Total Energy Singular Vectors for Atmospheric Chemical Transport Models

Size: px
Start display at page:

Download "Total Energy Singular Vectors for Atmospheric Chemical Transport Models"

Transcription

1 Total Energy Singular Vectors for Atmospheric Chemical Transport Models Wenyuan Liao and Adrian Sandu Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA {liao, Abstract. The aim of this paper is to address computational aspects of the total energy singular vector analysis of atmospheric chemical transport models. We discuss the symmetry of the tangent-linear/adjoint operator for stiff systems. Results for a 3D simulation with real data reveal that the total energy singular vectors depend on the target domain, simulation window, chemical reactions, and meteorological data. Keywords: Adjoint models, sensitivity analysis, data assimilation, total energy singular vectors. 1 Introduction Improvements of air quality require accurate and timely predictions of atmospheric pollutant concentrations. A critical element for accurate simulations is the use of observational data to constrain model predictions. Widely used data assimilation techniques include 3D-Var, 4D-Var, Kalman filter and ensemble nonlinear filters. Kalman filter techniques provide a stochastic approach to the data assimilation problem. The filter theory is described by Jazwinski [8] and the applicability to atmospheric modeling is discussed by Daley [4]. As explained by Fisher [6], the Kalman filter is too expensive to be a practical assimilation method for large-scale systems. The ensemble Kalman filter [7] is a feasible approach which approximates the Kalman filter covariance matrix by a Monte- Carlo-type technique. In ensemble Kalman filters the random errors in the statistically-estimated covariance decrease only with the square-root of the ensemble size. Furthermore, the subspace spanned by the random vectors is not optimal for explaining the forecast error. For good statistical approximations with small size ensembles it is essential to properly place the initial ensemble to span the directions of maximum error growth. These directions are the total energy singular vectors as explained below. In this paper we study some of the challenges encountered when computing singular vectors for large transport-chemistry models. The paper is organized as follows. In Section 2 we introduce the total energy singular vectors in the context of data assimilation. Computational aspects are discussed in Section 3, and numerical results are presented in Section 4. Conclusions and future directions are given in Section 5. V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp , c Springer-Verlag Berlin Heidelberg 2005

2 Total Energy Singular Vectors for Atmospheric Chemical Transport Models Ensembles and Singular Vectors An atmospheric model propagates the model state (from x b (t 0 )tox f (T )) and its covariance matrix (from P b (t 0 )top f (T )) using: x f = M t0 T (x b ), P f = M t0 T P b M T t 0 + Q. (1) Here x b and x f represent the background and the forecast state, while P b, P f, and Q represent the covariance matrices of the errors in the background state, forecast state, and of the model errors respectively. The model solution operator is denoted by M t0 T, M t0 T is the solution operator of the tangent linear model and MT t 0 the solution operator of its adjoint. Consider a set of observables y (assumed, for simplicity, to be a linear function of model state, y = Hx). The extended Kalman filter uses the forecast state and its covariance (x f (T ),P f (T )) and the observations and their covariance (y, R) to produce an optimal ( analyzed ) estimation of the model state and its covariance (x a (T ),P a (T )): x a = x f + P f H T (R + HP f H T ) 1 (y Hx f ) (2) P a = P f P f H T (R + HP f H T ) 1 HP f The computational expense of the Kalman filter (2) is extremely large because one needs to invert the matrix R + HP f H T and apply the tangent linear model to each column and the adjoint model to each row of the covariance matrix. The commonly used method to reduce the computational cost is to propagate (only) the projection of the covariance matrix onto a low-dimensional subspace span{s 1,,s k }. The subspace (at the analysis time T ) should contain the directions s k (T ) along which the error has the maximal growth. Singular vector analysis was introduced in meteorology in the 60 s by Lorenz [10] to compute the largest error growth rates. At the beginning of 90 s, adjoint technique was introduced by Molteni [13] and Mureau [14] to compute singular vectors in meteorology problems, then singular vector analysis become viable with sophisticated atmospheric general circulation models (see e.g., Navon et. al. [15]). We define the energy of an error vector at time t 0 as the Euclidean inner product s k (t 0 ),As k (t 0 ), and the energy at the final time T as s k (T ),Bs k (T ). A is a symmetric positive definite matrice and B is a symmetric positive semidefinite matrice. The errors evolve in time according to the dynamics of the tangent linear model, s k (T )=M t0 T s k (t 0 ). The ratio between error energies at t 0 and T offers a measure of error growth: λ = s k(t ),Bs k (T ) s k (t 0 ),As k (t 0 ) = s k(t 0 ),MT t 0 BM t0 T s k (t 0 ) s k (t 0 ),As k (t 0 ) (3) The total energy singular vectors (TESV) are defined as the directions of maximal error growth, i.e. the vectors s k (t 0 ) that maximize the ratio λ in Eq.(3). These directions are the solutions of the generalized eigenvalue problem M T t 0 BM t0 T s k (t 0 )=λas k (t 0 ) (4)

