An Eulerian-Lagrangian approach for fluid-structure coupled systems using X-FEM Antoine Legay / CNAM-Paris

Size: px
Start display at page:

Download "An Eulerian-Lagrangian approach for fluid-structure coupled systems using X-FEM Antoine Legay / CNAM-Paris"

Transcription

1 An Eulerian-Lagrangian approach for fluid-structure coupled systems using X-FEM Antoine Legay / CNAM-Paris Collaborations: A. Tralli, P. Gaudenzi, Università di Roma La Sapienza, Italia 8th USNCCM, 25-27th July 2005, Austin

2 Introduction Position of the problem Fluid-structure interaction Transient dynamics ΩS ΩS Γ Γ Closed structure Open structure t t t ΩF ΩF ΩF 8th USNCCM, 25-27th July 2005, Austin 2/ 26

3 Introduction Basic ideas Fluid: Eulerian description, fied mesh Structure: Lagragian description Incompatible meshes Enrichment of the fluid fields using X-FEM [Moës, Belytschko 99] Previous work: Compressible fluid, thin structure Fluid on one side of the structure No enrichment [Legay, Chessa and Belytschko 2005] 8th USNCCM, 25-27th July 2005, Austin 3/ 26

4 Introduction Other approaches Classical ALE-approach: need to update the fluid mesh mesh distortions: can not deal with large relative structure displacement Similar methods: Immersed boundaries [Peskin 89, 02] Fictitious domain [Glowinski 94] [Bertrand 97] [Baaijens 01] Immersed FEM [Wang 04] [Zhang 04] Do not enrich the fluid field around the structure 8th USNCCM, 25-27th July 2005, Austin 4/ 26

5 τ i j Description of the problem Strong form Fluid: incompressible, viscous, Eulerian description ρ F v i v i i ρfviv j 0 in ΩF τ i j pδi j 2µei j j g i in Ω F Structure: thin, Lagrangian description ρ S ü i σi j j g i in Ω S u ugi i on uωs σ i j n S Fg j i on F Ω S Fluid-structure interface v i τ i j σi j n j 0 on Γ u 0 i on Γ penalty term: β 2 δ Γ v i u i 2 dγ 8th USNCCM, 25-27th July 2005, Austin 5/ 26

6 Description of the problem Weak form Fluid: Find v i such that δvi Ω F δv i ρ F v i vi v j j dω F Ω F δv i jτ i j dω F Ω F δv ig i dω F Ω F δv iτ i j n F j ds F β Γ δv i v i u i dγ 0 penalty term Structure: Find u i such that δui Ω S δu i ρ S ü i dω S Ω S δu i jσ i j dω S Ω S δu ig i dω S F Ω S δu if g i dss u Ω S δu iσ i j n S jds S β Γ δu i v i u i dγ 0 penalty term This leads to the strong form [Legay, Chessa and Belytschko 2005] 8th USNCCM, 25-27th July 2005, Austin 6/ 26

7 Pressure: N4 i Discretization Space discretization: finite element method Fluid: mied formulation 9/4-node element: Velocity: N 9 i Structure: 1D beam Incompatible meshes: Enrichment of the fluid (X-FEM) 8th USNCCM, 25-27th July 2005, Austin 7/ 26

8 Discretization Time discretization: fractional time step method Semi-implicit scheme, 3-steps process: t n t n 1 t U n U n 1 P n P n 1 Collaboration with A. Tralli and P. Gaudenzi, Università di Roma, Italia [Tralli and Gaudenzi, 3rd MIT conf., 2005] [Tralli and Gaudenzi, submitted to IJNME, 2005] 8th USNCCM, 25-27th July 2005, Austin 8/ 26

9 Discretization Localization of the interface The position of the structure is described by a level-set function φ t Γ t : φ t 0 φ φ t t 0 on the interface Γ 0 on one side of the φ t structure φ t 0 on the other side φ t 0 φ t 0 Discretization of φ t : n φ t N9 I φi Normal on Γ: n Gradφ t φ: signed distance to the interface 8th USNCCM, 25-27th July 2005, Austin 9/ 26

