Interactions of Differential Phase-Shift Keying (DPSK) Dispersion-Managed (DM) Solitons Fiber Links with Lumped In-Line Filters

Size: px
Start display at page:

Download "Interactions of Differential Phase-Shift Keying (DPSK) Dispersion-Managed (DM) Solitons Fiber Links with Lumped In-Line Filters"

Transcription

1 MAYTEEVARUNYOO AND ROEKSABUTR: INTERACTIONS OF DIFFERENTIAL PHASE-SHIFT KEYING (DPSK) Interactions of Differential Phase-Shift Keying (DPSK) Dispersion-Managed (DM) Solitons Fiber Links with Lumped In-Line Filters Thawatchai Mayteevarunyoo, Non-member and Athikom Roeksabutr, Member ABSTRACT We formulate a model for investigating the transmission of date coded in the differential-phase-shiftkeying (DPSK) format by soliton streams in the model of the dispersion-managed (DM) fiber link with in-line filters. First, we consider the transmission of the simplest two- and three-soliton strings. Summarizing results of systematic simulations, we identify a range 1.55 S 1.95, which provides for the optimal transmission regime (which is defined as that in which the bit-error-rate, BER, is kept below an acceptable limit, for a fixed large transmission distance). 1. INTRODUCTION The differential phase-shift keying (DPSK) format of encoding data into a stream of return-to-zero (RZ) pulses has been known for a while. Recently, this format has attracted renewed interest, as it was demonstrated, theoretically [1] and experimentally [2], that it may be more efficient than the ordinary on-offkeying (OOK) format, in high-bit-rate long-haul and ultralong-haul transmission. The most promising and stable implementation of the RZ pulses is provided by solitons in dispersionmanaged (DM) fiber links [3]. It is well known that, while the DM technique provides for effective suppression of noise-induced jitter of solitons, and of cross-talk between them in adjacent channels in WDM (wavelength-division-multiplexed) schemes, the most serious issue complicating the implementation of the DM is the interaction between solitons inside a given channel [4]. This problem imposes an essential restriction on the DM scheme, suggesting to use its relatively weak version [5]. In this paper, we investigate the transmission of DPSK coded data by soliton streams in the model of the DM fiber link with lumped in-line filters. We first considered elementary two- and three-soliton strings. It will be concluded that a relatively small value of the DM strength S provides for the minimization of interaction effects in the presence of in-line filters (which is qualitatively similar to what was concluded, in other contexts, in Refs. [5]). EL5R4: Manuscript received on March 1, 24 ; revised on July 1, 24. The authors are with Department of Telecommunication Engineering, Mahanakorn University of Technology, Bangkok, 153, Thailand. athikom@mut.ac.th 2. THE MODEL We consider the system corresponding to the scheme shown in Fig. 1. The evolution of the en- D(z) D n D D a L amp L map D a : anomalous fiber D n : normal fiber Amplifier Fig.1: A schematic diagram of the dispersionmanaged link with in-line filters and amplifiers. velope amplitude u(z, t) of the electromagnetic field along the propagation distance z in one channel of the DM fiber link, with lumped filters and amplifiers, is governed by the well-known perturbed nonlinear Schrödinger equation. In dimensionless units, it takes the form [7] i u z + 1 ( ) 2 D (z) 2 u G t 2 + u 2 u = i 8.69 α 2 t 2 u. (1) where α and G are, respectively, the filter strength and an excess gain to compensate for the filter loss, which is measured in db. D (z) represents the periodically varying dispersion. 3. NUMERICAL RESULTS 3. 1 Two-soliton strings Proceeding to simulations, we first examine the effect of guiding filters on the interaction between two identical DM solitons with different values of the initial phase shifts between them ( θ =, π/4, π/2, 3π/4, and π), neglecting the ASE noise [n(z, t) = in Eq. (1)]. To this aim, we launch two chirp-free Gaussian pulses with the width t FWHM = ps and energies.2 pj (which correspond to the standard value of the fiber s nonlinearity, 1.4 W 1 km 1 ), Filter

