Beam beam simulation. S.Isaacman, A.Long,E.Pueschel, D.Rubin. October 1,

Size: px
Start display at page:

Download "Beam beam simulation. S.Isaacman, A.Long,E.Pueschel, D.Rubin. October 1,"

Transcription

1 Beam beam simulation S.Isaacman, A.Long,E.Pueschel, D.Rubin October 1,

2 Weak-strong simulation - Strong beam is fixed - Weak beam consists of N macro particles. - Track weak beam macro-particles through lattice Guide field includes all magnetic elements Third order map for wigglers RF cavities Synchrotron radiation damping and excitation Beam beam elements at each of parasitic crossing points and at IP Beam beam element is 2-d. Represent longitudinal extent of strong bunch at IP with 2-d slices October 1,

3 Single beam scan Before/after sextupole optimization to Minimize energy dependence of beta October 1,

4 Weak-strong simulation - Rationale In CESR, nonlinearities associated with wigglers, pretzel, multiple parasitic crossings, impose the beambeam current limit Conjecture - Coherent beam beam effects do not contribute because the threshold is even higher October 1,

5 Simulation Initialization Specify Horizontal, vertical, synchrotron tunes Bunch current Bunch pattern Long range beam beam ineractions - Identify locations of parasitic crossings - Split elements at pc s - Reverse separator polarities and compute closed orbit, twiss parameters of strong beam -Insert beambeam element at splits using coordinates of closed orbit to set x,y offset, and twiss parameters and emittance to set beam size Beam beam interaction at IP - Compute orientation and profile of strong beam at IP (depends on beta*, coupling parameters, emittances) - Insert beam beam element and set offsets, and sizes October 1,

6 Collision assurance Strong beam There is no symmetry to ensure that the closed orbit at IP is zero and in general it is not - Imperfect closure of L3 vertical separation bump - lattice/ pretzel asymmetry - field errors Weak beam Closed orbit depends on current in strong beam And bunch pattern - parasitic crossings October 1,

7 Collide Beams Close pretzel - Adjust voltage of separators 8E/8W (pretzing 13) to zero differential horizontal offset at IP For each voltage setting Update closed orbit for strong beam reset offsets for beambeam elements for parasitic crossings Compute closed orbit for weak beam Close vertical - Adjust vertical phase advance between vertical separators and vertical separator voltage asymmetry to zero differential vertical offset and angle at IP Update strong beam closed orbit and beambeam element offsets Set tunes - Qtune (arc quads) to specified horizontal and vertical tunes. - Cavity voltage -> synchrotron tune Repeat 7

8 BEAMBEAM_SCAN: Initially Qx = Qy = Closed orbit E E E E BEAMBEAM_SCAN: After parasitic interactions added 2.0mA/bunch Qx = Qy = Closed orbit E E E E-03 Strong beam: sigma_x = E-03 sigma_y = E-05 sigma_z = E-01 Pitch : x= E-02 y= E-03 Offset : x= E-03 y= E-05 Tilt = E-03 BEAMBEAM_SCAN: After beambeam added 2.0mA/bunch Qx = Qy = Closed orbit E E E E-03 October 1,

9 close_pretzel: 0 8W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = Qx = Qy = Qz = CLOSE_VERT 0 48W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = Qx = Qy = Qz = Closed orbit E E E E-03 BEAMBEAM: turn off beam beam at IP Qtune with pretzel and vert closed but beam beam at IP off: Qx = Qy = Qz = CLOSE_VERT: 0 48W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = W(mr) = E(mr) = dx,dxp,dy,dyp (mm) = qtune to Qx = Qy = Qz = Turn Beambeam on Qx = Qy = dx,dxp,dy,dyp (mm) =

10 Generate weak beam distribution - Calculate equilibrium normal mode emittances - Generate random distribution in horizontal, vertical and longitudinal phase space - Transform to lab coordinates - Shift centroid of distribution to coordinates of closed orbit at IP - Tilt distribution to match angles of closed orbit October 1,

11 October 1,

12 Track weak beam macro particles - Track through guide field that now includes beambeam elements at parasitic crossings and at IP - Particles do not communicate with each other Every N turns (~500) - Luminosity Calculate luminosity - Update size of strong beam Fit gaussians to x-y-z distribution of weak beam Set size of strong beam to match weak beam - Is the distribution of the weak beam gaussian? October 1,

