Help us transform the Central Suburbs bus network Tell us what you think

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Help us transform the Central Suburbs bus network Tell us what you think"

Transcription

1 Hv F p p 1 p 2 p 3 b pp cg p f vc pg 5 6 Cc f vc f pg 3 T v: Fp fbc f pg 8, fbc f AT.gv.z/NN c f AT.gv.z/NN? C v ( pg 4) c (09) Hp f C Sbb b T Fbc p f 1 Ocb 10 Dcb 2015 vg pbc p f Ac f fg Ac pbc p? N f f g b pbc p Ac. If Ac cp xpc g pp, pbc p bc p cc f Ac. T pv pbc p c cg ff f f c-pc, g pv p. B cg pv b v f vc, p pbc pv b cc pc Ac g. T pcp b N N T N N f cg b vc p. T pcp b f g fqc vc g g g cc. I b pcp g N Ac Ep c. 1 Dc vc p: fq vppg (Ac ) 2 Ccv p: F, fqc (Ac f) bf? SIPLICITY p pbc p cv p f g f cv, -ff p ALL DAY FEQUENCY f b g fq g vg p, b fq g, 7-7p, 7. T c b j p g, v. CONNECTIVITY cc pv f g cc v bf Acv A 1 Acv A 1 Acv A 2 Acv A 3 Acv A 2 Acv A 3 Ac c c vc f v v fqc, 1 f g. vg 2, c f b g fqc. T p c c cg f pp. C Sbb N N 1

2 f C Sbb? T N N pc c b vc C I L vc T C L I L p v f vc c. N C vc v c ccv - g f. C vc cc fq. B fg b b vc, c, c bb bb j c pb g g g c c. F xp, j f Og L cc C 4 g f C 6 c f G L. O, g f N L, f N L Ab f C 7 g Ab. Tvg c bc c f Spf Z F. T fg vc p v 15 : C 4 - pc pp p f c O L b Ab,, C C, N Ep, c g Og. C 6 - B c ccg P Cv, Uc, L, G, O, Kp G I. Sbb cg C 7 - Ab c ccg P Cv, Ab,, O, P Sv P. C 9 - Tv b N L Og v Bc B p, c Hbg. T fg vc p v 30 : C 5 - Ccg bb; Pb, G L, Kg, E, Ep, B. C 8 - C, ccg Og. C 9 - x f C 9, b Og Sv P. B f gb cc N gb v c vc C. I b f b g c fq pc E S. B vg f b c ff ff fq vc. c f Spf Z F, f f b z, p c f fg - ffcv f. F xp Kp 711 fg O g B. I C Sbb, I, c D, c v fq b p c vc c. I pp cc b, v cg. v gg f cg b. T p pg 5 6 pp f f C Sbb. Sppg N N Lg b, b c p vc b B g pp fq v f f pc p. T pg cpc, g b b p b c. Db c b p f c g fg bc vb. Ov b b. 40 f b Ov cg, xg b b 15. I p. Ag ffc g pg - b v f ffc g - pv b v b. A f ccg f cg I 2016 xpcg v Spf Z F cc f b z v g p f j. Y b cg f fg g j. F f v AT.gv.z/pfzf g b K f NE b cg b J v ffc! Kb P b vc A Kb P b g v P p Ac C Hp, Gf Bg S. N b f g f Kb P. b vc T b C 4 v v N P C. T vc c v g Kb P, p Ac C Hp S. O T H Og Og v vc C v O G, c vc E T. T b vc 296 f E Og g O T H &. Bc B, Lf, Hbg A Hbg vc c & b v g E S f g N. Lf c v vc C v D 60 vc 7 N L v Bc B p. b, J T b - fq b v 15 g. J v vc C g p v Kp. O fq vc. T Up b vc 712 cc O. Vc c vc C b v fq cc C 5 b O. E B T b - fq b v 15 f g f T Dv. K (Lg Dv) G v c vc & C g p. A c vc cc T Dv. A fq vc g T vp A 32 v Tp, ccg G I P. A vc 711 v 30 g Kp O. T vc Ac ppg b vc 297 f N. T cc f vc, b v f, b v f. g I f c vc C b b f b vc ccg E, P, P, Sv P O. F B c T b c vc c b qc f c C v Hp. I pv c vc ppg vg F B. T vc p pg 7. P Cv Bc P Cv Bc v vc C p p. T b - fq vc C 7 pp c cc P Cv p g C. C Sbb N N 2

3 Pp f C Sbb N N T f b gv g f p f fqc f vc pp, c f f. T cg f pbc fbc, cpv pc b pg. A f p pg 5 6. FIST BUS / LAST BUS FEQUENCY F b f c-b vc, b f c p G S f b 1 b f 1 A fqc g b 7 7p v P fqc g b g b 4p 6p vg Evg fqc g pp f 7p v, bf 7 OUTE DESCIPTION EVEY DAY EEKDAY SAT / SUN ADDITIONAL INFOATION A f p pg 5 6 FEQUENCY (INS) FEQUENCY (INS) F b / b P A Evg A Evg C L 6.30 / 11.30p I L 6.00 / 11.30p C 4 Ccg Og Ab v C 5.30 / 11.30p C 5 I bb - Q B v Kg, E, Ep, O 6.00 / 11.00p C 6 B C 6.00 / 11.00p C 6A Ex S Vg 9.00 / 4.00p C 7 Ab C 6.00 / 11.00p C 8 C 6.00 / 7.00p C 9 Og C 6.00 / 11.00p C 9A Ex Sv P 6.00 / 11.00p N L B v G N 5.30 / Q v N N 5.30 / (Cb f & b) T f b f b f T f b f b f P Q v N N 5.30 / b N L Q v N N 6.00 / Sg Q (cb f & b) 5.30 / N L Q v Sg 5.30 / b Bc B Q v Sg 6.00 / & D Q (cb f & ) 5.30 / p vc f Ab Bc B Q v D 5.30 / Lf Q v D 5.30 / E B (cb f & b) 5.30 / B v O E 6.00 / 11.00p b Hbg B v E 5.30 / G I g v P Eg, P, Sv P O 6.00 / 11.00p Hc B v P, E N 5.30 / 11.30p G I Q v 5.30 / 11.30p vc f / L g p G I B v H T D 5.30 / 11.30p vc p v & vc P Cv C Uv P 15 c B 6.00 / 11.30p F B p 6.00 / 11.00p Op p 138 H N L v P 6.00 / 6.00p vc F L b f b 7 Lf N L v Bc B 8.00 / 4.00p 60 vc 191 N L Bc B v P 6.00 / 10.00p F b f b N L B v Bc B 5.30 / 11.15p Tg B v Bc B N N P 30 E B v O G 5.30 / 11.30p Og E v 5.30 / 11.00p Ac N / 4.00p T vc. Op pg g/og Q v P 5.30 / 11.30p X g/og Q v P Exp P 30 N ppg b G C N, G Ac C Hp 5.30 / 7.00p O Sv P v P 5.30 / 11.30p B Og v Hgb, O N 6.00 / 6.30p Sv P E v P 6.00 / 10.00p Sv P cc 5.30 / 10.00p Op p P N v L 6.30 / 10.30p Ex Q p 3 B v P 6.30 / 10.30p Op p 712 Up O 6.30 / 9.00p L b 7p 711 Kp O 6.30 / 9.00p L b 7p 7 G, H, K T 6.30 / 11.00p Op b c 7 --T B P v G I P Eg 6.00 / 11.00p P G I v f 6.00 / 11.00p J B v C P 20 g & f 4 7p T B v Lg D T D P 20 g & f 3 7p G B v T D P 20 g & f 3 7p N N vc c. T A, H g 5.30 / S b f 3 C Sbb N N

