 1 University of Pennsylvania 2 Boston College Basic RBC Benchmark

More information

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises Page Microelectronic Circuit esign Fourth Edition - Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V 5.V MSB.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or ) 5.V 3.95 V V

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

LAGRANGIAN AND MOVING MESH METHODS FOR THE CONVECTION DIFFUSION EQUATION

LAGRANGIAN AND MOVING MESH METHODS FOR THE CONVECTION DIFFUSION EQUATION LAGRANGIAN AND MOVING MESH METHODS FOR THE CONVECTION DIFFUSION EQUATION KONSTANTINOS CHRYSAFINOS AND NOEL J. WALKINGTON Abstract. We propose and analyze a semi Lagrangian method for the convection-diffusion

More information

(X i X) 2. n 1 X X. s X. s 2 F (n 1),(m 1)

(X i X) 2. n 1 X X. s X. s 2 F (n 1),(m 1) X X X 10 n 5 X n X N(µ X, σx ) n s X = (X i X). n 1 (n 1)s X σ X n = (X i X) σ X χ n 1. t t χ t (X µ X )/ σ X n s X σx = X µ X σ X n σx s X = X µ X n s X t n 1. F F χ F F n (X i X) /(n 1) m (Y i Y ) /(m

More information

Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n

Solution. (i) Find a minimal sufficient statistic for (θ, β) and give your justification. X i=1. By the factorization theorem, ( n Solution 1. Let (X 1,..., X n ) be a simple random sample from a distribution with probability density function given by f(x;, β) = 1 ( ) 1 β x β, 0 x, > 0, β < 1. β (i) Find a minimal sufficient statistic

More information

M e t ir c S p a c es

M e t ir c S p a c es A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q

More information

12. Structural Risk Minimization. ECE 830 & CS 761, Spring 2016

12. Structural Risk Minimization. ECE 830 & CS 761, Spring 2016 12. Structural Risk Minimization ECE 830 & CS 761, Spring 2016 1 / 23 General setup for statistical learning theory We observe training examples {x i, y i } n i=1 x i = features X y i = labels / responses

More information

FOUNDATION STUDIES EXAMINATIONS September 2009

FOUNDATION STUDIES EXAMINATIONS September 2009 1 FOUNDATION STUDIES EXAINATIONS September 2009 PHYSICS First Paper July Fast Track Time allowed 1.5 hour for writing 10 minutes for reading This paper consists of 4 questions printed on 7 pages. PLEASE

More information

Variational sampling approaches to word confusability

Variational sampling approaches to word confusability Variational sampling approaches to word confusability John R. Hershey, Peder A. Olsen and Ramesh A. Gopinath {jrhershe,pederao,rameshg}@us.ibm.com IBM, T. J. Watson Research Center Information Theory and

More information

THE MIDWAY & GAMES GRADE 4 SOCIAL STUDIES DEEP IN THE HEART OF TEXAS THE TEXAS STAR ILLUMINATED

THE MIDWAY & GAMES GRADE 4 SOCIAL STUDIES DEEP IN THE HEART OF TEXAS THE TEXAS STAR ILLUMINATED THE MIDWY & GMES GRDE 4 SOCI STUDIES DEEP IN THE HERT OF TEXS THE TEXS STR IUMINTED T Mw TECHER G F SOCIIES STUD Dp H f Tx T Tx S Im I w: z pc mb p f. Smmz f S. U v pm c c cq fm b Tx. C w f Tx S., c v

More information

Conditional Distributions

Conditional Distributions Conditional Distributions The goal is to provide a general definition of the conditional distribution of Y given X, when (X, Y ) are jointly distributed. Let F be a distribution function on R. Let G(,

More information

Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles

Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles Supplementary Appendix to A Bayesian DSGE Model of Stock Market Bubbles and Business Cycles Jianjun Miao, Pengfei Wang, and Zhiwei Xu May 9, 205 Department of Economics, Boston University, 270 Bay State

More information

Invariant Extended Kalman Filter: Theory and application to a velocity-aided estimation problem

Invariant Extended Kalman Filter: Theory and application to a velocity-aided estimation problem Invariant Extene Kalman Filter: Theory an application to a velocity-aie estimation problem S. Bonnabel (Mines ParisTech) Joint work with P. Martin (Mines ParisTech) E. Salaun (Georgia Institute of Technology)