10 Enrichment Partition of unity Set of functions f i defined on ΩPU such that ΩPU i f i 1 Obviously, i f i ψ ψ New approimation of g in Ω PU : g j N j G j regular part i f i ψ Ag i enriched part note that : G j 0et A g i 1 g ψ 8th USNCCM, 25-27th July 2005, Austin 10/ 26

11 Enrichment Choice of enrichment Velocity continuous discontinuous derivative Enrichment: φ Pressure discontinuous Enrichment: sign φ φ sign φ v p 8th USNCCM, 25-27th July 2005, Austin 11/ 26

12 Enrichment Velocity enrichment v i N 9 i Vi j N 4 j φ Av j v Enrichment: Regular part Partition of unity continuous, discontinuous derivative Note: This choice of P.u. avoids problems in blending elements [Legay, Wang and Belytschko, 2005] 8th USNCCM, 25-27th July 2005, Austin 12/ 26

13 Enrichment Pressure enrichment p i N 4 i Pi j N 4 j sign φ p Ap j Regular part Partition of unity Enrichment: discontinuous Note: This enrichment does not introduce etra-terms in blending elements 8th USNCCM, 25-27th July 2005, Austin 13/ 26

14 Applications Driven Cavity The fluid domain is divided into 2 parts: the left part is a driven cavity the right part should not move The structure is a rigid wall Reynolds number: 10 8th USNCCM, 25-27th July 2005, Austin 14/ 26

15 Applications Driven Cavity, streamlines Compatible mesh, no enrichment. Non-compatible mesh, velocity and pressure enrichment. 8th USNCCM, 25-27th July 2005, Austin 15/ 26

16 Applications Driven Cavity, velocity and pressure Comparison of velocities Comparison of pressure compatible mesh non-comp. mesh, with no enrichment non-comp. mesh, with enrichment compatible mesh non-comp. mesh, with no enrichment non-comp. mesh, with enrichment 8th USNCCM, 25-27th July 2005, Austin 16/ 26

17 Applications Driven Cavity, zoom around structure Comparison of velocities Comparison of pressure 0 04m.s 1 compatible mesh non-comp. mesh, with no enrichment non-comp. mesh, with enrichment compatible mesh non-comp. mesh, with no enrichment non-comp. mesh, with enrichment 8th USNCCM, 25-27th July 2005, Austin 17/ 26

18 Applications Fied structure in a driven cavity The structure is fied 1m.s 1 1 4m Fluid mesh: deg 2m Reynolds number: m 2 6m 4m 8th USNCCM, 25-27th July 2005, Austin 18/ 26

19 Applications Fied structure in a driven cavity, streamlines 8th USNCCM, 25-27th July 2005, Austin 19/ 26

20 Applications Translating straight structure 4m Fluid mesh: Reynolds number: 10 Structure velocity: 1m.s m time=0s time=2s 2m 1m 2m 8th USNCCM, 25-27th July 2005, Austin 20/ 26

21 Applications Translating structure 0.03 s 0.7 s 1.4 s 2.0 s 8th USNCCM, 25-27th July 2005, Austin 21/ 26

22 Applications Rotating structure 0 7m Fluid mesh: The structure is a rotating straight line Angular velocity: Ω 1rad.s 1 2m 2m 8th USNCCM, 25-27th July 2005, Austin 22/ 26

23 Applications Rotating structure 8th USNCCM, 25-27th July 2005, Austin 23/ 26

24 Applications Two Rotating structures 0 7m Fluid mesh: Two rotating straight lines Angular velocities: Ω 1 0 5rad.s 1 Ω 1 2 1rad.s Ω1 0 8m Ω 2 2m 4m 8th USNCCM, 25-27th July 2005, Austin 24/ 26