4 Y Fbc C T N N b pcp f c f fq vc ccg c c f j b c f f vc. Y fbc c fc c g c b v g, f b f, fqc f, c f b p. H g? T f pp b : Fbc f c Bg b p f c b Igg Ac cc c fqc cg 11 f pp f N N b fbc N p? If v p v ffc cpg f b, c c (09) , Cc C ff c cp f bf. T vc vb Eg. T bc vb C, K ccb f b. Fg v f v, pp c c b b vb b. T Ac P g Pbc Tp P Ac Tp fg c C Lc B, b cp g Ifc g c Ac Tp p g xpc Sp If pp b ffc b cg, cg f b, p cg b fbc. v g f f vb, cg p f v, c fqc cp p. G AT.gv.z/NN Cg pp 2017 T f q f g pbc fbc, ppv f f N N b, cpv g pc f b p, f fc cg C T U C g pbc f v ppg. v. T ABUS c b b v. A f cpg b c p cg bg, b b vb f pg c p j. D T Ev A S 11 Ocb 8 12 Ac C (AI Nb C) 7 A Fg D, ff, f 14 Ocb 6p 8p P 6.15p g T Lc B Tp P G I C H, H, 96 L, G I S 17 Ocb p C F T Sq, G, Ac C (b B) T Ocb p A Sq Lc Tp Exp Q, Ac C T H T Ocb 6p 9.30p Og Ng Cp D, 151 A, Og T 29 Ocb 3p 6p N L Icg C-b pf S 31 Ocb 10 2p Sg Spg Fv N Sg C C, 20 Kc S 31 Ocb 9 8p Sv P If D Sv P, c f C T 5 Nvb p 1.30p 2.30 p H K B ABUS c b g F 6 Nvb p C C, 740 Sg, S 7 Nvb 10 12p b Sppg C 35 J, J 11 Nvb 3p 7p P N bg b S 21 Nvb p Bc B Lb Dp D 578 Bc B, Bc B S 28 Nvb p Ab-E C Fv c P, 3 N N, Ab L f ABUS -ff? T N N g pv v b q f b vc f Ac. v cc p f v, c cg c bg v c c. T pp pv C Sbb, v v b -ff. g f U N N j q f. Tf g b fqc pc pv cc f g cc f. If v vc f v v b b ff f fq g pv vc. Tfg b pp b pv fqc, b vc cpc, g cg fc Spf Z F c b p B p b f B g pp f b p. f cv b pp cg v pp gv fbc p p b p p ffc b p. V AT.gv.z/NN f f g gg vc. S f fc b pp v vc f c pg, c, cc fq vc g c qc. C Sbb N N 4

5 Q v N N Sg Q / Q v D T Kg B v E 32 g T C G I v O Sv P Hc B v P, E N G I Q v G I B v H T D N vc N B v N G N N S vc N Exp NX1, NX2 NX3 G vc p L S B B P pg 3 f b c vc. T c f c fqc. Nc Fq vc: Op c Ac. v 15 g (7-7p, 7 ), fq f. I c f p. v H B P p vc: Svc p g p p. G , 4p-6p. C 4 T B v Lg D T D G B v T D TIAL SEVICES 297 N Ac D g 7 D D J T Cb C K H P c c B O B D T K g H Ab Lf B C A A v V Ex g S Q A v g Sg E cp A b g A v A Gf C b T S F A v N g Lf Sppg C 7 Bc B G B A q B A v A v A L S T g C 9 H D T g J B v Kp O G B Ex G B P Q (p x) v L, N G g Gf C Tg f C g T C Q v Fv, g Bg, Q P ( p G C N) C g Bc B L C 7 C 9 D H X K B g Tg B v N N Bc B Tg Gf C b Dv B D b H P Cv Ac Uv v Jv A f G Lf Cg C Sg D PEAK PEIOD SEVICES N, p f G Gf Bc B g T cc ccg G I, H, K G B B O 7 N L C 9 7 S V V L D O - Up cc T E P S b S c H b v N N Sg O Kg c A C 712 O v A B P O g C S N C G C 5 C 6 Ab Tv T Ac Hp B v, P P 711 N L Pg 3 P N v L c V B Og v Hgb, O N 351 Fv b N 191 Og E L C N N L Bc B v P Bc B Lfi N L v Bc B 191 N G Bc B 7 H N L v P B F B p. S pg cc b 138 A H Ab N S A 191 C 6 x S Vg b F P Ab G Ab g LOCAL SEVICES C 6 P C P G I v L fi v Ab g N N c 7 G N --T B P v G I Gg 7 Cg I Sv P Cc P g 5 N B C 4 Sv P E v g O Sv P v P 521 v P g 323 G L B v O, E Hp Uc c G L P S C L g T C Q v Og, P, N Gf b OTAT AIS H g C 5 G N C 4 C 6 C 7 F p E B v Og, O G Spg N Svc p f c. f AT.gv.z/ f f N L B v G B Bc B Pb S B B v c O Cg g H L Spg N Spg P Cv I L C 5 c G L L N T Cg Hbg B v Hbg E P Cv b v A v C B v O E S Vg Ac Z Spg Cg P C 6 v A Lfi Q v D D C OTAT Bc B Q v D g T Cx B P v A Bc B Q v Sg C 7 p b f v N L Q v Sg v N L Q v N N P C b B P Q v N N E B c B Og Sv P Cx B G C 9 B b P C - Og v Jv C 8 C Lc vc: Fqc f v. K I bb - Q B v Kg, E, Ep, O Svc N S p f c Hb Cc vc: v 30 g (7-7p, 7 ), fq f. CONNECTO SEVICES C 5 Ac Hb Bg F Hb, Bc Hv Hbv Hp b N L B v G N D Og C N L Sv P C 9 T b f c pp b fi b. B p c b v N v C Sbb? G v N N f Ac. P Ab C P Cv G I C 7 A c b vc b pc b N N. Sc b F B C P Cv G I b Og Ab v, P, C C H B C 6 S B c C 4 C Sbb N N I p v P, N, Kgp, Pb Vc P Q Kgp v Q ( C C p) I L C L FEQUENT SEVICES H