2 5 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.2, NO.2 AUGUST 24 and the initial separation T = 45 ps (it corresponding to the bit rate of 22 Gb/s). To measure the strength of the interaction between the solitons, we first define the position of the center of a given pulse as t p = t u 2 dt u 2 dt. (2) The integration in this expression extends to the region that does not include the other pulse. Next, we define the collision length, as a propagation distance after which the temporal shift of each soliton, t t p t [t is the initial value of the position, as defined in Eq. (2)], see Fig. 2, exceeds half of its FWHM width = 217 GHz Initial soliton t 4 3 Shifted soliton 2 1 Fig.2: The definition of the soliton s shift induced by the interaction between them Figure 3 shows the collision length versus the DM map strength S, as found from direct simulations of Eq. (1) for different values of the filter s bandwidths. The excess gain is also varied, so that to keep the relation G/8.69 =.825 α. The comparison of the panels and in Fig. 3 clearly shows that, in the case of the in-phase solitons, there is a value, S 1.65, at which the collision length diverges, unless the filtering is too strong, while for the out-of-phase solitons such a single value of S cannot be identified. In other words, the interaction between the in-phase solitons effectively switches off at this value of S. As a further illustration of this property, in Fig. 4 we display the collision distance for the pair of in-phase solitons versus the filtering bandwidth for different fixed values of S. In practical terms, Fig. 3 shows that the collision length for the in-phase solitons exceeds 4, km, in the case of the weak DM, 1.2 S 2.1, (3) provided that sufficiently narrow-band guiding filters are used (while the interaction imposes a severe limit Fig.3: The collision length for the pair of in-phase and out-of-phase solitons as a function of the DM strength for different bandwidths of the guiding filters. on the transmission, distance, z < 3, km, in the absence of filters). It is relevant to mention that increase of the collision length for in-phase DM solitons in the presence of lumped narrow-bandwidth filters was earlier demonstrated in Ref. [6]. For the out-ofphase solitons with θ = π, Fig. 3 shows that, within the interval of 1.55 S 2 (4) [somewhat narrower than the one (3) for the in-phase soliton pair], the appropriately selected filters secure the collision length in excess of 4, km. The results of the simulations of the two-soliton string can be presented in a different way, convenient to applications, if one sets a condition that the propagation distance, after passing which the temporal shift of each soliton attains the size of t FWHM /4

3 MAYTEEVARUNYOO AND ROEKSABUTR: INTERACTIONS OF DIFFERENTIAL PHASE-SHIFT KEYING (DPSK) [htb] S = 1.1 S = 1.65 S = 2.52 GHz. Contrary to this, for θ = π the necessary restriction relaxes with the increase of S; however, as both cases of θ = and π are equally possible in the soliton stream, one must select the stringiest condition, i.e., narrowest filtering bandwidth for given S. Note that θ = and π determine one and the same in a small subinterval, 1.3 < S < 1.5. The above (GHz) 4 3 Fig.4: The collision length of the in-phase solitons as a function of the filter s bandwidth, for different map strengths. 2 1 (which is still quite acceptable), must exceed a certain large value, which we set to be 6, km (GHz) θ = θ = π/4 θ = π/2 θ = 3π/4 θ = π Fig.5: The filter s bandwidth,, which is necessary to keep the interaction-induced temporal shifts of the two solitons smaller than t FWHM /4 within the propagation distance of 6 km, vs. the DMmap strength S, for different values of phase difference, θ. In Fig. 5 we display the filter s bandwidths,, which is necessary to secure this condition, as a function of the DM map strength S, for different initial phase shifts θ. The curves terminate at points where the condition can no longer be met, therefore Fig. 5 also shows intervals of values of the map strength S within which the condition holds; as is seen, the interval is narrow for θ = π/2 and 3π/4, while for θ =, π/4, and π it is considerably wider. Notice that the nearly constant value of for θ = in the range of 1.3 < S < 2.16 complies with Fig. 3, where a virtually infinite collision length is observed in this range of S for the in-phase soliton pair, provided that the filtering bandwidth shrinks to Fig.6: The collision length for the three-soliton strings versus the DM map strength for different. The panels and pertain to the strings of the -- and -π- types, respectively. consideration was focused on the shift of the solitons positions due to the interaction. As the final objective is to analyze the stability of the DPSK coding scheme, it is also necessary to monitor the change of the phase difference between the solitons. Without showing details, which are of minor interest, we mention that, in all the cases, the perturbation-induced change of the phase difference remains definitely smaller than π/8 within the collision length defined above.