25 Applications Two Rotating structures 8th USNCCM, 25-27th July 2005, Austin 25/ 26

26 Conclusions and future work Conclusions Eulerian-Lagrangian fluid-structure approach take advantage of the eisting formulations for both fluid and structure Incompatible meshes no fluid mesh updating no mesh distortion Enrichment of fluid field around the interface using X-FEM improve accuracy around the interface Future work Further validation Improve the enrichment at the structure tip Rigid structures with inertia terms, fleible structures 8th USNCCM, 25-27th July 2005, Austin 26/ 26

27 References A. Legay, J. Chessa and T. Belytschko. An Eulerian-Lagrangian Method for Fluid-Structure Interaction Based on Level Sets. Computer Methods in Applied Mechanics and Engineering, in press, A. Tralli and P. Gaudenzi. Simulation of unsteady incompressible flows by a fractional-step FEM. International Journal for Numerical Methods in Engineering, submitted, Contacts antoine.legay@cnam.fr aldo.tralli@uniroma1.it 8th USNCCM, 25-27th July 2005, Austin

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990 Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339 351 1 A NEW STRATEGY FOR FINITE ELEMENT COMPUTATIONS INVOLVING MOVING BOUNDARIES AND INTERFACES THE DEFORMING-SPATIAL-DOMAIN/SPACE-TIME

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Lagrangian acceleration in confined 2d turbulent flow

Lagrangian acceleration in confined 2d turbulent flow Lagrangian acceleration in confined 2d turbulent flow Kai Schneider 1 1 Benjamin Kadoch, Wouter Bos & Marie Farge 3 1 CMI, Université Aix-Marseille, France 2 LMFA, Ecole Centrale, Lyon, France 3 LMD, Ecole

More information

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction APCOM & ISCM -4 th December, 03, Singapore A Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method for Fluid Structure Interaction Jianfei Yang,,3, Zhengdao Wang,,3, and *Yuehong Qian,,3,4

More information

Modélisation d'interfaces linéaires et non linéaires dans le cadre X-FEM

Modélisation d'interfaces linéaires et non linéaires dans le cadre X-FEM Modélisation d'interfaces linéaires et non linéaires dans le cadre X-FEM Nicolas MOËS Ecole Centrale de Nantes, FRANCE GeM Institute - CNRS Journées Interface Numérique, GDR-IFS, CNAM, PARIS, 14-15 Mai

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE

NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE NUMERICAL SIMULATION OF FLUID-STRUCTURE INTERACTION PROBLEMS WITH DYNAMIC FRACTURE Kevin G. Wang (1), Patrick Lea (2), and Charbel Farhat (3) (1) Department of Aerospace, California Institute of Technology

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

More information

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers

Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers Fluid-Structure Interaction Problems using SU2 and External Finite-Element Solvers R. Sanchez 1, D. Thomas 2, R. Palacios 1, V. Terrapon 2 1 Department of Aeronautics, Imperial College London 2 Department

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

Exam in Fluid Mechanics 5C1214

Exam in Fluid Mechanics 5C1214 Eam in Fluid Mechanics 5C1214 Final eam in course 5C1214 13/01 2004 09-13 in Q24 Eaminer: Prof. Dan Henningson The point value of each question is given in parenthesis and you need more than 20 points

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

Heat Transfer Benchmark Problems Verification of Finite Volume Particle (FVP) Method-based Code

Heat Transfer Benchmark Problems Verification of Finite Volume Particle (FVP) Method-based Code PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 Heat Transfer Benchmark Problems Verification of Finite Volume

More information

PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures

PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures PREDICTIVE SIMULATION OF UNDERWATER IMPLOSION: Coupling Multi-Material Compressible Fluids with Cracking Structures Kevin G. Wang Virginia Tech Patrick Lea, Alex Main, Charbel Farhat Stanford University

More information

A formulation for fast computations of rigid particulate flows

A formulation for fast computations of rigid particulate flows Center for Turbulence Research Annual Research Briefs 2001 185 A formulation for fast computations of rigid particulate flows By N. A. Patankar 1. Introduction A formulation is presented for the direct