6 p Ab Exp vc p f c. c N N fi. A v b c xcp c. Ngg B B KEY SYBOLS cc p Nc P C Bc P F Nc, B, Hb, Bc Hv Hbv L (Pg Svc) Hb N H B T F T Svc c F B Dvp F B Dvp C F E Tp C Jc c H C v D T g H A J C g N L S D f P g D c p P Kg Cg g P Pg Pz Pg T Eg Cg J cl D v H B g P D P g C 323 P f E Hg b 351 D b O P P Hg ca Hg D O b E D K S c P Pc E K v A A 323 S P 32 c T v G B g c A S F B b Ac L Lc O Vc p g P P g P g H b S c K A O Vc A v P Vc Cb C pb T H A Dv P T P E T T C Sv G K Pg Bg Sv P Sppg C g Q P A v E A B c P --T B S P Bg Sv P v 7 f E c p f vc f P C 9 S O p D p S c E G S K E K g 32 S Svc p f c. f AT.gv.z/ f f P B N 32 C Q P Eg Lg g I v A E T T g C H b T T Cg Sc H Cg T 7 C G G P C f Ab G I T P Cc P H B gd S G g Bg p VN g D X c C C Y Ab g P P A P Hb A v Hg Og f Hbg B E p B c P E g g D C Bv C N Ap B Cc T Ppp Pc Og A S E Og O S T Ac Uv T Cp 7 P Vc T Ppp L P S 7 G Cg G I T C f 7 Ep K B g P P Hg C 7 P Cc b C g P E L 7 Tp P f E S g C P B C H G I g F T L P D Ng 521 C 9 X Gf C S 296 A Up Og Cg D H T J J J Tgc b Sppg C 7 L D N Abb O T H Cg cf B S G gd v E v A g O N S c f G O T H g 7 H V H Kp v A Up E cc C 7 A B c cf A v H T Og Sppg C 3 H p Ac Hp g C 8 C 6 b C Sc G H 296 b p C Tf g bg G L E L S Cg K P C 712 S S O c F G C 6 S S G Og D Eg K b O B B C P Og Og Hg Obv O Hg g O T H F g b C 9 X S G Cc C c Cg C Ac Sg C 4 X H B Cg C 6 Cb Cg A O f Ax P 3 G D Sc Ep S C 5 Hb Ep T Kg Pz B B Kp Kp B P Kp Dc Sc UOA Cg f Ec B C Hb B S Ep Ng I E 711 S D T D O 5 c Ac Hp Ep G T Kg E D O D O H B K Bc D C 5 Ngp p N N P B D T O K b P Cg Ac G E D Gf V 297 J Svg P K T C 5 N E V Gf T O B D Cb P p B g Ac Ac P P I L L C 4 C p g N P Ac D T P G 3 G Vc V V c A A A S C C p pg 7 f 06 H g c c B Q L C B F F, Hf B, Gf Hb & P Hb B B S C 5 C L C Sbb N N 6

7 B D H G Pc B N N C C Tp F T C L (CL) v f vp f Ac pbc p. Ebg f CL g 2015 c gfc b f T q j cg b g, b p c c, p N N. Cc f 3.4 c c, cp, b cpc f B, c c c v f c c 10- f. T f B T L Q Ab f c c--cv g. If b cg c b p b, b b p pp g. C C F B N T p b xpc c c 2017/. T cc cg, p p b p c b vp p N N. I c, f N N b c p f CL bg. I c, p b p b ff f f N N c. F xp, b b v f cc z f Ab c pc f cc cv. I, pbc p fc Q v bg vg. Sg p N N f p C C F B N p f f f f f C I g B c v Sc F A C L C 5 Ag Pc B Pb F B P C Vc P F B Np T D P Hpb Jc U g C 5 Hpb Sx F B P Vc Ev C Q C f b Q vg F C 4 D Bf T S I L NX3 Sc cev Vc P K Bb S P Hp P ppx 5-7 H Vc Hb H Ac G G B G N Hf N C L I L NX1 Nx P Hg G C 4 NX2 X Hp Bg Vg NZ H SC Cv C S T F - ---C E F V g E A C c L Kv Ac N K p E Tc C C Cvc T C A Sq P T H C C Dc P E Upp Q Ex Bc C C Lb Ax Ev T G D Hg L Cc Cc S A C Lvp F Kc F T Cc f G C C E Vc N N I L NX3 N X C N D Hb Vc P N NX1 F Kgp I ck D Ab D G Ab Ab B Q Upp Q Vc E Q N D S N N E Q C L Kc B Ab P Ac A G P E B P E Pc S Gf Bg Bg B S T Uv f Ac Ng T g E C Q Af S X Gf P C G Kb P Azc Ac Uv f Tcg Lg Q B fc vg 3 Sf V Gf Gf Gf C I L T Uv f Ac p C Hp Ac C Hp P P C T T C A T T v T Uv f Ac Gf Cp Pf Tc Bc Ac D H Q Vc A P Ac G T C 4 Gf KEY SYBOLS cc p L (Pg Svc) F T Svc c I L NX3 X P H p 1. G p pg 5 6. F b c b. F xp 2. T c c b p f g p. 3. T b v cc ccg p. Exp: E c. T j E, g S, C B. N: Svc f Q v b b Vc. C f b Q vg Lg N c vgg g, pbc p. I v, c pp, f f p b. T N N c bg c b pc f g. N c v b b g vg g. cg g p f gg N N. A f pp pg p f g vv p gg pc. v g f AT.gv.z/NN 7 C Sbb N N

8 C Sbb Fbc If pb, p pv fbc v fbc f AT.gv.z/NN v pc p b b c c. Hv, f pb p f fbc f bc b 10 Dcb Fbc Tp P b pcfc fbc c. F xp, Q 2: N c D cg b. Q 1 D c pbc p? Y N ( fbc b) C I v ABC v G I v f. I b b 8. T pp 123 c pc c bc b v f g. F xp, Q 3: I pp C g S vc v 15 S. Pvg f /b p c p b cg c ffc / b p c C cg Q 2 f? c cg b N N b v? Q 6 G, f? (P c bx) U c b p U c (pcf ) T b f (pcf ) Dv v b p (pcf c) Cc b p (pcf) O (pcf c) Q 7 v b pbc p, f? (P c bx pp ) F D 1-4 Bf p 3p - 7p 7p - 9p Af 9p 1-3 L c Ev 2-3 Oc L c S Bf 9 9-7p Af 7p S Bf 9 9-7p Af 7p Q 3 b N N? P, cg vc bc f pp. P If Pvg p p. B pvg c cc q b b. Y c g p f p. PIVACY: Ac Tp c pcg c p f. P pvc pc p://.gv.z/b-/b--/pvc-pc/ f f f. N c g bg bf f (f )? Q 4 H f b c f fg? If ffc, p c D ffc. (P c) D ffc g pp Spp N Opp g pp E P c f c p N N Ag: Cc b c F b, pg g fqc g cg b b v Ov x pp pp C Sbb N N? Pf G: F Pf Q 5 H f b c f fg? (P c ppp bx) Ag N Dg A : Ep Sc T T N N pv pbc p f N g O T N N pv pbc p f gb T N N pv pbc p f Ac C Sbb N N 8

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood.