4 52 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.2, NO.2 AUGUST Three-soliton strings = 2 GHz θ = θ = π Power (mw) Time (ps) Distance π π π S = 1.1 S = 1.65 S = B (GHz) f Power (mw) Time (ps) Distance Fig.7: The collision length for the asymmetric threesoliton string of the π-- type versus the filter s bandwidth at different values of the map strength S. The next necessary step is to consider the transmission of three-soliton arrays, which may be, according to their relative-phase pattern, of three different types, --, -π-, and π--. Keeping the same definition of the collision length as introduced above for the two-soliton strings, in Fig. 6 we summarize results of systematic simulations of the three-soliton symmetric patterns, i.e., ones of the -- and -π- types. The figure shows the collision length as a function of the DM map strength for these two cases. Comparison of Figs. 4 and 2 makes it evident that the dependences for the -- and -π- three-soliton strings resemble those for the two-soliton strings of the - and -π types, respectively. For the asymmetric π-- three-soliton pattern, the results are summarized in Fig. 7, which shows, in the panel, the same characteristic, viz., the collision length vs. S, Fig.8: Typical examples of collisions in the asymmetric three-soliton string of the π-- type, at the optimum value of the DM map strength, S = 1.65, for two different values of the filter s bandwidth, = 256 GHz, and. In these two cases, either of the two substrings, - or π-, determines the collision distance. as in Fig. 6, and the panel displays the collision length as a function of the filter bandwidth for different fixed values of S. For the asymmetric string, we conclude that, as a matter of fact, the collision distance is determined by the intrinsic interaction between two solitons in either the - substring, or the π- one. In particular, the former and latter substrings play a dominant role in the cases, respectively, 265 GHz, and 186 GHz. In the intermediate case, around = 2 GHz, the - and π- pairs dominate, respectively, if S < 1.5 or S > 1.5. In Fig. 8, such two different situations are illustrated by typical examples (for S = 1.65, which was

5 MAYTEEVARUNYOO AND ROEKSABUTR: INTERACTIONS OF DIFFERENTIAL PHASE-SHIFT KEYING (DPSK) identified above as the optimum value of the DM strength), and the corresponding regions are separated by the vertical solid lines in Fig. 7. As well as in the case of the two-soliton strings, the interaction-induced changes of the phase differences between the solitons belonging to the three-soliton patterns remained negligible in all the cases studied, as along as the transmission length did not exceed the collision distance. 4. CONCLUSION In this work, we have investigated the transmission of DPSK coded data by soliton streams in the model of the DM fiber link with lumped in-line filters. We have first considered elementary two- and three-soliton strings. Eventually, we have identified a range of values of the DM map-strength S, which provides for the optimal transmission regime. Combining the results (3) and (4) obtained for the twosoliton strings, and the one for the three strings, we can identify the eventual safe-transmission interval as 1.55 S Athikom Roeksabutr graduated from King Mongkut s Institute of Technology, Ladkrabang, Bangkok, Thailand. He also got Master degree in the area of optoelectronics from Floride Institute of Technology, USA, and PhD in Optical Communication from University of New South Wales, Australia. He is currently an Associate Professor at the department of Telecommunication Engineering, Mahanakorn University of Technology, Bangkok, Thailand, where he is now surving as a Vice President and the Dean of Engineering. His research interest covers optical technology and communication sush as acoustooptic device, DWDM devices and system, nonlinear optics, fourier optics, optical image processing, etc. References [1] M. Hanna, H. Porte, J. P. Goedgebuer, and W. T. Rhodes, Electr. Lett. 37 (21) 644; J. Leibrich, C. Wree, and W. Rosenkranz, IEEE Phot. Tech. Lett. 14 (22) 155; M. Hanna, D. Boivin, P. A. Lacourt, and J. P. Goedgebuer, J. Opt. Soc. Am. 21 (24) 24. [2] C. Rasmussen, T. Fjelde, J. Bennike, F. H. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and Reeves-Hall, J. Lightwave Tech. 22 (24) 23. [3] A. Berntson, N. J. Doran, W. Forysiak, and J. H. B. Nijhof, Opt. Lett. 23 (1998) 9. [4] T. Yu, E. A. Golovchenko, A. N. Pilipetskii and C. R. Menyuk, Opt. Lett. 22 (1997) 793. [5] M. Wald, B. Malomed, and F. Lederer, Opt. Commun. 172 (1999) 31. [6] M. Matsumoto, H. Kurokawa, Y. Kodama, and A. Hasegawa, Opt. Commun. 155 (1998) 28. [7] E. Iannone, F. Matera, A. Mecozzi, and M. Settembre. Nonlinear Optical Communication Networks (John Wiley & Sons: New York, 1998). Thawatchai Mayteevarunyoo received the B.Eng degree in telecommunication engineering from Mahanakorn university of technology in 1995 and the M.S.Eng degree in optical communication from the University of New South Wales, sydney, Australia, in He is currently pursuring the Ph.D. degree from Mahanakorn university of technology, Bangkok, Thailand. His research interests are in nonlinear wave propagation, optical soliton comunication systems and Gap solitons.

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems

Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems 632 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 3, MAY/JUNE 2002 Raman-Induced Timing Jitter in Dispersion-Managed Optical Communication Systems Jayanthi Santhanam and Govind P.