More information

Reynolds number scaling of inertial particle statistics in turbulent channel flows

Reynolds number scaling of inertial particle statistics in turbulent channel flows Reynolds number scaling of inertial particle statistics in turbulent channel flows Matteo Bernardini Dipartimento di Ingegneria Meccanica e Aerospaziale Università di Roma La Sapienza Paolo Orlandi s 70th

More information

Some improvements of Xfem for cracked domains

Some improvements of Xfem for cracked domains Some improvements of Xfem for cracked domains E. Chahine 1, P. Laborde 2, J. Pommier 1, Y. Renard 3 and M. Salaün 4 (1) INSA Toulouse, laboratoire MIP, CNRS UMR 5640, Complexe scientifique de Rangueil,

More information

Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields

Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields Jie Zhang 1, Cheng Wang 1 1. Department of Mechanical and Aerospace Engineering, Missouri University of Science

More information

Deforming Composite Grids for Fluid Structure Interactions

Deforming Composite Grids for Fluid Structure Interactions Deforming Composite Grids for Fluid Structure Interactions Jeff Banks 1, Bill Henshaw 1, Don Schwendeman 2 1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Natural frequency analysis of fluid-conveying pipes in the ADINA system

Natural frequency analysis of fluid-conveying pipes in the ADINA system Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

1 Acoustic displacement triangle based on the individual element test

1 Acoustic displacement triangle based on the individual element test 2(2012) 1 12 1 Acoustic displacement triangle based on the individual element test Abstract A three node -displacement based- acoustic element is developed. In order to avoid spurious rotational modes,

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

IFE for Stokes interface problem

IFE for Stokes interface problem IFE for Stokes interface problem Nabil Chaabane Slimane Adjerid, Tao Lin Virginia Tech SIAM chapter February 4, 24 Nabil Chaabane (VT) IFE for Stokes interface problem February 4, 24 / 2 Problem statement

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

Development of X-FEM methodology and study on mixed-mode crack propagation

Development of X-FEM methodology and study on mixed-mode crack propagation Acta Mech. Sin. (2011) 27(3):406 415 DOI 10.1007/s10409-011-0436-x RESEARCH PAPER Development of X-FEM methodology and study on mixed-mode crack propagation Zhuo Zhuang Bin-Bin Cheng Received: 2 February

More information

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL

NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL Proceedings of ALGORITMY 212 pp. 29 218 NUMERICAL SIMULATION OF INTERACTION BETWEEN INCOMPRESSIBLE FLOW AND AN ELASTIC WALL MARTIN HADRAVA, MILOSLAV FEISTAUER, AND PETR SVÁČEK Abstract. The present paper

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Domain optimisation using Trefftz functions application to free boundaries

Domain optimisation using Trefftz functions application to free boundaries Computer Assisted Mechanics and Engineering Sciences, 4: 317 326, 1997. Copyright c 1997 by Polska Akademia Nauk Domain optimisation using Trefftz functions application to free boundaries Mohamed Bouberbachene,

More information

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems COMPUTATIONAL MECHANICS WCCM VI in conjunction with APCOM4, Sept. 5-, 24, Beijing, China c 24 Tsinghua University Press & Springer-Verlag Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

More information

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014 Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:

More information

Stability of incompressible formulations enriched with X-FEM

Stability of incompressible formulations enriched with X-FEM Legrain, N. Moes and A. Huerta,Stability of incompressible formulations enriched with X-FEM, G., Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issues 21-24, pp. 1835-1849, 2008 Stability

More information

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems Prof. Dr. Eleni Chatzi Dr. Giuseppe Abbiati, Dr. Konstantinos Agathos Lecture 1-21 September, 2017 Institute of Structural Engineering

More information

DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD

DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD R. A. Amaro

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

.u= 0 ρ( u t +(u. )u)= ρ g p+.[µ( u+ t u)]

.u= 0 ρ( u t +(u. )u)= ρ g p+.[µ( u+ t u)] THETIS is a numerical simulation tool developed by University of Bordeaux. It is a versatile code to solve different problems: fluid flows, heat transfers, scalar transports or porous mediums. The potential