13 Distribution after 200,000 turns I b =1.25mA October 1,

14 χ 2 vs turn For fitted gaussian to weak beam distribution -> weak beam remains gaussian October 1,

15 Convergence in ~ 10 Damping times (200,000 turns) 200k turns 1000k turns October 1,

16 Dependence on number of macro-particles in weak beam October 1,

17 October 1,

18 October 1,

19 Parallel processing After weak beam distribution is generated, track particles on independent nodes Every N (500) turns send particle coordinates back to central processor Linux clusters in use CHESS - Sirius, Feynmann (<100 dual processors) CLEO - lnx (12 dual processors) 200 particles turns/15seconds on 2X9 processors =200X particle-turns/6000 seconds Theory Center? October 1,

20 Tune scan 200 particles 200k turns 1.5mA 9X4 equilibrating strong beam October 1,

21 D sep-04 8X4, 1.89GeV 200 particles 200k turns 9X4 October 1,

22 October 1,

23 5.3GeV 9X4 Red - equilibrating Strong beam size Green - fixed strong beam 0.5% emittance coupling D October 1,

24 1.89GeV 200k turns 200 particles Red -Skew errors from 9-sep-27 characterization Green - No skew errors October 1,

25 Efffect of parasitic crossings 1.89GeV Single bunch 9X4 October 1,

26 Summary - Status -Measured vs calculated tunes Is relevant tune with/without parasitic interactions? How does it depend on current? -Number of macro particles in weak beam More macro particles -> higher luminosity Perhaps 200 is not enough to identify 3 gaussian distributions -How to introduce emittance coupling without prejudice? -Contintue investigation of effect of long range interactions Use tune scan to find operating point and compare with measurements To date weak beam bunch 1. Is there some bunch dependence? -Simulate head on conditions and compare with measurements - Tune simulation - Any/all lattice parameters/groups can be tuned - More computers? October 1,

27 CESR-c Electrostatically separated electron-positron orbits accomodate counterrotating trains Electrons and positrons collide with ±~3 mrad horizontal crossing angle 9 5-bunch trains in each beam (768m circumference) Beam October 1,

28 Open squares are calculation Red points are data October 1,

29 October 1,

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

BEAM-BEAM SIMULATION STUDIES OF CESR-c AND OBSERVATIONS IN CESR

BEAM-BEAM SIMULATION STUDIES OF CESR-c AND OBSERVATIONS IN CESR BEAM-BEAM SIMULATION STUDIES OF CESR-c AND OBSERVATIONS IN CESR Joseph T. Rogers, Mark A. Palmer, and Antonella P. Romano, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853, USA Christopher

More information

Pretzel scheme of CEPC

Pretzel scheme of CEPC Pretzel scheme of CEPC H. Geng, G. Xu, Y. Zhang, Q. Qin, J. Gao, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, F. Su HKUST, Hong Kong IAS program on High Energy

More information

ILC Damping Ring Alternative Lattice Design **

ILC Damping Ring Alternative Lattice Design ** ILC Damping Ring Alternative Lattice Design ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 1 Institute of High Energy Physics, CAS, Beijing 2 Key Laboratory of Heavy Ion Physics, Peking University, Beijing

More information

Plans for CESR (or Life Without CLEO)

Plans for CESR (or Life Without CLEO) CESR-c Plans for CESR (or Life Without CLEO) Mark A. Palmer David L. Rubin Second ILC Accelerator Workshop August 18, 2005 2 Outline CESR-c/CLEO-c Schedule Preliminary Concept Possibilities for CESR as

More information

Emittance Dilution In Electron/Positron Damping Rings

Emittance Dilution In Electron/Positron Damping Rings Emittance Dilution In Electron/Positron Damping Rings David Rubin (for Jeremy Perrin, Mike Ehrlichman, Sumner Hearth, Stephen Poprocki, Jim Crittenden, and Suntao Wang) Outline CESR Test Accelerator Single

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan.