More information

Optimal dispersion precompensation by pulse chirping

Optimal dispersion precompensation by pulse chirping Optimal dispersion precompensation by pulse chirping Ira Jacobs and John K. Shaw For the procedure of dispersion precompensation in fibers by prechirping, we found that there is a maximum distance over

More information

Effects of third-order dispersion on dispersion-managed solitons

Effects of third-order dispersion on dispersion-managed solitons 133 J. Opt. Soc. Am. B/Vol. 16, No. 9/September 1999 T. I. Lakoba and G. P. Agrawal Effects of third-order dispersion on dispersion-managed solitons T. I. Lakoba and G. P. Agrawal Rochester Theory Center

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems 990 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 4, APRIL 2003 Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems Ekaterina Poutrina, Student Member, IEEE, Student Member,

More information

Incomplete collisions of wavelength-division multiplexed dispersion-managed solitons

Incomplete collisions of wavelength-division multiplexed dispersion-managed solitons Ablowitz et al. Vol. 18, No. 5/May 2001/J. Opt. Soc. Am. B 577 Incomplete collisions of wavelength-division multiplexed dispersion-managed solitons Mark J. Ablowitz, Gino Biondini,* and Eric S. Olson Department

More information

Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero Ansätze

Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero Ansätze Nakkeeran et al. Vol. 1, No. 11/November 004/J. Opt. Soc. Am. B 1901 Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero Ansätze

More information

HIGH BIT RATE DENSE DISPERSION MANAGED OPTICAL COMMUNICATION SYSTEMS WITH DISTRIBUTED AMPLIFICATION

HIGH BIT RATE DENSE DISPERSION MANAGED OPTICAL COMMUNICATION SYSTEMS WITH DISTRIBUTED AMPLIFICATION Progress In Electromagnetics Research, PIER 78, 31 3, 8 HIGH BIT RATE DENSE DISPERSION MANAGED OPTICAL COMMUNICATION SYSTEMS WITH DISTRIBUTED AMPLIFICATION M. Mishra and S. Konar Department of Applied

More information

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber ragg Grating F. Emami, Member IAENG, A. H. Jafari, M. Hatami, and A. R. Keshavarz Abstract In this paper we investigated

More information

IN a long-haul soliton communication system, lumped amplifiers

IN a long-haul soliton communication system, lumped amplifiers JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, APRIL 1998 515 Effect of Soliton Interaction on Timing Jitter in Communication Systems Armando Nolasco Pinto, Student Member, OSA, Govind P. Agrawal, Fellow,

More information

Accurate Calculation of Bit Error Rates in Optical Fiber Communications Systems

Accurate Calculation of Bit Error Rates in Optical Fiber Communications Systems Accurate Calculation of Bit Error Rates in Optical Fiber Communications Systems presented by Curtis R. Menyuk 1 Contributors Ronald Holzlöhner Ivan T. Lima, Jr. Amitkumar Mahadevan Brian S. Marks Joel

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Cutoff and leakage properties of bi-soliton and its existent parameter range

Cutoff and leakage properties of bi-soliton and its existent parameter range Cutoff and leakage properties of bi-soliton and its existent parameter range Akihiro Maruta * and Yoshifumi Asao Graduate School of Engineering, Osaka University - Yamada-oka, Suita, Osaka, 565-87 Japan

More information

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber Chapter 3 Ultra-short pulse propagation in dispersion-managed birefringent optical fiber 3.1 Introduction This chapter deals with the real world physical systems, where the inhomogeneous parameters of

More information

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser X. Wu, D. Y. Tang*, H. Zhang and L. M. Zhao School of Electrical and Electronic Engineering, Nanyang Technological University,

More information

Folded digital backward propagation for dispersion-managed fiber-optic transmission

Folded digital backward propagation for dispersion-managed fiber-optic transmission Folded digital backward propagation for dispersion-managed fiber-optic transmission Likai Zhu 1, and Guifang Li 1,3 1 CREOL, The College of Optics and Photonics, University of Central Florida, 4000 Central

More information

White light generation and amplification using a soliton pulse within a nano-waveguide

White light generation and amplification using a soliton pulse within a nano-waveguide Available online at www.sciencedirect.com Physics Procedia 00 (009) 000 000 53 57 www.elsevier.com/locate/procedia Frontier Research in Nanoscale Science and Technology White light generation and amplification

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Optical Component Characterization: A Linear Systems Approach

Optical Component Characterization: A Linear Systems Approach Optical Component Characterization: A Linear Systems Approach Authors: Mark Froggatt, Brian Soller, Eric Moore, Matthew Wolfe Email: froggattm@lunatechnologies.com Luna Technologies, 2020 Kraft Drive,

More information

Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems

Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 1, JANUARY 2003 61 Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems Oleg V. Sinkin, Member, IEEE, Ronald Holzlöhner,