More information

Partitioned Methods for Multifield Problems

Partitioned Methods for Multifield Problems C Partitioned Methods for Multifield Problems Joachim Rang, 6.7.2016 6.7.2016 Joachim Rang Partitioned Methods for Multifield Problems Seite 1 C One-dimensional piston problem fixed wall Fluid flexible

More information

arxiv: v1 [physics.flu-dyn] 6 Nov 2017

arxiv: v1 [physics.flu-dyn] 6 Nov 2017 A Variational Projection Scheme for Nonmatching Surface-to-Line Coupling arxiv:1711.01699v1 [physics.flu-dyn] 6 Nov 2017 between 3D Flexible Multibody System and Incompressible Turbulent Flow P. S. Gurugubelli

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Hydro-elastic Wagner impact using variational inequalities

Hydro-elastic Wagner impact using variational inequalities Hydro-elastic Wagner impact using variational inequalities Thomas GAZZOLA, Alexander KOROBKIN, Šime MALENICA Introduction A simple model of water impact has been introduced by Wagner [6]. This model is

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

Introduction to immersed boundary method

Introduction to immersed boundary method Introduction to immersed boundary method Ming-Chih Lai mclai@math.nctu.edu.tw Department of Applied Mathematics Center of Mathematical Modeling and Scientific Computing National Chiao Tung University 1001,

More information

Modeling and numerical simulations of swimmers

Modeling and numerical simulations of swimmers Plafrim, may 31, 2011 p. 1 Modeling and numerical simulations of swimmers Michel Bergmann INRIA Bordeaux Sud-Ouest, project-team MC2 Institut de Mathématiques Appliquées de Bordeaux 33405 TALENCE cedex,

More information

Research Article Direct Simulation of Low-Re Flow around a Square Cylinder by Numerical Manifold Method for Navier-Stokes Equations

Research Article Direct Simulation of Low-Re Flow around a Square Cylinder by Numerical Manifold Method for Navier-Stokes Equations Applied Mathematics Volume 22, Article ID 465972, 4 pages doi:.55/22/465972 Research Article Direct Simulation of Low-Re Flow around a Square Cylinder by Numerical Manifold Method for Navier-Stokes Equations

More information

From Immersed Boundary Method to Immersed Continuum Method

From Immersed Boundary Method to Immersed Continuum Method From Immersed Boundary Method to Immersed Continuum Method X. Sheldon Wang Department of Mathematical Sciences New Jersey Institute of Technology Newark, NJ 07102 CAMS Report 0506-7, Spring 2006 Center

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

Experience with DNS of particulate flow using a variant of the immersed boundary method

Experience with DNS of particulate flow using a variant of the immersed boundary method Experience with DNS of particulate flow using a variant of the immersed boundary method Markus Uhlmann Numerical Simulation and Modeling Unit CIEMAT Madrid, Spain ECCOMAS CFD 2006 Motivation wide range

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

Modified DLM method for finite-volume simulation of particle flow

Modified DLM method for finite-volume simulation of particle flow Modified DLM method for finite-volume simulation of particle flow A. M. Ardekani, S. Dabiri, and R. H. Rangel Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975,

More information

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow

Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow Fluid Structure Interaction VII 147 Numerical investigation on vortex-induced motion of a pivoted cylindrical body in uniform flow H. G. Sung 1, H. Baek 2, S. Hong 1 & J.-S. Choi 1 1 Maritime and Ocean

More information

The vorticity field. A dust devil

The vorticity field. A dust devil The vorticity field The vector ω = u curl u is twice the local angular velocity in the flow, and is called the vorticity of the flow (from Latin for a whirlpool). Vortex lines are everywhere in the direction

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

The Stochastic Dynamics of Optomechanical Sensors for Atomic Force Microscopy

The Stochastic Dynamics of Optomechanical Sensors for Atomic Force Microscopy The Stochastic Dynamics of Optomechanical Sensors for Atomic Force Microscopy Stephen D. Epstein Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS. Laura A. Miller* and Charles S. Peskin**