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. 22-25, 2018 CEPC Parameters Y. Zhang, CEPC conference Nov. 2017, IHEP

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

CESR-c Status and Accelerator Physics

CESR-c Status and Accelerator Physics 30th Advanced ICFA Beam Dynamics Workshop on High Luminosity e+e- Collisions, October 3-6, 003, Stanford, California CESR-c Status and Accelerator Physics D. Rice LEPP-Cornell Univ., Ithaca, NY 4853 USA

More information

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011

Ultra-Low Emittance Storage Ring. David L. Rubin December 22, 2011 Ultra-Low Emittance Storage Ring David L. Rubin December 22, 2011 December 22, 2011 D. L. Rubin 2 Much of our research is focused on the production and physics of ultra-low emittance beams. Emittance is

More information

CBN Figure 1: Electron and positron closed orbits for head on. collisions. Tic marks along the circumference indicate parasitic

CBN Figure 1: Electron and positron closed orbits for head on. collisions. Tic marks along the circumference indicate parasitic CBN 95-8 1 CESR Status and Plans æ David L. Rubin for the CESR Operations Group Introduction The CESR electron positron collider has been conægured to operate with trains of closely spaced bunches that

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Electron Cloud Induced Beam Dynamics at CesrTA. Kiran Sonnad

Electron Cloud Induced Beam Dynamics at CesrTA. Kiran Sonnad Electron Cloud Induced Beam Dynamics at CesrTA Kiran Sonnad List of Contributers Experiments Simulation Laurel Bartnik* Lillian Pentecost$ Mike Billing* Mauro Pivi& Mike Forster* Kiran Sonnad % John Flanagan

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

C-MAD User s MANUAL. Version Mauro T. F. Pivi #,1

C-MAD User s MANUAL. Version Mauro T. F. Pivi #,1 April 20, 2011 SLAC-R-970 C-MAD User s MANUAL Version 3.0.1 Mauro T. F. Pivi #,1 Contributors: Kiran Sonnad 2, Alex Chao 1, Claudio Rivetta 1, Theo Demma 3. 1 SLAC National Accelerator Laboratory, 2575

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico 1 Outline Factory Running KEKB PEP-II DAFNE CESR-c BEPCII 2 Summary Factory Running

More information

CesrTA Program Overview

CesrTA Program Overview CesrTA Program Overview D. Rubin, Cornell University, Ithaca, NY 14850, USA Abstract The Cornell Electron/Positron Storage Ring has been configured as a damping ring test accelerator. The principle objective

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Fast Ion Instability at CESR-TA. Avishek Chatterjee (Post-doc at DPNC, formerly at Cornell) DPNC

Fast Ion Instability at CESR-TA. Avishek Chatterjee (Post-doc at DPNC, formerly at Cornell) DPNC Fast Ion Instability at CESR-TA Avishek Chatterjee (Post-doc at DPNC, formerly at Cornell) 2014.01.14 @ DPNC What is Fast Ion Instability? (1) FII (sometimes abbreviated as FBII, or Fast Beam-Ion Instability)

More information

CESR CREATING NEW FORMS OF MATTER. Meet CESR in Action. To Increase Luminosity

CESR CREATING NEW FORMS OF MATTER. Meet CESR in Action. To Increase Luminosity CESR CREATING NEW FORMS OF MATTER Meet CESR in Action Imagine a circular aluminum tube shaped like the inner tube of a bicycle tire. The tube is one-half mile in circumference, and its cross section is

More information

Polarized electron and positron beams at CEPC

Polarized electron and positron beams at CEPC Polarized electron and positron beams at CEPC Zhe Duan Institute of High Energy Physics, CAS Presented at mini-workshop on Beam polarization in future colliders IAS-HKUST, HK, Jan 18, 2019 zhe.duan@ihep.ac.cn

More information

Magnet Alignment Sensitivities in ILC DR Configuration Study Lattices. Andy Wolski. US ILC DR Teleconference July 27, 2005

Magnet Alignment Sensitivities in ILC DR Configuration Study Lattices. Andy Wolski. US ILC DR Teleconference July 27, 2005 Magnet Alignment Sensitivities in ILC DR Configuration Stud Lattices And Wolski Lawrence Berkele National Laborator US ILC DR Teleconference Jul 7, 005 : Equilibrium vertical emittance in ILC DR must be