More information

Performance Analysis of FWM Efficiency and Schrödinger Equation Solution

Performance Analysis of FWM Efficiency and Schrödinger Equation Solution Performance Analysis of FWM Efficiency and Schrödinger Equation Solution S Sugumaran 1, Rohit Bhura 2, Ujjwal Sagar 3,P Arulmozhivarman 4 # School of Electronics Engineering, VIT University, Vellore Tamil

More information

Novel Approaches to Numerical Modeling of Periodic Dispersion-Managed Fiber Communication Systems

Novel Approaches to Numerical Modeling of Periodic Dispersion-Managed Fiber Communication Systems IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 6, NO. 2, MARCH/APRIL 2000 263 Novel Approaches to Numerical Modeling of Periodic Dispersion-Managed Fiber Communication Systems Sergei K. Turitsyn,

More information

IN RECENT years, the observation and analysis of microwave

IN RECENT years, the observation and analysis of microwave 2334 IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 4, JULY 1998 Calculation of the Formation Time for Microwave Magnetic Envelope Solitons Reinhold A. Staudinger, Pavel Kabos, Senior Member, IEEE, Hua Xia,

More information

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating L. M. Zhao 1*, C. Lu 1, H. Y. Tam 2, D. Y. Tang 3, L. Xia 3, and P. Shum 3 1 Department of Electronic and Information

More information

Full polarization control for fiber optical quantum communication systems using polarization encoding

Full polarization control for fiber optical quantum communication systems using polarization encoding Full polarization control for fiber optical quantum communication systems using polarization encoding G. B. Xavier, G. Vilela de Faria, G. P. Temporão and J. P. von der Weid* Pontifical Catholic University

More information

Four-wave mixing in wavelength divisionmultiplexed soliton systems: ideal fibers

Four-wave mixing in wavelength divisionmultiplexed soliton systems: ideal fibers 788 J. Opt. Soc. Am. B/Vol. 4, o. 7/July 997 Ablowitz et al. Four-wave mixing in wavelength divisionmultiplexed soliton systems: ideal fibers M. J. Ablowitz and G. Biondini* Department of Applied Mathematics,

More information

Probability density of nonlinear phase noise

Probability density of nonlinear phase noise Keang-Po Ho Vol. 0, o. 9/September 003/J. Opt. Soc. Am. B 875 Probability density of nonlinear phase noise Keang-Po Ho StrataLight Communications, Campbell, California 95008, and Graduate Institute of

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

Electronic Compensation Technique to Mitigate Nonlinear Phase Noise

Electronic Compensation Technique to Mitigate Nonlinear Phase Noise > Journal of Lightwave Technology Electronic Compensation Technique to Mitigate onlinear Phase oise Keang-Po Ho, Member, IEEE, and Joseph M. Kahn, Fellow, IEEE Abstract onlinear phase noise, often called

More information

FIBER Bragg gratings are important elements in optical

FIBER Bragg gratings are important elements in optical IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 8, AUGUST 2004 1099 New Technique to Accurately Interpolate the Complex Reflection Spectrum of Fiber Bragg Gratings Amir Rosenthal and Moshe Horowitz Abstract

More information

INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE

INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE Progress In Electromagnetics Research B, Vol. 3, 63 72, 2008 INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE A. Panajotovic and D. Milovic Faculty of Electronic

More information

The Evolution and perturbation of Solitons in Dispersive- Nonlinear Optical Fiber

The Evolution and perturbation of Solitons in Dispersive- Nonlinear Optical Fiber IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue 3, Ver. IV (May - Jun. 14), PP 119-16 The Evolution and perturbation of Solitons in

More information

Hamiltonian dynamics of breathers with third-order dispersion

Hamiltonian dynamics of breathers with third-order dispersion 1150 J. Opt. Soc. Am. B/ Vol. 18, No. 8/ August 2001 S. Mookherjea and A. Yariv Hamiltonian dynamics of breathers with third-order dispersion Shayan Mookherjea* and Amnon Yariv Department of Applied Physics

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

R. L. Sharma*and Dr. Ranjit Singh*

R. L. Sharma*and Dr. Ranjit Singh* e t International Journal on Emerging echnologies (): 141-145(011) ISSN No (Print) : 0975-8364 ISSN No (Online) : 49-355 Solitons, its Evolution and Applications in High Speed Optical Communication R L

More information

Optical time-domain differentiation based on intensive differential group delay

Optical time-domain differentiation based on intensive differential group delay Optical time-domain differentiation based on intensive differential group delay Li Zheng-Yong( ), Yu Xiang-Zhi( ), and Wu Chong-Qing( ) Key Laboratory of Luminescence and Optical Information of the Ministry

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore

More information

Optimization of the Split-step Fourier Method in. Modeling Optical Fiber Communications Systems