3 808 W. Liao and A. Sandu Eq.(4) can be solved efficiently using software packages like ARPACK [9] (or its parallel version PARPACK). The left side of Eq.(4) involves one integration with the tangent linear model followed by one integration with the adjoint model. A special set of energy norms is provided by the choice B = I and A =(P b ) 1. In this case the resulting Hessian singular vectors s k (t 0 ) evolve into the leading eigenvectors s k (T ) of the forecast error covariance matrix P f (T ). 3 Computation of Chemical Singular Vectors The numerical eigenvalue solver applied to (4) requires a symmetric matrix M BM in order to successfully employ Lanczos iterations, and guarantee that the numerical eigenvalues are real. The symmetry requirement imposes to use the discrete adjoint M of the tangent linear operator M in (4). The computation of discrete adjoints for stiff systems is a nontrivial task [17]. In addition, computational errors (which can destroy symmetry) have to be small. For a given model a symmetry indicator is constructed based on two random perturbation vectors u(t 0 )andv(t 0 ) which are propagated forward in time, u(τ) =M t0 τ u(t 0 )andv(τ) =M t0 τ v(t 0 ). The symmetry residual is the difference r(τ) = u(τ),mt τ M τ T v(τ) v(τ),mt τ M τ T u(τ). Clearly if M is exactly the discrete adjoint of M then r(τ) = 0 for all τ. However, both M and M are evaluated numerically and in practice we expect the symmetry residual r(τ) to have small (but nonzero) values. As an example we consider the SAPRC-99 atmospheric gas-phase reaction mechanism [2] with 93 species and 235 reactions. The forward, tangent linear, and adjoint models are implemented using the automatic code generator KPP [3, 5, 17]. Several numerical experiments revealed that the magnitude of the symmetry residual depends on the choice of numerical integrator. Among the Rosenbrock integrators available in KPP Rodas4 [17] performs best. The variation of r(τ) with time for Rodas4 is shown in Fig. 1 (solid line). Surprisingly, the symmetry is lost for a short transient at the beginning of the time integration interval, where the symmetry residual jumps from to This behavior is due to the stiffness of the chemical terms. Consider a singular perturbation model for the chemical system y = f(y, z), ɛz = g(y, z). Here ɛ 1, y is the slow component, and z is the fast component. For ɛ 0, the perturbation vectors that are propagated through the tangent linear model are of the form δz = gz 1 (y, z)g y (y, z)δy (5) During the numerical computation of the eigenvectors ARPACK (or any solver package) generates vectors [δy, δz] T which do not satisfy Eq.(5). To correct this we apply the tangent linear model on the initial perturbation for a short time, which is equivalent to projecting the initial perturbation onto the slow evolution manifold described by (5). The result is then used to initialize the subsequent tangent linear model run. In order to preserve operator symmetry,

4 Total Energy Singular Vectors for Atmospheric Chemical Transport Models 809 another projection using the adjoint model needs to be performed at the end of the adjoint integration. Consequently the operator is computed as w = P M T t 0 M t0 T Pu, (6) where P and P denote the projection operations performed with the tangent linear and the adjoint models respectively. Numerical tests revealed that a small number of projection steps ( 7) is sufficient in practice to substantially enhance symmetry. Fig.1 (dashed) presents the evolution of the symmetry residual when 6 projection steps are performed with the very small stepsize of 10 9 seconds. The symmetry error during the transient is only Fig. 1. Symmetry residual vs. time. Projection improves symmetry considerably These results can be extended to 3D chemistry-transport models, which solve the advection-diffusion-reaction equations in the atmosphere. A detailed description of such models and the corresponding tangent linear and adjoint models is given in [16]. 4 Numerical Results The numerical tests use the state-of-the-art regional atmospheric chemical transport model STEM [1]. The simulation covers a region of 7200 Km 4800 Km in East Asia and uses a computational grid with a horizontal resolution of 240 Km 240 Km. The chemical mechanism is SAPRC-99 [2] which considers the gas-phase atmospheric reactions of volatile organic and nitrogen oxides in urban and regional settings. Both the forward and adjoint chemical models are implemented using KPP [3, 5, 17]. The simulated conditions correspond to March More details about the forward model simulation conditions and comparison with observations are available in [1]. The forward and adjoint models are parallelized using PAQMSG [12]. PARPACK [9] was used to solve the symmetric generalized eigenvalue problems. To visualize the four-dimensional eigenvectors in (4) we consider separately the vector sections corresponding to different chemical species. Two-dimensional top views are obtained by adding the values in each vertical column.