More information

Space Charge Effects in the TESLA Damping Ring

Space Charge Effects in the TESLA Damping Ring Space Charge Effects in the TESLA Damping Ring Winfried Decking DESY -MPY- Damping Ring Parameters Direct Space Charge The Cure Summary July 2001 injection ejection Damping Ring - Introduction Long TESLA

More information

Optimization of CESR-c Optics for High Time-Integrated Luminosity

Optimization of CESR-c Optics for High Time-Integrated Luminosity Optimization of CESR-c Optics for High Time-Integrated Luminosity M. Van Camp Lawrence University, Appleton, WI, 54911 (Dated: 11 August, 2007) The Cornell Electron Storage Ring (CESR) is known for its

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC

DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC F. Schmidt, CERN, Geneva, Switzerland A. Valishev, FNAL, Batavia, IL 60510, USA Y. Luo, BNL, Upton, NY 11973-5000, USA

More information

Letter of Intent for KEK Super B Factory

Letter of Intent for KEK Super B Factory Letter of Intent for KEK Super B Factory Part III: Accelerator Design edited by J. W. Flanagan and Y. Ohnishi August 9, 2004 Contents Executive Summary 341 1 Machine Parameters 344 1.1 Luminosity...................................

More information

Overview of the Beam Dynamics Study in CESR

Overview of the Beam Dynamics Study in CESR Overview of the Beam Dynamics Study in CESR A. Temnykh for the CESR Operations and Technical Support Staff Cornell University Laboratory for Elementary-Particle Physics April 14, 2008 Beam Dynamics in

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November

M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November 6-8 2017 Why a new t/charm-factory? Physics at rather low energy is still interesting

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Beam-beam effects. (an introduction) Werner Herr CERN, AB Department. (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf)

Beam-beam effects. (an introduction) Werner Herr CERN, AB Department. (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf) Beam-beam effects (an introduction) Werner Herr CERN, AB Department (/afs/ictp/home/w/wfherr/public/cas/doc/beambeam.pdf) (http://cern.ch/lhc-beam-beam/talks/trieste beambeam.pdf) Werner Herr, beam-beam

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

in the VLHC Tunnel A Very Large Lepton Collider Eberhard Keil keil/doc/vllc/09mar01.pdf CERN, Geneva, Switzerland

in the VLHC Tunnel A Very Large Lepton Collider Eberhard Keil   keil/doc/vllc/09mar01.pdf CERN, Geneva, Switzerland A Very Large Lepton Collider in the VLHC Tunnel Eberhard Keil CERN, Geneva, Switzerland http://wwwslap.cern.ch/ keil/doc/vllc/09mar01.pdf E. Keil page 1 Programme VLLC parameter searches with a notebook

More information

BEPC AND THE FUTURE PROGRAM AT IHEP

BEPC AND THE FUTURE PROGRAM AT IHEP BEPC AND THE FUTURE PROGRAM AT IHEP Z.T. Zhao, S.H.Wang of BEPC Group IHEP, Chinese Academy of Sciences, P.O.Box 918, Beijing 100039, P.R.China Abstract Beijing Electron and Positron Collider (BEPC), a

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

Emittance Growth and Tune Spectra at PETRA III

Emittance Growth and Tune Spectra at PETRA III Emittance Growth and Tune Spectra at PETRA III Presentation at the ECLOUD 2010 workshop Rainer Wanzenberg ECLOUD 2010 October 8-12, 2010 Statler Hotel, Cornell University Ithaca, New York USA PETRA III

More information

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25 SABER Optics Y. Nosochkov, K. Bane, P. Emma, R. Erickson SABER Workshop, SLAC, March 15-16, 2006 1/25 Outline White paper optics design Beam tracking for SABER and for the old South Arc Magnet overlap

More information

Beam-Beam Simulations for e + e Colliders

Beam-Beam Simulations for e + e Colliders Beam-Beam Simulations for e + e Colliders J. Rogers, Cornell University Motivation for simulations from observed effects Methods algorithms, simulation codes, and some results. Conclusions Brown Bag Seminar,