THE ROOST. Thanks, Brad. Sad faced hurdy-gurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood. THE ROOST H f Bg, vy, b kw w--y f b cc. Hwv b cgz, g g, f y f p, w kw cy. W p cfy w pc bg pb cp w Uvy f Lg. H y w f c c f f Lg' b Fcp p (W pb pc fg F p 2007 fw cp vb f $6.50) Sc bg pb Lg I g I g c p I

More information

ARE YOU PREPARED FOR A TSUNAMI?

ARE YOU PREPARED FOR A TSUNAMI? Eq g g? g! b, gb bg K f g pc T c fc E YOU EE FO TUNI? Y pp c b ffc f Kāp I b f p : g g f p f gg b pp f gc g f g f g p p Kāp c c - Y f j 8000 pp Kāp c z. If q pp c Kāp, c. I p p g b f f g g f c qc c f g.

More information

elegant Pavilions Rediscover The Perfect Destination

elegant Pavilions Rediscover The Perfect Destination Pv Rv T Pf D W... T O Lv! Rv p f f v. T f p, f f, j f f, bw f p f f w-v. T f bk pv. Pv w b f v, pv f. W, w w, w f, pp w w pv. W pp v w v. Tk f w v k w w j x v f. W v p f b f v j. S f f... Tk Y! 2 3 p Pv

More information

of & includ al ethics,

of & includ al ethics, TIC JUS S ER M T S N S I O I P N I M A H C f & E d W v O f J C? p w f j f gy v p w ; d f bd b y d gv v S j b g v. Ud y bg b w d w f B dy p g W v p w - f f d w y H H p p d vy df ff. d v p gv g f v bg f

More information

tec EXPO November 15 & 16, 2017 Miami Airport Convention Center

tec EXPO November 15 & 16, 2017 Miami Airport Convention Center g XHIBIT / SONSOR ROSCTUS c XO Nv 5 & 6, 207 M Cv C wcg Tcg & c f GRICULTURL GRN OUTDOORS Svg LL f c! 40 c f wwwgtxc @GTxc (305) 42-7945 DID YOU KNOW L gc c & C c, v g (S 24 c: I % - % f y c f v w D 3%

More information

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs N-B Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, A-y 05, S 980-8579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I - h w f h, ch vx w ch w hz vc. A h hv - h w f f h - h w.

More information

Creating New Objects

Creating New Objects Wk Obj 1 C bj 2 A vb bj 3 bj C M & I I B & M 4 Cv bj v - 5 M b bj 6 A vv Jv b C N Obj A Jv C bj: bj k H bj : R R Rk V Rk Jv k bj 1 I v bj 2 I bj b C Vb bj Jv vb v 1 A vb v v 2 A vb Obj bj I R bj bj H x

More information

You don t need a better car, you need to learn how to drive

You don t need a better car, you need to learn how to drive O h Imp f Cyb-Df L Am Y d d b, y d hw dv E Lv, F Hm, Phpp Lwk m AG 2017 m.m Wh w? m AG 2017 Pg 3 Y d d b, y d hw dv Wh h k b Wh w dd Wh w h p Wh h k NOT b C p-by-p hw fx hg Cd Vd bhg A mk

More information

W/tli Chrisunas and New Year f u r ^ u e h period f o r b a s e p e r s o n n e l

W/tli Chrisunas and New Year f u r ^ u e h period f o r b a s e p e r s o n n e l Hy C H R Fg Ex R V POI NT W/ C N Y p b p L v b x DM A R I N E C O R P S 9 J y 6 Iv g T p H q v - j g g v g p- v b p b y v p b D b 2 25 D b 28 J y 2 M6 Cg g v g by p v v b p T v C J R v g v v by b x v b

More information

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites -Bd D f Hghy p Q,*, ug, Ch Rz d Jy u Cg f u gg, g Uvy f u d u, Ch :6--987, -:.q@ud.uw.du. h f uvyg d p If y, Uvy f w uh W, u : h Hghy p H ufu f y/yhu f h dgd hv w ud pg h d hgh ud pg h f f h f. Du h g

More information

For example, to get ~, type Option-Shift-0 for Mac and Alt- Shift-0 for Windows. H J K. m M. n N. (Alt) thinspace 255

For example, to get ~, type Option-Shift-0 for Mac and Alt- Shift-0 for Windows. H J K. m M. n N. (Alt) thinspace 255 Ä ê + $ & Å ö Ç ò Ü ; ^ ^ + c X x 22 12 2 H 2 2 2 ( n) 21 2 (n) cc cc n pn n n p cc cc n pn n n n p (c) cc cc n pn pn n pn n p cc cc n p pn n pn n n p xmp p pn f c n f n Unmf K I Kb ) 1 1 12 pn (c) (n)

More information

* Project Cost is for Total Project 468,376

* Project Cost is for Total Project 468,376 I #7 i- Ub pi Pig Ogizi Fic i pi Tpi P - Hig Pjc Li - pjc v ci f TIP c f Pjc ig Exiig Pp gi Pjc F p I TIP Pjc Pjc cipi Pjc - - igifi- * Fci b b Lii g ci ci cc T FF - -T U- c v 3 i L Kig, J iv i- L Fcii

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

SPACE TYPES & REQUIREMENTS

SPACE TYPES & REQUIREMENTS SPACE TYPES & REQUIREENTS 2 Fby 2012 Gys Sh Typ: K E H 1 2 3 5 6 7 8 9 10 11 12 Ajy D (Hh Sh) F A Dsps Th fs f phys hs vv sps f h hhy fsy f vs. Phys s hf w fss wss hh vy hy-bs s f hhy fsy hs. Gy sps sh

More information

Raman Amplifier Simulations with Bursty Traffic

Raman Amplifier Simulations with Bursty Traffic R S h y Tc h N., k F, Jy K. c D Ecc E C Scc Uy ch b 3, Oc b, ch 489 X Cc, c. 5 W. hy D, S, Tx 753 Th h h bh R h bjc by c. y c c h h z c c c. Sch by c h -k c cy b. cc c, h c -- h h ych c k SONET), hch c

More information

Characteristic Numbers of Matrix Lie Algebras

Characteristic Numbers of Matrix Lie Algebras Commun. Theor. Phys. (Beijing China) 49 (8) pp. 845 85 c Chinese Physical Society Vol. 49 No. 4 April 15 8 Characteristic Numbers of Matrix Lie Algebras ZHANG Yu-Feng 1 and FAN En-Gui 1 Mathematical School

More information

Gearhead variations M = Motor attachment gearhead S = Separate version. Reduced specification available on request. Gearhead variations.