5 810 W. Liao and A. Sandu Fig. 2. The dominant eigenvalues for 12h, 24h and 48h simulations Fig. 3. Dominant eigenvectors for O 3 and NO 2, the 24h simulation The target is the ground level ozone concentration in a 720 Km 960 Km area covering Korea (the gray area in Fig. 3). The target (region, vertical level, and chemical species) defines the matrix B in (4). The largest 12 eigenvalues for 12h, 24h and 48h simulations started at 0 GMT, March 1 st, 2001 are shown in Fig. 2. The rapid decrease of eigenvalue magnitude indicates that one can capture the uncertainty in the target region with only a few total energy singular vectors. The eigenvalues decrease faster for longer simulation windows. The O 3 and NO 2 sections of the first two dominant eigenvectors are shown in Fig. 3. The simulation interval for this test is 24 hours. We notice that the eigen-

6 Total Energy Singular Vectors for Atmospheric Chemical Transport Models 811 Fig. 4. Adjoint O 3 and NO 2 variables, the 24h simulation Fig. 5. Dominant O 3 eigenvectors for the 12h (a) and 48h (b) simulations vectors are localized around the target area. The shapes of the second eigenvector is different from the first, which illustrates the fact that different eigenvectors contain different information. The shapes and the magnitudes of the O 3 and NO 2 sections are also different, illustrating the different influences that these species have on ground level O 3 after 24h. Total energy singular vectors versus adjoints. To illustrate the difference between the information conveyed by the total energy singular vectors and adjoint variables we show the adjoints (for the total ground level O 3 in the target area after 24h) in Fig. 4. The adjoints cover a wider area following the flow pattern, while the singular vectors are more localized. Influence of the simulation interval. The O 3 sections of the dominant eigenvectors for 12h and 48h simulations starting at 0 GMT, March 1, 2001, are shown in Fig. 5. The plots, together with Fig. 3, show the influence of the simulation interval on the singular vectors. For the 12h simulation the pattern is more localized. Influence of meteorological conditions. The O 3 section of the dominant eigenvector for a 24h simulation started at 0GMT, March 26, 2001, is shown Fig. 6 (a). The shape of the TESV is different than for March 1 st. Influence of the target region. The O 3 section of the dominant eigenvector for another 24h, March 1 st simulation is shown in Fig. 6(b). The target is ground

7 812 W. Liao and A. Sandu Fig. 6. Dominant eigenvectors (O 3 section) for: (a) Korea, March 26, show the influence of different meteorological conditions; and (b) China, March 1, show the effect of different target region level ozone in a region of same area, but located in South-East China. Additional numerical tests revealed that the eigenvalues and eigenvectors are heavily effected by the size of target region. Specifically, the eigenvalues decrease is slower for larger regions, and therefore, more eigenvectors are needed to capture the uncertainty. 5 Conclusions In this work we study the computational aspects of total energy singular vector analysis of chemical-transport models. Singular vectors span the directions of maximal error growth in a finite time, as measured by specific energy norms. The required symmetry of the tangent linear-adjoint operator implies the necessity of using discrete adjoints. A projection method is proposed to preserve symmetry for stiff systems associated with chemical models. Numerical results are presented for a full 3D chemistry-transport model with real-life data. The singular values/vectors depend on the simulation interval, meteorological data, location of target region, the size of target region etc. Future work will focus on computing Hessian singular vectors, and on using singular vectors within nonlinear ensemble filters. Acknowledgements This work was supported by the National Science Foundation through the awards NSF CAREER ACI and NSF ITR AP&IM We would like to thank Virginia Tech s laboratory for Advanced Scientific Computing (LASCA) for the use of the Anantham cluster. References 1. Carmichael, G.R. et. al. Regional-Scale Chemical Transport Modeling in Support of the Analysis of Observations obtained During the Trace-P Experiment. Journal of Geophysical Research, 108(D21), Art. No. 8823, 2004.