More information

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with ILC Spin Rotator Super B Workshop III Presenter: Jeffrey Smith, Cornell University with Peter Schmid, DESY Peter Tenenbaum and Mark Woodley, SLAC Georg Hoffstaetter and David Sagan, Cornell Based on NLC

More information

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team

Diagnostics at the MAX IV 3 GeV storage ring during commissioning. PPT-mall 2. Åke Andersson On behalf of the MAX IV team Diagnostics at the MAX IV 3 GeV storage ring during commissioning PPT-mall 2 Åke Andersson On behalf of the MAX IV team IBIC Med 2016, linje Barcelona Outline MAX IV facility overview Linac injector mode

More information

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 Commissioning of PETRA III Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010 PETRA III Parameters Circumference (m) Energy (GeV) ε x (nm rad) ε y (pm rad) Current (ma) # bunches Straight

More information

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN JLAB-TN-7-1 Double Bend Achromat Arc Optics for 12 GeV CEBAF Abstract Alex Bogacz Alternative beam optics is proposed for the higher arcs to limit emittance dilution due to quantum excitations. The new

More information

Beam Optics design for CEPC collider ring

Beam Optics design for CEPC collider ring Beam Optics design for CEPC collider ring, Yuan Zhang, Yuanyuan Wei, Sha Bai, Dou Wang, Huiping Geng, Chenghui Yu, Jie Gao IHEP, Beijing 1st workshop on applications of high energy Circular Electron-Positron

More information

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance

Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance Update on Optics Modeling for the ATF Damping Ring at KEK Studies for low vertical emittance 2009.05.08. K. Kubo, S. Kuroda, T. Okugi (KEK) M.D. Woodley (SLAC), A. Wolski, K. Panagiotidis (U. Liverpool

More information

Terahertz Coherent Synchrotron Radiation at DAΦNE

Terahertz Coherent Synchrotron Radiation at DAΦNE K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, July 28, 2004 Note: G-61 Terahertz Coherent Synchrotron Radiation at DAΦNE C. Biscari 1, J. M. Byrd 2, M. Castellano 1, M. Cestelli Guidi

More information

Measurements and simulations of electron-cloudinduced tune shifts and emittance growth at CESRTA

Measurements and simulations of electron-cloudinduced tune shifts and emittance growth at CESRTA Measurements and simulations of electron-cloudinduced tune shifts and emittance growth at CESRTA Stephen Poprocki, J.A. Crittenden, D.L. Rubin, S.T. Wang Cornell University ECLOUD 8 June -7, 8 Elba Island,

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Collider Rings and IR Design for MEIC

Collider Rings and IR Design for MEIC Collider Rings and IR Design for MEIC Alex Bogacz for MEIC Collaboration Center for Advanced Studies of Accelerators EIC Collaboration Meeting The Catholic University of America Washington, DC, July 29-31,

More information

LEP PROGRESS AND FUTURE PLANS

LEP PROGRESS AND FUTURE PLANS 31 LEP PROGRESS AND FUTURE PLANS EBERHARD KEIL CERN, Geneva, Switzerland ABSTRACT The LEP machine performance in 1992 and the plans for 1993 are presented and discussed. The status of the LEP 2 project

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Lattice design and dynamic aperture optimization for CEPC main ring

Lattice design and dynamic aperture optimization for CEPC main ring Lattice design and dynamic aperture optimization for CEPC main ring Yiwei Wang, Feng Su, Sha Bai, Yuan Zhang, Dou Wang, Huiping Geng, Chenghui Yu, Jie Gao HKUST IAS conference, 23-26 Jan 2017 Outline Fully

More information

BEAM-BEAM EFFECTS IN RHIC

BEAM-BEAM EFFECTS IN RHIC Proceedings of HB212, Beijing, China THO1A1 BEAM-BEAM EFFECTS IN RHIC Y. Luo, M. Bai, W. Fischer, C. Montag, S. White, Brookhaven National Laboratory, Upton, NY 11973, USA Abstract In this article we review

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Note. Performance limitations of circular colliders: head-on collisions

Note. Performance limitations of circular colliders: head-on collisions 2014-08-28 m.koratzinos@cern.ch Note Performance limitations of circular colliders: head-on collisions M. Koratzinos University of Geneva, Switzerland Keywords: luminosity, circular, collider, optimization,