More information

Mathematical Foundations: Intro

Mathematical Foundations: Intro Mathematical Foundations: Intro Graphics relies on 3 basic objects: 1. Scalars 2. Vectors 3. Points Mathematically defined in terms of spaces: 1. Vector space 2. Affine space 3. Euclidean space Math required:

More information

The Implications of Limited Asset Market Participation

The Implications of Limited Asset Market Participation Working Paper: WP 110 Inflation Targeting for India? The Implications of Limited Asset Market Participation Prepared by Tara Iyer JULY 2015 Inflation Targeting for India? The Implications of Limited Asset

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University A Framework for Interpolation Error Estimation of Affine Equivalent FEs 1 The

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis. Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi

High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis. Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi High-Dimensional AICs for Selection of Redundancy Models in Discriminant Analysis Tetsuro Sakurai, Takeshi Nakada and Yasunori Fujikoshi Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku,

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Dynamic Stochastic General Equilibrium Models

Dynamic Stochastic General Equilibrium Models Dynamic Stochastic General Equilibrium Models Dr. Andrea Beccarini M.Sc. Willi Mutschler Summer 2014 A. Beccarini () Advanced Macroeconomics DSGE Summer 2014 1 / 33 The log-linearization procedure: One

More information

A COORDINATE-FREE FOUNDATION FOR PROJECTIVE SPACES TREATING PROJECTIVE MAPS FROM A SUBSET OF A VECTOR SPACE INTO ANOTHER VECTOR SPACE

A COORDINATE-FREE FOUNDATION FOR PROJECTIVE SPACES TREATING PROJECTIVE MAPS FROM A SUBSET OF A VECTOR SPACE INTO ANOTHER VECTOR SPACE A COORDINATE-FREE FOUNDATION FOR PROJECTIVE SPACES TREATING PROJECTIVE MAPS FROM A SUBSET OF A VECTOR SPACE INTO ANOTHER VECTOR SPACE K. A. ARIYAWANSA, W. C. DAVIDON AND K. D. McKENNON Abstract In a related

More information

The Evolution of Outsourcing

The Evolution of Outsourcing Uvy f R I DCmm@URI S H Pj H Pm Uvy f R I 2009 T Ev f O M L. V Uvy f R I, V99@m.m Fw wk : ://mm../ P f B Cmm Rmm C V, M L., "T Ev f O" (2009). S H Pj. P 144. ://mm..//144://mm..//144 T A b y f f by H Pm

More information

AN UNFITTED METHOD FOR TWO-PHASE FLOW IN FRACTURED POROUS MEDIA

AN UNFITTED METHOD FOR TWO-PHASE FLOW IN FRACTURED POROUS MEDIA XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22,2012 AN UNFIED MEHOD FOR WO-PHASE FLOW IN FRACURED POROUS MEDIA A. Fumagalli and A. Scotti

More information

Exact controllability of the superlinear heat equation

Exact controllability of the superlinear heat equation Exact controllability of the superlinear heat equation Youjun Xu 1,2, Zhenhai Liu 1 1 School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410075, P R China

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

Coherent Quantum Noise Cancellation for Opto-mechanical Sensors

Coherent Quantum Noise Cancellation for Opto-mechanical Sensors Coherent Quantum Noise Cancellation for Opto-mechanical Sensors Mankei Tsang and Carlton M. Caves mankei@unm.edu Center for Quantum Information and Control, UNM Keck Foundation Center for Extreme Quantum

More information

Quantile prediction of a random eld extending the gaussian setting

Quantile prediction of a random eld extending the gaussian setting Quantile prediction of a random eld extending the gaussian setting 1 Joint work with : Véronique Maume-Deschamps 1 and Didier Rullière 2 1 Institut Camille Jordan Université Lyon 1 2 Laboratoire des Sciences

More information

Foothill Productions

Foothill Productions Mk Gm F P F P fm - m-m p mpy. F P pv p v : m p p f fm v v vpy ppy p m p b/mk vpm. T m f b : Pv y py jb mk w ppy vp pf -w mmy vb m p v p py m. Pv m w vp p f b. E fy y pf v m v pm. V Iy 12345 EL MONTE ROAD

More information