Optimization of the Split-step Fourier Method in. Modeling Optical Fiber Communications Systems Optimization of the Split-step Fourier Method in Modeling Optical Fiber Communications Systems Oleg V. Sinkin, 1 Ronald Holzlöhner, 1 John Zweck, 1 and Curtis R. Menyuk 1;2 August 7, 2002 1 Department

More information

Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons

Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons Simulation for Different Order Solitons in Optical Fibers and the Behaviors of Kink and Antikink Solitons MOHAMMAD MEHDI KARKHANEHCHI and MOHSEN OLIAEE Department of Electronics, Faculty of Engineering

More information

Effect of Nonlinearity on PMD Compensation in a Single-Channel 10-Gb/s NRZ System

Effect of Nonlinearity on PMD Compensation in a Single-Channel 10-Gb/s NRZ System The Open Optics Journal, 28, 2, 53-6 53 Open Access Effect of Nonlinearity on PMD Compensation in a Single-Channel -Gb/s NRZ System John Cameron *,,2, Xiaoyi Bao and Liang Chen Physics Department, University

More information

The multiple-scale averaging and dynamics of dispersion-managed optical solitons

The multiple-scale averaging and dynamics of dispersion-managed optical solitons Journal of Engineering Mathematics 36: 163 184, 1999. 1999 Kluwer Academic Publishers. Printed in the Netherlands. The multiple-scale averaging and dynamics of dispersion-managed optical solitons TIAN-SHIANG

More information

MEASUREMENT of gain from amplified spontaneous

MEASUREMENT of gain from amplified spontaneous IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 2, FEBRUARY 2004 123 Fourier Series Expansion Method for Gain Measurement From Amplified Spontaneous Emission Spectra of Fabry Pérot Semiconductor Lasers

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

PMD Compensator and PMD Emulator

PMD Compensator and PMD Emulator by Yu Mimura *, Kazuhiro Ikeda *, Tatsuya Hatano *, Takeshi Takagi *, Sugio Wako * and Hiroshi Matsuura * As a technology for increasing the capacity to meet the growing demand ABSTRACT for communications

More information

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012 TUNABLE WAVELENGTH DEMULTIPLEXER FOR DWDM APPLICATION USING 1-D PHOTONIC CRYSTAL A. Kumar 1, B. Suthar 2, *, V. Kumar 3, Kh. S. Singh

More information

Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber

Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber 1346 J. Opt. Soc. Am. B/ Vol. 20, No. 6/ June 2003 P. Wai and W. Cao Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing

More information

Polarization division multiplexing system quality in the presence of polarization effects

Polarization division multiplexing system quality in the presence of polarization effects Opt Quant Electron (2009) 41:997 1006 DOI 10.1007/s11082-010-9412-0 Polarization division multiplexing system quality in the presence of polarization effects Krzysztof Perlicki Received: 6 January 2010

More information

DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method

DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method DWDM transmission optimization in nonlinear optical fibres with a fast split-step wavelet collocation method T. Kremp a and W. Freude b a Institut für Geometrie und Praktische Mathematik, RWTH Aachen University

More information

Efficient method for obtaining parameters of stable pulse in grating compensated dispersion-managed communication systems

Efficient method for obtaining parameters of stable pulse in grating compensated dispersion-managed communication systems 3 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12 14, 3 Efficient method for obtainin parameters of stable pulse in ratin compensated dispersion-manaed communication

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer Ai-Ping Luo, Zhi-Chao Luo,, Wen-Cheng Xu,, * and Hu Cui Laboratory of Photonic Information Technology,

More information

Instabilities of dispersion-managed solitons in the normal dispersion regime

Instabilities of dispersion-managed solitons in the normal dispersion regime PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000 Instabilities of dispersion-managed solitons in the normal dispersion regime Dmitry E. Pelinovsky* Department of Mathematics, University of Toronto,

More information

Nonlinearity management: a route to high-energy soliton fiber lasers

Nonlinearity management: a route to high-energy soliton fiber lasers 470 J. Opt. Soc. Am. B/ Vol. 19, No. 3/ March 2002 F. Ö. Ilday and F. W. Wise Nonlinearity management: a route to high-energy soliton fiber lasers Fatih Ö. Ilday and Frank W. Wise Department of Applied

More information

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Group interactions of dissipative solitons in a laser cavity: the case of 2+1 Group interactions of dissipative solitons in a laser cavity: the case of +1 Philippe Grelu and Nail Akhmediev * Laboratoire de Physique de l Université de Bourgogne, Unité Mixte de Recherche 507 du Centre

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part II

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Impact of Nonlinearities on Fiber Optic Communications