More information

Linear Collider Collaboration Tech Notes

Linear Collider Collaboration Tech Notes LCC 0035 07/01/00 Linear Collider Collaboration Tech Notes More Options for the NLC Bunch Compressors January 7, 2000 Paul Emma Stanford Linear Accelerator Center Stanford, CA Abstract: The present bunch

More information

BEAM-BEAM INTERACTIONS

BEAM-BEAM INTERACTIONS BEAM-BEAM INTERACTIONS Werner Herr, AB Division CERN, Geneva, Switzerland Abstract One of the most severe limitations in high intensity particle colliders is the beam-beam interaction, i.e. the perturbation

More information

NEXT GENERATION B-FACTORIES

NEXT GENERATION B-FACTORIES NEXT GENERATION B-FACTORIES M. Masuzawa, KEK, Tsukuba, Japan Abstract The KEKB and PEP-II B factories have achieved world record luminosities while doubling or tripling their original design luminosities.

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

COMBINER RING LATTICE

COMBINER RING LATTICE CTFF3 TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, April 4, 21 Note: CTFF3-2 COMBINER RING LATTICE C. Biscari 1. Introduction The 3 rd CLIC test facility, CTF3, is foreseen to check the feasibility

More information

STUDIES OF THE ELECTRON-CLOUD-INDUCED BEAM DYNAMICS AT CESR-TA

STUDIES OF THE ELECTRON-CLOUD-INDUCED BEAM DYNAMICS AT CESR-TA DYN3 Proceedings of ECLOUD1, Ithaca, New York, USA STUDIES OF THE ELECTRON-CLOUD-INDUCED BEAM DYNAMICS AT CESR-TA G. Dugan, M. G. Billing, R. Meller, M. Palmer, G. A. Ramirez, J. Sikora, K. Sonnad, H.

More information

Use of Crab Cavities for Short X-ray Pulse Production in Rings

Use of Crab Cavities for Short X-ray Pulse Production in Rings Use of Crab Cavities for Short X-ray Pulse Production in Rings Michael Borland Argonne National Laboratory March 2010 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Beam Dynamics Studies in SuperKEKB. K. Ohmi (KEK) SuperB workshop at INFN-Frascati March 19-24, 2012

Beam Dynamics Studies in SuperKEKB. K. Ohmi (KEK) SuperB workshop at INFN-Frascati March 19-24, 2012 Beam Dynamics Studies in SuperKEKB K. Ohmi (KEK) SuperB workshop at INFN-Frascati March 19-24, 2012 Contents Strong-strong beam-beam simulation, synchro-beta resonances Tolerance of IP parameter Electron

More information

High performance computing simulations. for multi-particle effects in the synchrotons

High performance computing simulations. for multi-particle effects in the synchrotons High performance computing simulations for multi-particle effects in the synchrotons Content What is the HSC section doing? Physics basics PyHEADTAIL software Simulations of the PS Simulations of instabilities

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

STUDIES AT CESRTA OF ELECTRON-CLOUD-INDUCED BEAM DYNAMICS FOR FUTURE DAMPING RINGS

STUDIES AT CESRTA OF ELECTRON-CLOUD-INDUCED BEAM DYNAMICS FOR FUTURE DAMPING RINGS STUDIES AT CESRTA OF ELECTRON-CLOUD-INDUCED BEAM DYNAMICS FOR FUTURE DAMPING RINGS G. Dugan, M. Billing, K. Butler, J. Crittenden, M. Forster, D. Kreinick, R. Meller, M. Palmer, G. Ramirez, M. Rendina,

More information

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice Linear Collider Collaboration Tech Notes LCC-0066 CBP Tech Note - 233 June 2001 A New Structure for the NLC Positron Predamping Ring Lattice A. Wolski Lawrence Berkeley National Laboratory Berkeley, CA

More information

Choosing the Baseline Lattice for the Engineering Design Phase

Choosing the Baseline Lattice for the Engineering Design Phase Third ILC Damping Rings R&D Mini-Workshop KEK, Tsukuba, Japan 18-20 December 2007 Choosing the Baseline Lattice for the Engineering Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