8 Total Energy Singular Vectors for Atmospheric Chemical Transport Models Carter, W.P.L. Implementation of the SAPRC-99 chemical mechanism into the models-3 framework. Technical Report, United States Environmental Protection Agency, Daescu, D., A. Sandu, G.R. Carmichael. Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems with KPP: II-Numerical Validation and Applications. Atmospheric Environment, 37(36), , Daley, R. Atmospheric Data Analysis. Cambridge University Press, Damian,V, A. Sandu, M. Damian, F. Potra, G.R. Carmichael. The Kinetic preprocessor KPP - a software environment for solving chemical kinetics. Computers and Chemical Engineering, 26, , Fisher, M. Assimilation Techniques(5): Approximate Kalman filters and Singular Vectors, Meteorological Training Course Lecture Seires, Houtekamer, P.L. and H.L. Mitchell. A sequential Ensemble Kalman Filter for atmospheric data assimilation, Monthly Weather Review 129, No. 1, , Jazwinski, A.H. Stochastic Processes and Filtering Theory. Academic Press, Lehoucq, R., K. Maschhoff, D. Sorensen, C. Yang, ARPACK Software(Parallel and Serial), Lorenz, E.N. A study of the predictability of a 28 variable atmospheric model. Tellus, 17, , Menut L., R. Vautard, M. Beekmann, C. Honor. Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model. Journal of Geophysical Research - Atmospheres, 105-D12(15): , Miehe, P, A. Sandu, G.R. Carmichael, Y. Tang, D. Daescu. A communication library for the parallelization of air quality models on structured grids. Atmospheric Environment, 36, , Molteni, F. and T.N. Palmer. Predictability and finite-time instability of the northern winter circulation. Quarterly Journal of the Royal Meteorological Society, 119, , Mureau, R., F. Molteni, T.N. Palmer. Ensemble prediction using dynamicallyconditioned perturbations. Quarterly Journal of the Royal Meteorological Society, 119, , Li, Z., I.M. Navon, M.Y. Hussaini. Analysis of the singular vectors of the fullphysics FSU Global Spectral Model. Tellus, in press, Sandu,A, D. Daescu, G.R. Carmichael, T. Chai. Adjoint Sensitivity Analysis of Regional Air Quality Models. Journal of Computational Physics, in press, Sandu,A, D. Daescu, G.R. Carmichael. Direct and Adjoint Sensitivity Analysis of Chemical Kinetics Systems with KPP: I-Theory and Software Tools. Atmospheric Environment. 37(36), , 2003.

Singular Vector Analysis. for Atmospheric Chemical Transport Models

Singular Vector Analysis. for Atmospheric Chemical Transport Models Singular Vector Analysis for Atmospheric Chemical Transport Models Wenyuan Liao and Adrian Sandu Department of Computer Science Virginia Polytechnic Institute and State University Blacksburg, VA 24061

More information

Computational Aspects of Data Assimilation for Aerosol Dynamics

Computational Aspects of Data Assimilation for Aerosol Dynamics Computational Aspects of Data Assimilation for Aerosol Dynamics A. Sandu 1, W. Liao 1, G.R. Carmichael 2, D. Henze 3, J.H. Seinfeld 3, T. Chai 2, and D. Daescu 4 1 Department of Computer Science Virginia

More information

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM I. Michael Navon 1, Dacian N. Daescu 2, and Zhuo Liu 1 1 School of Computational Science and Information

More information

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation

Revision of TR-09-25: A Hybrid Variational/Ensemble Filter Approach to Data Assimilation Revision of TR-9-25: A Hybrid Variational/Ensemble ilter Approach to Data Assimilation Adrian Sandu 1 and Haiyan Cheng 1 Computational Science Laboratory Department of Computer Science Virginia Polytechnic

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi 4th EnKF Workshop, April 2010 Relationship

More information

Ensemble-based Chemical Data Assimilation I: General Approach

Ensemble-based Chemical Data Assimilation I: General Approach Q. J. R. Meteorol. Soc. (6), 128, pp. 1 999 doi: 1.1256/qj.yy.n Ensemble-based Chemical Data Assimilation I: General Approach By Emil M. Constantinescu 1, Adrian Sandu 1, Tianfeng Chai 2, and Gregory R.