Impact of Nonlinearities on Fiber Optic Communications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Review Impact of Nonlinearities on Fiber Optic Communications Mário Ferreira

More information

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath International Letters of Chemistry, Physics and Astronomy Submitted: 6-- ISSN: 99-3843, Vol. 64, pp 59-7 Accepted: 6--5 doi:.85/www.scipress.com/ilcpa.64.59 Online: 6--5 6 SciPress Ltd., Switzerland Simulation

More information

Nonlinear Switching of Optical Pulses in Fiber Bragg Gratings

Nonlinear Switching of Optical Pulses in Fiber Bragg Gratings 508 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 3, MARCH 2003 Nonlinear Switching of Optical Pulses in Fiber Bragg Gratings Hojoon Lee, Member, IEEE, and Govind P. Agrawal, Fellow, IEEE Abstract

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity pulses. The pulse structure is shown for the scheme in Fig. 1a (point B) versus the round- trip number. The zero time

More information

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser Elena G. Turitsyna*, Sergei K. Turitsyn, and Vladimir K. Mezentsev Photonics Research Group, Aston University,

More information

Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings

Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings 3 J. Opt. Soc. Am. B/ Vol., No. 3/ March 9 Li et al. Nearly chirp- and pedestal-free pulse compression in nonlinear fiber Bragg gratings Qian Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, * Department

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Raman Amplification for Telecom Optical Networks Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux Training day www.brighter.eu project Cork, June 20th 2008 Outline of the

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating

Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating Optical spectral pulse shaping by combining two oppositely chirped fiber Bragg grating Miguel A. Preciado, Víctor García-Muñoz, Miguel A. Muriel ETSI Telecomunicación, Universidad Politécnica de Madrid

More information

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Nonlinear effects in optical fibers - v1 Miguel A. Muriel UPM-ETSIT-MUIT-CFOP Miguel A. Muriel-015/10-1 Nonlinear effects in optical fibers 1) Introduction ) Causes 3) Parameters 4) Fundamental processes

More information

Propagation losses in optical fibers

Propagation losses in optical fibers Chapter Dielectric Waveguides and Optical Fibers 1-Fev-017 Propagation losses in optical fibers Charles Kao, Nobel Laureate (009) Courtesy of the Chinese University of Hong Kong S.O. Kasap, Optoelectronics

More information

Soliton phase jitter control by use of super-gaussian filters

Soliton phase jitter control by use of super-gaussian filters Optics Communications 250 (2005) 36 40 www.elsevier.com/locate/optcom Soliton phase jitter control by use of super-gaussian filters Y.J. He, H.Z. Wang * State Key Laboratory of Optoelectronic Materials

More information

ONE can design optical filters using different filter architectures.

ONE can design optical filters using different filter architectures. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 23, DECEMBER 1, 2010 3463 Comparison of Cascade, Lattice, and Parallel Filter Architectures Rohit Patnaik, Vivek Vandrasi, Christi K. Madsen, Ali A. Eftekhar,

More information

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer

More information

Factors Affecting Higher Order Solitons in Soliton Transmission

Factors Affecting Higher Order Solitons in Soliton Transmission Factors Affecting Higher Order Solitons in Soliton Transmission SUBI S, Lakshmy G B P.G. Scholar, Optoelectronics and Communication Systems Dept. of ECE TKM Institute of Technology, Kollam. India. Subi.sulaiman@gmail.com

More information

THE IMPACT POLARIZATION MODE DISPERSION OPTICAL DUOBINARY TRANSMISSION

THE IMPACT POLARIZATION MODE DISPERSION OPTICAL DUOBINARY TRANSMISSION THE IMPACT of POLARIZATION MODE DISPERSION on OPTICAL DUOBINARY TRANSMISSION A. Carena, V. Curri, R. Gaudino, P. Poggiolini Optical Communications Group - Politecnico di Torino Torino - ITALY OptCom@polito.it

More information

Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings

Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings 448 J. Opt. Soc. Am. B/ Vol. 25, No. 3/ March 2008 Z. Toroker and M. Horowitz Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings Zeev Toroker* and Moshe Horowitz

More information

Dark optical solitons with finite-width background pulses

Dark optical solitons with finite-width background pulses Tomlinson et al. Vol. 6, No. 3/March 1989/J. Opt. Soc. Am. B 329 Dark optical solitons with finite-width background pulses W. J. Tomlinson Bellcore, Red Bank, New Jersey 771-74 Raymond J. Hawkins Lawrence

More information

Estimation of Optical Link Length for Multi Haul Applications

Estimation of Optical Link Length for Multi Haul Applications Estimation of Optical Link Length for Multi Haul Applications M V Raghavendra 1, P L H Vara Prasad 2 Research Scholar Department of Instrument Technology 1, Professor & Chairman (BOS) Department of Instrument