A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS. Laura A. Miller* and Charles S. Peskin** A COMPUTATIONAL FLUID DYNAMICS STUDY OF CLAP AND FLING IN THE SMALLEST INSECTS Laura A. Miller* and Charles S. Peskin** *Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City,

More information

UNIT II. Buoyancy and Kinematics of Fluid Motion

UNIT II. Buoyancy and Kinematics of Fluid Motion SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech -

More information

Numerical Simulations of the Fluid-Structure Coupling in Physiological Vessels Mini-Workshop I

Numerical Simulations of the Fluid-Structure Coupling in Physiological Vessels Mini-Workshop I Numerical Simulations of the Fluid-Structure Coupling in Physiological Vessels INRIA Rocquencourt, projet REO miguel.fernandez@inria.fr CRM Spring School, Montréal May 16, 2005 Motivations It is generally

More information

Advances in the mathematical theory of the finite element immersed boundary method

Advances in the mathematical theory of the finite element immersed boundary method Advances in the mathematical theory of the finite element immersed boundary method Daniele Boffi Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/boffi May 12, 2014

More information

Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution

Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution PIERS ONLINE, VOL. 3, NO. 3, 2007 300 Hybrid Numerical Simulation of Electrostatic Force Microscopes Considering Charge Distribution U. B. Bala, M. Greiff, and W. Mathis Institute of Electromagnetic Theory

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture

Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible Flapping Wings within Overture 10 th Symposimum on Overset Composite Grids and Solution Technology, NASA Ames Research Center Moffett Field, California, USA 1 Implementing a Partitioned Algorithm for Fluid-Structure Interaction of Flexible

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

1 Equations of motion

1 Equations of motion Part A Fluid Dynamics & Waves Draft date: 21 January 2014 1 1 1 Equations of motion 1.1 Introduction In this section we will derive the equations of motion for an inviscid fluid, that is a fluid with zero

More information

Multiscale Analysis of Vibrations of Streamers

Multiscale Analysis of Vibrations of Streamers Multiscale Analysis of Vibrations of Streamers Leszek Demkowicz Joint work with S. Prudhomme, W. Rachowicz, W. Qiu and L. Chamoin Institute for Computational Engineering and Sciences (ICES) The University

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

Gyroscopic matrixes of the straight beams and the discs

Gyroscopic matrixes of the straight beams and the discs Titre : Matrice gyroscopique des poutres droites et des di[...] Date : 29/05/2013 Page : 1/12 Gyroscopic matrixes of the straight beams and the discs Summarized: This document presents the formulation

More information

6. Basic basic equations I ( )

6. Basic basic equations I ( ) 6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

More information

Performance evaluation of different model mixers by numerical simulation

Performance evaluation of different model mixers by numerical simulation Journal of Food Engineering 71 (2005) 295 303 www.elsevier.com/locate/jfoodeng Performance evaluation of different model mixers by numerical simulation Chenxu Yu, Sundaram Gunasekaran * Food and Bioprocess

More information

Modeling of Humidification in Comsol Multiphysics 4.4

Modeling of Humidification in Comsol Multiphysics 4.4 Modeling of Humidification in Comsol Multiphysics 4.4 Indrajit Wadgaonkar *1 and Suresh Arikapudi 1 1 Tata Motors Ltd. Pimpri, Pune, India, 411018. *Corresponding author: Indrajit Wadgaonkar, Tata Motors

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing

Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing Commun. Comput. Phys. doi: 10.4208/cicp.080815.090516a Vol. xx, No. x, pp. 1-29 xxx 201x Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing Asim Timalsina 1, Gene Hou

More information

A monolithic fluid structure interaction solver Verification and Validation Application: venous valve motion

A monolithic fluid structure interaction solver Verification and Validation Application: venous valve motion 1 / 41 A monolithic fluid structure interaction solver Verification and Validation Application: venous valve motion Chen-Yu CHIANG O. Pironneau, T.W.H. Sheu, M. Thiriet Laboratoire Jacques-Louis Lions