More information

Observation Impact Assessment for Dynamic. Data-Driven Coupled Chaotic System

Observation Impact Assessment for Dynamic. Data-Driven Coupled Chaotic System Applied Mathematical Sciences, Vol. 10, 2016, no. 45, 2239-2248 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.65170 Observation Impact Assessment for Dynamic Data-Driven Coupled Chaotic

More information

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors

Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Ensemble prediction and strategies for initialization: Tangent Linear and Adjoint Models, Singular Vectors, Lyapunov vectors Eugenia Kalnay Lecture 2 Alghero, May 2008 Elements of Ensemble Forecasting

More information

State-of-the-art in 4D-Var Chemical Data Assimilation. Adrian Sandu Virginia Tech

State-of-the-art in 4D-Var Chemical Data Assimilation. Adrian Sandu Virginia Tech State-of-the-art in 4D-Var Chemical Data Assimilation Adrian Sandu Virginia Tech Information feedback loops between CTMs and observations: data assimilation and targeted meas. Chemical kinetics Dynamics

More information

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF

Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Relationship between Singular Vectors, Bred Vectors, 4D-Var and EnKF Eugenia Kalnay and Shu-Chih Yang with Alberto Carrasi, Matteo Corazza and Takemasa Miyoshi ECODYC10, Dresden 28 January 2010 Relationship

More information

A Hybrid Approach to Estimating Error Covariances in Variational Data Assimilation

A Hybrid Approach to Estimating Error Covariances in Variational Data Assimilation A Hybrid Approach to Estimating Error Covariances in Variational Data Assimilation Haiyan Cheng, Mohamed Jardak, Mihai Alexe, Adrian Sandu,1 Computational Science Laboratory Department of Computer Science

More information

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm

EnKF Review. P.L. Houtekamer 7th EnKF workshop Introduction to the EnKF. Challenges. The ultimate global EnKF algorithm Overview 1 2 3 Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation 6th EnKF Purpose EnKF equations localization After the 6th EnKF (2014), I decided with Prof. Zhang to summarize progress

More information

Computer Science Technical Report TR July 11, 2007

Computer Science Technical Report TR July 11, 2007 Computer Science Technical Report TR-07-27 July 11, 2007 Adrian Sandu and Lin Zhang Discrete Second Order Adjoints in Atmospheric Chemical Transport Modeling Computer Science Department Virginia Polytechnic

More information

Ensemble-based Chemical Data Assimilation II: Covariance Localization

Ensemble-based Chemical Data Assimilation II: Covariance Localization Q. J. R. Meteorol. Soc. (06), 128, pp. 1 999 doi: 10.1256/qj.yy.n Ensemble-based Chemical Data Assimilation II: Covariance Localization By Emil M. Constantinescu 1, Adrian Sandu 1, Tianfeng Chai 2, and

More information

Four-Dimensional Ensemble Kalman Filtering

Four-Dimensional Ensemble Kalman Filtering Four-Dimensional Ensemble Kalman Filtering B.R. Hunt, E. Kalnay, E.J. Kostelich, E. Ott, D.J. Patil, T. Sauer, I. Szunyogh, J.A. Yorke, A.V. Zimin University of Maryland, College Park, MD 20742, USA Ensemble

More information

Parallel Algorithms for Four-Dimensional Variational Data Assimilation

Parallel Algorithms for Four-Dimensional Variational Data Assimilation Parallel Algorithms for Four-Dimensional Variational Data Assimilation Mie Fisher ECMWF October 24, 2011 Mie Fisher (ECMWF) Parallel 4D-Var October 24, 2011 1 / 37 Brief Introduction to 4D-Var Four-Dimensional

More information

Four-dimensional ensemble Kalman filtering

Four-dimensional ensemble Kalman filtering Tellus (24), 56A, 273 277 Copyright C Blackwell Munksgaard, 24 Printed in UK. All rights reserved TELLUS Four-dimensional ensemble Kalman filtering By B. R. HUNT 1, E. KALNAY 1, E. J. KOSTELICH 2,E.OTT

More information

Organization. I MCMC discussion. I project talks. I Lecture.