Gearhead variations M = Motor attachment gearhead S = Separate version. Reduced specification available on request. Gearhead variations. Order information TP + 004 TP + 4000 SP + 060 SP + 240 Type code S = Standard A = Optimized mass moment of inertia b) E = Version in ATEX b) F = Food-grade lubrication b) G = Grease b) L = Low friction

More information

A B CDE F B FD D A C AF DC A F

A B CDE F B FD D A C AF DC A F International Journal of Arts & Sciences, CD-ROM. ISSN: 1944-6934 :: 4(20):121 131 (2011) Copyright c 2011 by InternationalJournal.org A B CDE F B FD D A C A BC D EF C CE C A D ABC DEF B B C A E E C A

More information

Students Elect New Queen; Court Reigns Campus Night. Outing Club Plans Climb. Voting for Campus Queen took. JLper peristyle, but a s U. of Conn.

Students Elect New Queen; Court Reigns Campus Night. Outing Club Plans Climb. Voting for Campus Queen took. JLper peristyle, but a s U. of Conn. GE 8 WC j j g E D g W C g R 08 WC E x g g N g W C C C g x E COLLEGE NEW RDY NOVEBER 3 96 U + K D C 62 X Og g 8-0 B Z D E 62 K B g g D W 62 K B g C E B 62 3-5 E N Q C Rg C Ng Og C C Vg C Q L] - = * L U

More information

ALGEBRA HW 10 CLAY SHONKWILER. Proof. Suppose that these three functions are not linearly independent. Then there exist a, b R such that

ALGEBRA HW 10 CLAY SHONKWILER. Proof. Suppose that these three functions are not linearly independent. Then there exist a, b R such that ALGEBRA HW 10 CLAY SHONKWILER 1 (a): If A is a square matrix satisfying A 3 A 2 + A I = 0, find A 1 in terms of A. Answer: If A 3 A 2 + A I = 0, then (A 2 A + I)A = A 3 A 2 + A = I = A 3 A 2 + A = A(A

More information

INTELLIGENT ROBOT USED IN THE FIELD OF PRACTICAL APPLICATION OF ARTIFICIAL NEURAL NETWORK & MACHINE VISION

INTELLIGENT ROBOT USED IN THE FIELD OF PRACTICAL APPLICATION OF ARTIFICIAL NEURAL NETWORK & MACHINE VISION T m3 D T g jmpg: www. g.m/ j NTEGENT OBOT UED N THE FED OF CTC CTON OF TFC NEU NETWO & MCHNE VON M. M d* Dpm M Egg..Cg Egg d Tgy C D 64 Tm Nd d E-M dd: pmmpd@gm.m T. V m Dpm M Egg..Cg Egg d Tgy C D 64

More information

PAIR OF LINES-SECOND DEGREE GENERAL EQUATION THEOREM If the equation then i) S ax + hxy + by + gx + fy + c represents a pair of straight lines abc + fgh af bg ch and (ii) h ab, g ac, f bc Proof: Let the

More information

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0 Q.No. The bisector of the acute angle between the lines x - 4y + 7 = 0 and x + 5y - = 0, is: Option x + y - 9 = 0 Option x + 77y - 0 = 0 Option x - y + 9 = 0 Correct Answer L : x - 4y + 7 = 0 L :-x- 5y

More information

Geometry 3 SIMILARITY & CONGRUENCY Congruency: When two figures have same shape and size, then they are said to be congruent figure. The phenomena between these two figures is said to be congruency. CONDITIONS

More information

Canadian Math 8 10 (CM2) Correlation for the Western Canada Common Curriculum Framework

Canadian Math 8 10 (CM2) Correlation for the Western Canada Common Curriculum Framework Canadian Math 8 10 (CM2) Correlation for the Western Canada Common Curriculum Framework Grade 7 Objectives 7.N.7 Recognize and illustrate that all fractions and mixed numbers can be represented in decimal

More information

y mx 25m 25 4 circle. Then the perpendicular distance of tangent from the centre (0, 0) is the radius. Since tangent

y mx 25m 25 4 circle. Then the perpendicular distance of tangent from the centre (0, 0) is the radius. Since tangent Mathematics. The sides AB, BC and CA of ABC have, 4 and 5 interior points respectively on them as shown in the figure. The number of triangles that can be formed using these interior points is () 80 ()

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

CHAPTER X. SIMULTANEOUS EQUATIONS.

CHAPTER X. SIMULTANEOUS EQUATIONS. CHAPTER X. SIMULTANEOUS EQUATIONS. 140. A SINGLE equation which contains two or more unknown quantities can be satisfied by an indefinite number of values of the unknown quantities. For we can give any

More information

Das Klassik & Jazz Magazin. Mediapack 2018

Das Klassik & Jazz Magazin. Mediapack 2018 Ds Kssk & Jzz Mgz Mdpck 2018 Ds Kssk & Jzz Mgz t gc TOPICS RONDO s d by 100% fcds f cssc musc Sc 1992 RONDO s dpy tgtd cutu f RONDO chs th w-fudd tgt udc f cssc musc: gu vsts f ccts d ps, stdy buys f cssc

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

ieski. a n d H. A. Lange.

ieski. a n d H. A. Lange. G 34 D 0 D 90 : 5S D Vz S D NEWS W Vz z F D < - ;»( S S C S W C - z z! L D F F V Q4 R U O G P O N G-34 q O G

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

Chem 112 Exam , Av = 45.2, Med = 45, s = 17.1

Chem 112 Exam , Av = 45.2, Med = 45, s = 17.1 0 3 6 9 5 8 4 7 30 33 36 39 4 45 48 5 54 57 60 63 66 69 7 75 78 8 84 87 90 93 96 99 hem xam 3 07, Av = 45., Med = 45, s = 7. 0 8 6 4 0 DO NOT OPN THIS XAM UNTIL YOU AR INSTRUTD TO DO SO Please print your

More information

The Unofficial On-line Coaches Training

The Unofficial On-line Coaches Training O C c T g T Uffc O- Cc Tg by T.Pk (VT), J. O (NY), & S. Rgg (TX) Qu: v@ccv.c Cpyg V Cvy Qu, Ic. 2010 B f W G S d BEFORE WE GET STARTED T cc g dd b ud bf duc Odyy f Md Cv Pb- Svg pg. I ffc dcu. T BEST uc

More information

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers

Wojciech Roseker. LCLS Workshop: Application of Coherent X-rays at the LCLS Split and Delay Unit for XPCS at Free Electron Lasers Spl d Dly U f XPCS F El L Wjh Rk LCLS Wkhp: Appl f Ch X-y h LCLS 70008 70008 Spl d Dly U f XPCS F El L Pg Spl pul XPCS Cp f h dly u Expl up Pf f h dly u Clu Oulk 70008 Spl d Dly U f XPCS F El L Pg Spl

More information

No PROJECT GAMES. By Arantza Estévez- Fernández, Peter Borm, Herbert Hamers. July 2005 ISSN

No PROJECT GAMES. By Arantza Estévez- Fernández, Peter Borm, Herbert Hamers. July 2005 ISSN No. 2005 91 PROJECT GAMES By Arantza Estévez- Fernández, Peter Borm, Herbert Hamers July 2005 ISSN 0924-7815 Project games Arantza Estévez-Fernández Peter Borm Herbert Hamers CentER and Department of Econometrics

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

II No. 17. Smith a n d Corp. C a r c e l l a Genlot.