Luminosity Calculation From Known Beam Functions

Luminosity Calculation From Known Beam Functions Luminosity Calculation From Known Beam Functions Galekhutle Marang Electrical Engineering, Wayne State University, Detroit,MI, 48202 (Dated: August 16, 2003) Luminosity is a measure of the rate of collisions

More information

CesrTA Status Report Mark Palmer for the CesrTA Collaboration March 4, 2009 ESR

CesrTA Status Report Mark Palmer for the CesrTA Collaboration March 4, 2009 ESR CesrTA Status Report Mark Palmer for the CesrTA Collaboration March 4, 2009 ESR Outline Recent Updates January run/february Down Overview Optics & LET xbsm Electron Cloud Studies Tune Data-Simulation Comparisons

More information

Beam-Beam Simulation for PEP-II

Beam-Beam Simulation for PEP-II Beam-Beam Simulation for PEP-II Yunhai Cai Accelerator Research Department-A, SLAC e + e Factories 2003, SLAC October 14, 2003 Outline Method of simulation: - Boundary condition - Parallel computing -

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 Lattice Design... in 10 seconds... the Matrices Transformation of the coordinate vector (x,x ) in a lattice x(s) x = M 0 x'(s) 1 2 x' 0

More information

BEAM - BEAM TAILS STUDY FOR DAΦNE. D. Shatilov (BINP), M. Zobov

BEAM - BEAM TAILS STUDY FOR DAΦNE. D. Shatilov (BINP), M. Zobov K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, January 22, 1997 Note: G-45 BEAM - BEAM TAILS STUDY FOR DAΦNE D. Shatilov (BINP), M. Zobov Abstract The long tails induced by beam -

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

January 13, 2005 CBN 05-1 IDEAL WIGGLER 1. A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 14853

January 13, 2005 CBN 05-1 IDEAL WIGGLER 1. A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 14853 January 1, 005 CBN 05-1 IDEAL WIGGLER 1 A.Mikhailichenko, Cornell University, LEPP, Ithaca NY 1485 Abstract. Described is the wiggler with reduced nonlinear components for usage in the damping ring of

More information

RECENT DEVELOPMENTS IN DESIGNS FOR e + e COLLIDERS

RECENT DEVELOPMENTS IN DESIGNS FOR e + e COLLIDERS RECENT DEVELOPMENTS IN DESIGNS FOR e + e COLLIDERS K. Ohmi for the KEKB Commissioning Group KEK, Oho, Tsukuba, 35-81, Japan Abstract We discuss an design of future e + e collider from the view point of

More information

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles)

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles) Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles) Overview Optics

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Sunday morning: Beam Dynamics Issues. Session highlights and outstanding questions. M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University

Sunday morning: Beam Dynamics Issues. Session highlights and outstanding questions. M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University Sunday morning: Beam Dynamics Issues Session highlights and outstanding questions M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University Summary -Electron cloud induced instabilities observed for

More information

e-cloud DAFNE T. Demma INFN-LNF

e-cloud DAFNE T. Demma INFN-LNF e-cloud Instabilities @ DAFNE T. Demma INFN-LNF Plan of Talk Introduction Analysis of the e-cloud induced instabilities @ DAFNE Coupled bunch Single bunch Clearing electrodes for DAFNE dipoles and wigglers

More information

STATUS OF BEPC AND PLAN OF BEPCII

STATUS OF BEPC AND PLAN OF BEPCII STATUS OF BEPC AND PLAN OF BEPCII C. Zhang for BEPCII Team Institute of High Energy Physics, P.O.Box 918, Beijing 139, China Abstract The status of the Beijing Electron-Positron Collider (BEPC) and plans

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION Lenny Rivkin Ecole Polythechnique Federale de Lausanne (EPFL) and Paul Scherrer Institute (PSI), Switzerland CERN Accelerator School: Introduction to Accelerator

More information

Single bunch longitudinal measurements at the Cornell Electron-Positron Storage Ring

Single bunch longitudinal measurements at the Cornell Electron-Positron Storage Ring PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 3441 (2) Single bunch longitudinal measurements at the Cornell Electron-Positron Storage Ring R. Holtzapple, M. Billing, D. Hartill, and

More information