Organization. I MCMC discussion. I project talks. I Lecture. Organization I MCMC discussion I project talks. I Lecture. Content I Uncertainty Propagation Overview I Forward-Backward with an Ensemble I Model Reduction (Intro) Uncertainty Propagation in Causal Systems

More information

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom

R. E. Petrie and R. N. Bannister. Department of Meteorology, Earley Gate, University of Reading, Reading, RG6 6BB, United Kingdom A method for merging flow-dependent forecast error statistics from an ensemble with static statistics for use in high resolution variational data assimilation R. E. Petrie and R. N. Bannister Department

More information

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC

Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model. David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Lagrangian Data Assimilation and Manifold Detection for a Point-Vortex Model David Darmon, AMSC Kayo Ide, AOSC, IPST, CSCAMM, ESSIC Background Data Assimilation Iterative process Forecast Analysis Background

More information

Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach

Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach Reduced Atmospheric Chemistry Models by Sensitivity Matrix Approach Short Communication Adrian Sandu Department of Computer Science, Michigan Technological University, Houghton, MI 49931. E-mail: asandu@mtu.edu.

More information

Environment Canada s Regional Ensemble Kalman Filter

Environment Canada s Regional Ensemble Kalman Filter Environment Canada s Regional Ensemble Kalman Filter May 19, 2014 Seung-Jong Baek, Luc Fillion, Kao-Shen Chung, and Peter Houtekamer Meteorological Research Division, Environment Canada, Dorval, Quebec

More information

Localization in the ensemble Kalman Filter

Localization in the ensemble Kalman Filter Department of Meteorology Localization in the ensemble Kalman Filter Ruth Elizabeth Petrie A dissertation submitted in partial fulfilment of the requirement for the degree of MSc. Atmosphere, Ocean and

More information

Local Ensemble Transform Kalman Filter

Local Ensemble Transform Kalman Filter Local Ensemble Transform Kalman Filter Brian Hunt 11 June 2013 Review of Notation Forecast model: a known function M on a vector space of model states. Truth: an unknown sequence {x n } of model states

More information

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data

Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data John Harlim and Brian R. Hunt Department of Mathematics and Institute for Physical Science and Technology University

More information

A Note on the Particle Filter with Posterior Gaussian Resampling

A Note on the Particle Filter with Posterior Gaussian Resampling Tellus (6), 8A, 46 46 Copyright C Blackwell Munksgaard, 6 Printed in Singapore. All rights reserved TELLUS A Note on the Particle Filter with Posterior Gaussian Resampling By X. XIONG 1,I.M.NAVON 1,2 and

More information

Nonlinear fastest growing perturbation and the first kind of predictability

Nonlinear fastest growing perturbation and the first kind of predictability Vol. 44 No. SCIENCE IN CHINA (Series D) December Nonlinear fastest growing perturbation and the first kind of predictability MU Mu ( ) & WANG Jiacheng ( ) LASG, Institute of Atmospheric Physics, Chinese

More information

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION

Abstract 2. ENSEMBLE KALMAN FILTERS 1. INTRODUCTION J5.4 4D ENSEMBLE KALMAN FILTERING FOR ASSIMILATION OF ASYNCHRONOUS OBSERVATIONS T. Sauer George Mason University, Fairfax, VA 22030 B.R. Hunt, J.A. Yorke, A.V. Zimin, E. Ott, E.J. Kostelich, I. Szunyogh,

More information

6.5 Operational ensemble forecasting methods

6.5 Operational ensemble forecasting methods 6.5 Operational ensemble forecasting methods Ensemble forecasting methods differ mostly by the way the initial perturbations are generated, and can be classified into essentially two classes. In the first

More information

Data assimilation; comparison of 4D-Var and LETKF smoothers

Data assimilation; comparison of 4D-Var and LETKF smoothers Data assimilation; comparison of 4D-Var and LETKF smoothers Eugenia Kalnay and many friends University of Maryland CSCAMM DAS13 June 2013 Contents First part: Forecasting the weather - we are really getting

More information

Continuous versus Discrete Advection Adjoints in Chemical Data Assimilation with CMAQ