II No. 17. Smith a n d Corp. C a r c e l l a Genlot. C -H R R v O N T ^VAR^E C O R S AR STATON ~Cv-AS - >; ^S; >J VOL N 7 M 9 96 x O H B Rv H T A B D H F F v C v H G x O F Y R C! R C Sv S N Dv F F LEST WE FOBGET! N M RTj 7 ^» 97 R R Rv «T M W T ' j x T M

More information

ABLE OF CONENS E xuv I I I uy Bkgu 9 Objv III Mgy 3 Suy g u u uy 3 2 uvy Dv 3 3 Sg U S z 2 3 Pu 2 3 O gz 3 3 F g D y 3 8 E v IV Ru C u v y G C u

ABLE OF CONENS E xuv I I I uy Bkgu 9 Objv III Mgy 3 Suy g u u uy 3 2 uvy Dv 3 3 Sg U S z 2 3 Pu 2 3 O gz 3 3 F g D y 3 8 E v IV Ru C u v y G C u WORLD VISION PACIFIC IMOR-L ESE B ASELINE SURVEY RESULS M AKIRA MAERNAL CHILD HEALH A ND NURIION PROJEC D Ru S, H Mg WVPDG Juy 202 ABLE OF CONENS E xuv I I I uy Bkgu 9 Objv III Mgy 3 Suy g u u uy 3 2 uvy

More information

The uvw method - Tejs. The uvw method. by Mathias Bæk Tejs Knudsen

The uvw method - Tejs. The uvw method. by Mathias Bæk Tejs Knudsen The uvw method - Tejs The uvw method by Mathias Bæk Tejs Knudsen The uvw method - Tejs BASIC CONCEPTS Basic Concepts The basic concept of the method is this: With an inequality in the numbers a, b, c R,

More information

CAPACITY ESTIMATES AND GENERAL ARRANGEMENT

CAPACITY ESTIMATES AND GENERAL ARRANGEMENT CAPACITY ESTIMATES AND GENERAL ARRANGEMENT This will verify that sufficient space is available for the amount of cargo to be carried. For capacity ships, it is a primary factor and may be a starting point

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Components. Spanish Treasure Galleon

Components. Spanish Treasure Galleon G Iuc h G xp mu b xp, g u pck ch h mu u hk w hc u gm h mu umb cu ppxm p m cmpx O, G m Mch & Mu wh m wh h b gm Hw U h Exp h w Cp, Rum, M E c g wh h b gm whu g w u Hw, m mu h w u mmb uc h u gm gu h w u g

More information

Sensible Heat and Enthalpy Calculations

Sensible Heat and Enthalpy Calculations Sensible Heat and Enthalpy Calculations Sensible Heat - The amount of heat that must be added when a substance undergoes a change in temperature from 298 K to an elevated temperature without a change in

More information

Gaylord, Michigan, Thursday, May 17, 1945

Gaylord, Michigan, Thursday, May 17, 1945 » BCMV J &KJ V 70 N 0 B Q f $6 B U CCN K V F M M M J MCK %&«~ f - M K M B C M M B B f q z f q b f 7 b z f j f f C Nb f b f f M M J M f f B C f b J V f B C b b M M - q B M M M M ff b ; b b b b j f b b M

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Hanoi Open Mathematical Competition 2017

Hanoi Open Mathematical Competition 2017 Hanoi Open Mathematical Competition 2017 Junior Section Saturday, 4 March 2017 08h30-11h30 Important: Answer to all 15 questions. Write your answers on the answer sheets provided. For the multiple choice

More information

2.25 Advanced Fluid Mechanics

2.25 Advanced Fluid Mechanics MIT Department of Mechanical Engineering.5 Advanced Fluid Mechanics Problem 6.0a This problem is from Advanced Fluid Mechanics Problems by A.H. Shapiro and A.A. Sonin Consider a steady, fully developed

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

Math 702 Problem Set 10 Solutions

Math 702 Problem Set 10 Solutions Math 70 Problem Set 0 Solutions Unless otherwise stated, X is a complex Hilbert space with the inner product h; i the induced norm k k. The null-space range of a linear map T W X! X are denoted by N.T

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata nd Ed. (0/9/07) Page Errata of CMOS Analog Circuit Design nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 8 Line 4 after figure 3.3, CISW CJSW 0 Line from bottom: F F 5 Replace

More information

SEKOLAH MENENGAH ZON A KUCHING LEMBAGA PEPERIKSAAN PEPERIKSAAN PERCUBAAN SPM 2008

SEKOLAH MENENGAH ZON A KUCHING LEMBAGA PEPERIKSAAN PEPERIKSAAN PERCUBAAN SPM 2008 SULIT 47/ Matematik Tambahan Kertas Sept 008 Jam Name :.. Form :.. SEKOLAH MENENGAH ZON A KUCHING LEMBAGA PEPERIKSAAN PEPERIKSAAN PERCUBAAN SPM 008 MATEMATIK TAMBAHAN Kertas Dua jam JANGAN BUKA KERTAS

More information

LM101A. Middle Power LED Series Flip Chip Package. LM101A opens up a new world of lighting design with its high output and small form factors

LM101A. Middle Power LED Series Flip Chip Package. LM101A opens up a new world of lighting design with its high output and small form factors Product Family Data Sheet Rev. 2.2 2016.5.24 1# Middle Power LED Series Flip Chip Package LM101A LM101A opens up a new world of lighting design with its high output and small form factors Features & Benefits

More information

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Errata 2 nd Ed. (5/22/2) Page Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg Page Errata 82 Line 4 after figure 3.2-3, CISW CJSW 88 Line between Eqs. (3.3-2)

More information

JEFFERSON MATH PROJECT REGENTS AT RANDOM

JEFFERSON MATH PROJECT REGENTS AT RANDOM JEFFERSON MATH PROJECT REGENTS AT RANDOM The NY Geometry Regents Exams Fall 2008-August 2009 Dear Sir I have to acknolege the reciept of your favor of May 14. in which you mention that you have finished