More information

Nonlinear Transmission of a NOLM with a Variable Wave Retarder inside the Loop

Nonlinear Transmission of a NOLM with a Variable Wave Retarder inside the Loop Nonlinear Transmission of a NOLM with a Variable Wave Retarder inside the Loop Yazmin E. Bracamontes-Rodríguez 1, Ivan Armas Rivera 1, Georgina Beltrán-Pérez 1, J.Castillo-Mixcoátl 1, S.Muñoz-Aguirre 1,

More information

Four-wave mixing in dispersion-managed return-to-zero systems

Four-wave mixing in dispersion-managed return-to-zero systems Ablowitz et al. Vol. 20, No. 5/May 2003/J. Opt. Soc. Am. B 831 Four-wave mixing in dispersion-managed return-to-zero systems Mark J. Ablowitz Department of Applied Mathematics, University of Colorado at

More information

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Supplementary Information Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons Jae K. Jang, Miro Erkintalo, Stéphane Coen, and Stuart G. Murdoch The Dodd-Walls Centre

More information

STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS

STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS 1 BHUPESHWARAN MANI, 2 CHITRA.K 1,2 Department of ECE, St Joseph s College of Engineering, Anna University, Chennai

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part IV

More information

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses G. Genty, M. Lehtonen, and H. Ludvigsen Fiber-Optics Group, Department of Electrical and Communications

More information

Privacy Amplification of QKD Protocol in a Quantum Router

Privacy Amplification of QKD Protocol in a Quantum Router Available online at www.sciencedirect.com Procedia Engineering 3 (01) 536 543 I-SEEC011 Privacy Amplification of QKD Protocol in a Quantum Router S. Chaiyasoonthorn a, P. Youplao b, S. Mitatha b, P.P.

More information

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 1, Issue 1, Ver. III (Jan.-Feb. 17), PP 35-39 www.iosrjournals.org Dispersion Properties of

More information

arxiv:quant-ph/ v1 5 Aug 2004

arxiv:quant-ph/ v1 5 Aug 2004 1 Generation of polarization entangled photon pairs and violation of Bell s inequality using spontaneous four-wave mixing in fiber loop Hiroki Takesue and Kyo Inoue arxiv:quant-ph/0408032v1 5 Aug 2004

More information

CROSS-PHASE modulation (XPM) is a nonlinear phenomenon

CROSS-PHASE modulation (XPM) is a nonlinear phenomenon JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 4, APRIL 2004 977 Effects of Polarization-Mode Dispersion on Cross-Phase Modulation in Dispersion-Managed Wavelength-Division-Multiplexed Systems Q. Lin and

More information

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber

Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Theoretical and empirical comparison of coupling coefficient and refractive index estimation for coupled waveguide fiber Toto Sakioto saktioto@yahoo.com abstract Mohamed Fadhali mohamedfadhali@yahoo.com

More information

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers General pulse propagation equation Optical pulse propagation just as any other optical

More information

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Stable One-Dimensional

More information

Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasilossless and lossy optical fiber spans

Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasilossless and lossy optical fiber spans 1254 J. Opt. Soc. Am. B/ Vol. 24, No. 6/ June 2007 Prilepsky et al. Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasilossless and lossy optical fiber spans Jaroslaw

More information

Supplementary Figure 1: Scheme of the RFT. (a) At first, we separate two quadratures of the field (denoted by and ); (b) then, each quadrature

Supplementary Figure 1: Scheme of the RFT. (a) At first, we separate two quadratures of the field (denoted by and ); (b) then, each quadrature Supplementary Figure 1: Scheme of the RFT. (a At first, we separate two quadratures of the field (denoted by and ; (b then, each quadrature undergoes a nonlinear transformation, which results in the sine

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

Analytical Form of Frequency Dependence of DGD in Concatenated Single-Mode Fiber Systems

Analytical Form of Frequency Dependence of DGD in Concatenated Single-Mode Fiber Systems JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 10, OCTOBER 2003 2217 Analytical Form of Frequency Dependence of DGD in Concatenated Single-Mode Fiber Systems M. Yoshida-Dierolf and V. Dierolf Abstract An

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities Yu et al. Vol. 15, No. 2/February 1998/J. Opt. Soc. Am. B 617 Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities M.

More information

Near-field diffraction of irregular phase gratings with multiple phase-shifts

Near-field diffraction of irregular phase gratings with multiple phase-shifts References Near-field diffraction of irregular phase gratings with multiple phase-shifts Yunlong Sheng and Li Sun Center for optics, photonics and laser (COPL), University Laval, Quebec City, Canada, G1K

More information