More information

Transformation of Long Waves in a Canal of Variable Section

Transformation of Long Waves in a Canal of Variable Section Archives of Hydro-Engineering and Environmental Mechanics Vol. 63 (2016), No. 1, pp. 3 18 DOI: 10.1515/heem-2016-0001 IBW PAN, ISSN 1231 3726 Transformation of Long Waves in a Canal of Variable Section

More information

The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations

The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations Copyright cfl 2001 Tech Science Press CMES, vol.2, no.2, pp.117-142, 2001 The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations H. Lin and S.N. Atluri 1 Abstract:

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Dynamics: Data Preparation

Dynamics: Data Preparation Dynamics: Data Preparation c ZACE Services Ltd August 2011 1 / 84 2 / 84 Dynamics: Scope of the lecture Tools for dynamic analyses in Z Soil 1 Eigenvalue and eigenmodes detection 2 Time history analysis

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Where does Bernoulli's Equation come from?

Where does Bernoulli's Equation come from? Where does Bernoulli's Equation come from? Introduction By now, you have seen the following equation many times, using it to solve simple fluid problems. P ρ + v + gz = constant (along a streamline) This

More information

Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible Flows

Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible Flows Author manuscript, published in "5th International Symposium on Finite Volumes for Complex Applications, Aussois : France 2008)" Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,00 6,000 20M Open access books available International authors and editors Downloads Our authors

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS

RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS Proceedings of ALGORITMY 2016 pp. 113 124 RESIDUAL BASED ERROR ESTIMATES FOR THE SPACE-TIME DISCONTINUOUS GALERKIN METHOD APPLIED TO NONLINEAR HYPERBOLIC EQUATIONS VÍT DOLEJŠÍ AND FILIP ROSKOVEC Abstract.

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN XFEM APPROACH

ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN XFEM APPROACH VI International Conference on Adaptive Modeling and Simulation ADMOS 213 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ACCURATE MODELLING OF STRAIN DISCONTINUITIES IN BEAMS USING AN

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

The Finite Element Method

The Finite Element Method The Finite Element Method 3D Problems Heat Transfer and Elasticity Read: Chapter 14 CONTENTS Finite element models of 3-D Heat Transfer Finite element model of 3-D Elasticity Typical 3-D Finite Elements

More information

A STABILIZED FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOUS FLOWS USING A FINITE INCREMENT CALCULUS FORMULATION

A STABILIZED FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOUS FLOWS USING A FINITE INCREMENT CALCULUS FORMULATION A STABILIZED FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOUS FLOWS USING A FINITE INCREMENT CALCULUS FORMULATION Eugenio Oñate International Centre for Numerical Methods in Engineering Universidad Politécnica

More information

A Variational Multiscale Stabilized Finite Element. Method for the Solution of the Euler Equations of

A Variational Multiscale Stabilized Finite Element. Method for the Solution of the Euler Equations of A Variational Multiscale Stabilized Finite Element Method for the Solution of the Euler Equations of Nonhydrostatic Stratified Flows M. Moragues S. Marras M. Vázquez G. Houzeaux Barcelona Supercomputing

More information

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS

FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH DYNAMICAL EFFECTS Proceedings of Czech Japanese Seminar in Applied Mathematics 2004 August 4-7, 2004, Czech Technical University in Prague http://geraldine.fjfi.cvut.cz pp. 63 72 FLOW OVER A GIVEN PROFILE IN A CHANNEL WITH

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

3D XFEM Modelling of Imperfect Interfaces

3D XFEM Modelling of Imperfect Interfaces 3D XFEM Modelling of Imperfect Interfaces Elena Benvenuti 1, Giulio Ventura 2, Antonio Tralli 1, Nicola Ponara 1 1 Dipartimento di Ingegneria, Universit di Ferrara, Italy E-mail: elena.benvenuti@unife.it,

More information