More information

D EFB B E B EAB ABC DEF C A F C D C DEF C AD C AEC D D E C D EF B ABC AB CD A EFD AD D E

D EFB B E B EAB ABC DEF C A F C D C DEF C AD C AEC D D E C D EF B ABC AB CD A EFD AD D E D EFB B E BEAB ABC DEF C A F C D C DEF C AD C AEC D D E A B C D EF B ABC AB CD A EFD AD D E FFF A B FBC AE BC D AD A D F D F D F D D B D A D A ED D D DD F D D D D A A DA ADD D F AD AD C A DD D D F D A

More information

Mark Scheme (Results) June 2008

Mark Scheme (Results) June 2008 Mark (Results) June 2008 GCE Mark (Final) GCE Mathematics (6690/01) Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH June 2008 6690 Decision

More information

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure UNIT 3 EQUATIONS Equations Structure 3.0 Introduction 3.1 Objectives 3.2 Solution of Quadratic Equations 3.3 Quadratic Formula 3.4 Cubic and Bioquadratic Equations 3.5 Answers to Check Your Progress 3.6

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Unit 3. Digital encoding

Unit 3. Digital encoding Unit 3. Digital encoding Digital Electronic Circuits (Circuitos Electrónicos Digitales) E.T.S.I. Informática Universidad de Sevilla 9/2012 Jorge Juan 2010, 2011, 2012 You are free to

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS STAT 512 2-Level Factorial Experiments: Irregular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS A major practical weakness of regular fractional factorial designs is that N must be a

More information

Abel-Grassmann s bands. 1. Introduction

Abel-Grassmann s bands. 1. Introduction Quasigroups and Related Systems 11 (2004), 95 101 Abel-Grassmann s bands Petar V. Protić and Nebojša Stevanović Abstract Abel-Grassmann s groupoids or shortly AG-groupoids have been considered in a number

More information

When Inequality Matters for Macro and Macro Matters for Inequality

When Inequality Matters for Macro and Macro Matters for Inequality When Inequality Matters for Macro and Macro Matters for Inequality SeHyoun Ahn Princeton Benjamin Moll Princeton Greg Kaplan Chicago Tom Winberry Chicago Christian Wolf Princeton STLAR Conference, 21 April

More information

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100 EXAMPLE CFG L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa S asa L = {a n b : n 0 } L = {a n b : n 1 } S as b S as ab L { a b : n 0} L { a b : n 1} S asb S asb ab n 2n n 2n L {1 0 : n 0} L {1 0 : n 1} S

More information

10 KHALID AMIN 1. Introduction A famous theorem of Hajos [4] is the following: If G = A 1 :::A n is a factorization of a group G, where each of the su

10 KHALID AMIN 1. Introduction A famous theorem of Hajos [4] is the following: If G = A 1 :::A n is a factorization of a group G, where each of the su Acta Mathematica Academiae Paedagogicae Nyregyhaziensis 15 (1999), 9{18 www.bgytf.hu/~amapn THE FACTORIZATION OF ABELIAN GROUPS KHALID AMIN Abstract. If G is a nite abelian group and n > 1 is an integer,

More information

MATH 423 Linear Algebra II Lecture 12: Review for Test 1.

MATH 423 Linear Algebra II Lecture 12: Review for Test 1. MATH 423 Linear Algebra II Lecture 12: Review for Test 1. Topics for Test 1 Vector spaces (F/I/S 1.1 1.7, 2.2, 2.4) Vector spaces: axioms and basic properties. Basic examples of vector spaces (coordinate

More information

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik

Nesting and Mixed Effects: Part I. Lukas Meier, Seminar für Statistik Nesting and Mixed Effects: Part I Lukas Meier, Seminar für Statistik Where do we stand? So far: Fixed effects Random effects Both in the factorial context Now: Nested factor structure Mixed models: a combination

More information

MITSUBISHI INTELLIGENT POWER MODULES PM75CVA120 FLAT-BASE TYPE INSULATED PACKAGE

MITSUBISHI INTELLIGENT POWER MODULES PM75CVA120 FLAT-BASE TYPE INSULATED PACKAGE PM75CVA12 TERMINAL CODE 1. WFO 2. VWPC 3. WP 4. VWP1 5. VFO 6. VVPC 7. VP 8. VVP1 9. UFO 1. VUPC 11. UP 12. VUP1 13. NC 14. FO 15. VNC 16. VN1 17. UN 18. VN 19. WN B K E P Q N A D P M 1234 5678 911112

More information

ELEMENTARY GROUPS BY HOMER BECHTELL

ELEMENTARY GROUPS BY HOMER BECHTELL ELEMENTARY GROUPS BY HOMER BECHTELL 1. Introduction. The purpose of this paper is to investigate two classes of finite groups, elementary groups and E-groups. The elementary groups have the property that

More information

18:00-21:00, 13 January, 2017 (Total Score: 118 points)

18:00-21:00, 13 January, 2017 (Total Score: 118 points) Chemistry I Final Exam 18:00-21:00, 13 January, 2017 (Total Score: 118 points) R = 8.314 J K -1 mol -1 1. The ionic character of the bond in a diatomic molecule can be estimated by the formula: ( /ed )

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 86, Number 3, November 1982 ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES A. KROÓ Abstract. We study the unicity of best polynomial

More information

INVERSE TERNARY CONTINUED FRACTIONS

INVERSE TERNARY CONTINUED FRACTIONS I93I-1 TERNARY CONTINUED FRACTIONS 565 INVERSE TERNARY CONTINUED FRACTIONS BY D. N. LEHMER In Jacobi's extension of the continued fraction algorithm* we are concerned with three series of numbers given

More information

Get Funky this Christmas Season with the Crew from Chunky Custard

Get Funky this Christmas Season with the Crew from Chunky Custard Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos

More information

.. _Jan_ua. at the. u d. are on the dl'coratlng l orche1tra. Park. 11 ;:: ;!:: n et:1:; u ;;:! I I : ::::1:::'\::: ; : ;:\ :a:: ::: nk. i.

.. _Jan_ua. at the. u d. are on the dl'coratlng l orche1tra. Park. 11 ;:: ;!:: n et:1:; u ;;:! I I : ::::1:::'\::: ; : ;:\ :a:: ::: nk. i. HT-F T RT W Op R _J_ V 2,, _N, 7_9 _ 4_ 7 N 4 Pf A M Tx Wp G b 2 P, B Mf D' W Up F U C E ', E M m RT,mx L f x-b f b, "B ){, m f T v AOUJ;- M T, U E pm, b f f< 8C"V f b M P T, - B Bb M T RT v bb m f m f

More information

8. Relax and do well.

8. Relax and do well. CHEM 1225 Exam I John I. Gelder February 4, 1999 Name KEY TA's Name Lab Section Please sign your name below to give permission to post your course scores on homework, laboratories and exams. If you do

More information

Commercial SUberfiscr ltblihiiki) AT. 13 PUBLISHED Honolulu, Hawaiian InlaiulK HAWAIIAN ISLANDS, SEPTEMBER 24. business CarUs.

Commercial SUberfiscr ltblihiiki) AT. 13 PUBLISHED Honolulu, Hawaiian InlaiulK HAWAIIAN ISLANDS, SEPTEMBER 24. business CarUs. PCc c Ukc PCFC Cc Uc TBLHK T PUBLHD H H K g bc x h Fg bcp 7 T CUT TT HTp p pc p p T R hch c H chg pp p p g hch b p 8 c ch g pp U pc b U H k p bcpc p U g PcK Tc U 2 $ $ h L ch 2 L c L c L U c h pp 2 X 2

More information

GALOIS GROUP OF AN EQUATION X n -ax+b=0

GALOIS GROUP OF AN EQUATION X n -ax+b=0 Tohoku Math. Journ. 22(1970), 670-678. GALOIS GROUP OF AN EQUATION X n -ax+b=0 KOJI UCHIDA (Received Sep. 8, 1970) Let k be a field, and let a and b be indeterminates. In the following we want to determine

More information

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6 Section A.6 Solving Equations Math 1051 - Precalculus I A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 Factor: 2x 6 = 2(x 3) x 2 9 = (x 3)(x + 3) LCD

More information

Hydrological determination of hierarchical clustering scheme by using small experimental matrix

Hydrological determination of hierarchical clustering scheme by using small experimental matrix Hydology Dy 007 Hydologcl do of hchcl clg ch y g ll xpl x M. Cüyd Dl Il Tchcl Uy, I of Scc d Tchology, 449 Mlk Il, Tky; lo Rol School of M d Aophc Scc, Do of Moology d Phycl cogphy (RSMAS/MP), Uy of M,

More information

USA Mathematical Talent Search Solutions to Problem 5/3/16

USA Mathematical Talent Search Solutions to Problem 5/3/16 Solutions to Problem 5//16 5//16. Consider an isosceles triangle ABC with side lengths AB = AC = 10 2 and BC = 10. Construct semicircles P, Q, and R with diameters AB, AC, BC respectively, such that the

More information

Matrices and Linear transformations

Matrices and Linear transformations Matrices and Linear transformations We have been thinking of matrices in connection with solutions to linear systems of equations like Ax = b. It is time to broaden our horizons a bit and start thinking

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Subsequence Sums of Zero-sum free Sequences II

Subsequence Sums of Zero-sum free Sequences II Subsequence Sums of Zero-sum free Sequences II arxiv:0909.2080v2 [math.nt] 14 Sep 2009 Pingzhi Yuan School of Mathematics, South China Normal University, Guangzhou 510631, P.R.CHINA e-mail mcsypz@mail.sysu.edu.cn

More information

LM561C. Middle Power LED Series LM561C is highest performance and lm/w for fluorescent replacement. Features & Benefits

LM561C. Middle Power LED Series LM561C is highest performance and lm/w for fluorescent replacement. Features & Benefits Product Family Data Sheet Rev.7.0 2016. 7. 4 1# Middle Power LED Series 5630 LM561C LM561C is highest performance and lm/w for fluorescent replacement Features & Benefits 0.3 W class middle power LED Mold

More information

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES

D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 2017-2018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686

More information

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14

Lecture 4: Affine Transformations. for Satan himself is transformed into an angel of light. 2 Corinthians 11:14 Lecture 4: Affine Transformations for Satan himself is transformed into an angel of light. 2 Corinthians 11:14 1. Transformations Transformations are the lifeblood of geometry. Euclidean geometry is based

More information

AC Circuits. The Capacitor

AC Circuits. The Capacitor The Capacitor Two conductors in close proximity (and electrically isolated from one another) form a capacitor. An electric field is produced by charge differences between the conductors. The capacitance

More information

mywbut.com Mesh Analysis

mywbut.com Mesh Analysis Mesh Analysis 1 Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide more general and powerful circuit analysis tool based on Kirchhoff s voltage law (KVL) only.

More information

Little Orthogonality Theorem (LOT)

Little Orthogonality Theorem (LOT) Little Orthogonality Theorem (LOT) Take diagonal elements of D matrices in RG * D R D R i j G ij mi N * D R D R N i j G G ij ij RG mi mi ( ) By definition, D j j j R TrD R ( R). Sum GOT over β: * * ( )

More information

On Generating Discrete Integrable Systems via Lie Algebras and Commutator

On Generating Discrete Integrable Systems via Lie Algebras and Commutator Commun. Theor. Phys. 65 (216 335 34 Vol. 65, No. 3, March 1, 216 On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations Yu-Feng Zhang ( ô 1 and Honwah Tam 2 1 College of Sciences,

More information

Developing a Distributed Java-based Speech Recognition Engine

Developing a Distributed Java-based Speech Recognition Engine The ITB Journal Volume 5 Issue 1 Article 2 2004 Developing a Distributed Java-based Speech Recognition Engine Tony Ayers Institute of Technology Blanchardstown, tony.ayers@itb.ie Brian Nolan Institute

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G Bk b $ 6 G Y 7 B B B B - BB -BY- B Bk B Qk Q k Q k B g (- -- k Bk G Bk k q B - - - - - $ gb q g bg g g b b q )( 6 B 7 B B k 6 g k 6 B b Y k b - b b k b b b g ( \ bg Y b b k b /% /% b k b b g Y Y k

More information

A mathematical statement that asserts that two quantities are equal is called an equation. Examples: x Mathematics Division, IMSP, UPLB

A mathematical statement that asserts that two quantities are equal is called an equation. Examples: x Mathematics Division, IMSP, UPLB EQUATIONS A mathematical statement that asserts that two quantities are equal is called an equation. Examples: 1.. 3. 1 9 1 x 3 11 x 4xy y 0 Consider the following equations: 1. 1 + 9 = 1. x + 9 = 1 Equation

More information

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 17 april Classrum Edition

ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK. 17 april Classrum Edition ÖVNINGSUPPGIFTER I SAMMANHANGSFRIA SPRÅK 7 april 23 Classrum Edition CONTEXT FREE LANGUAGES & PUSH-DOWN AUTOMATA CONTEXT-FREE GRAMMARS, CFG Problems Sudkamp Problem. (3.2.) Which language generates the

More information

interval order and all height one orders. Our major contributions are a characterization of tree-visibility orders by an innite family of minimal forb

interval order and all height one orders. Our major contributions are a characterization of tree-visibility orders by an innite family of minimal forb Tree-Visibility Orders Dieter Kratsch y Jean-Xavier Rampon z Abstract We introduce a new class of partially ordered sets, called tree-visibility orders, containing interval orders, duals of generalized

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information