Continuous versus Discrete Advection Adjoints in Chemical Data Assimilation with CMAQ Continuous versus Discrete Advection Adjoints in Chemical Data Assimilation with CMAQ Tianyi Gou a, Adrian Sandu a a Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic

More information

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute

Introduction to Data Assimilation. Reima Eresmaa Finnish Meteorological Institute Introduction to Data Assimilation Reima Eresmaa Finnish Meteorological Institute 15 June 2006 Outline 1) The purpose of data assimilation 2) The inputs for data assimilation 3) Analysis methods Theoretical

More information

Assimilation Techniques (4): 4dVar April 2001

Assimilation Techniques (4): 4dVar April 2001 Assimilation echniques (4): 4dVar April By Mike Fisher European Centre for Medium-Range Weather Forecasts. able of contents. Introduction. Comparison between the ECMWF 3dVar and 4dVar systems 3. he current

More information

Sensitivity of Forecast Errors to Initial Conditions with a Quasi-Inverse Linear Method

Sensitivity of Forecast Errors to Initial Conditions with a Quasi-Inverse Linear Method 2479 Sensitivity of Forecast Errors to Initial Conditions with a Quasi-Inverse Linear Method ZHAO-XIA PU Lanzhou University, Lanzhon, People s Republic of China, and UCAR Visiting Scientist, National Centers

More information

Relative Merits of 4D-Var and Ensemble Kalman Filter

Relative Merits of 4D-Var and Ensemble Kalman Filter Relative Merits of 4D-Var and Ensemble Kalman Filter Andrew Lorenc Met Office, Exeter International summer school on Atmospheric and Oceanic Sciences (ISSAOS) "Atmospheric Data Assimilation". August 29

More information

Adaptive Observation Strategies for Forecast Error Minimization

Adaptive Observation Strategies for Forecast Error Minimization Adaptive Observation Strategies for Forecast Error Minimization Nicholas Roy 1, Han-Lim Choi 2, Daniel Gombos 3, James Hansen 4, Jonathan How 2, and Sooho Park 1 1 Computer Science and Artificial Intelligence

More information

A Penalized 4-D Var data assimilation method for reducing forecast error

A Penalized 4-D Var data assimilation method for reducing forecast error A Penalized 4-D Var data assimilation method for reducing forecast error M. J. Hossen Department of Mathematics and Natural Sciences BRAC University 66 Mohakhali, Dhaka-1212, Bangladesh I. M. Navon Department

More information

Gaussian Filtering Strategies for Nonlinear Systems

Gaussian Filtering Strategies for Nonlinear Systems Gaussian Filtering Strategies for Nonlinear Systems Canonical Nonlinear Filtering Problem ~u m+1 = ~ f (~u m )+~ m+1 ~v m+1 = ~g(~u m+1 )+~ o m+1 I ~ f and ~g are nonlinear & deterministic I Noise/Errors

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Dan Cawford Manfred Opper John Shawe-Taylor May, 2006 1 Introduction Some of the most complex models routinely run

More information

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter arxiv:physics/0511236 v1 28 Nov 2005 Brian R. Hunt Institute for Physical Science and Technology and Department

More information

Effect of random perturbations on adaptive observation techniques

Effect of random perturbations on adaptive observation techniques INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Published online 2 March 2 in Wiley Online Library (wileyonlinelibrary.com..2545 Effect of random perturbations on adaptive observation techniques

More information

Data Assimilation in Geosciences: A highly multidisciplinary enterprise

Data Assimilation in Geosciences: A highly multidisciplinary enterprise Data Assimilation in Geosciences: A highly multidisciplinary enterprise Adrian Sandu Computational Science Laboratory Department of Computer Science Virginia Tech Data assimilation fuses information from

More information

CURRICULUM VITAE DACIAN N. DAESCU

CURRICULUM VITAE DACIAN N. DAESCU December 2014 CURRICULUM VITAE DACIAN N. DAESCU Fariborz Maseeh Department of Phone: (503) 725-3581 Mathematics and Statistics Fax: (503) 725-3661 Portland State University E-mail: daescu@pdx.edu P.O.

More information

Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model

Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model Comparing Local Ensemble Transform Kalman Filter with 4D-Var in a Quasi-geostrophic model Shu-Chih Yang 1,2, Eugenia Kalnay 1, Matteo Corazza 3, Alberto Carrassi 4 and Takemasa Miyoshi 5 1 University of

More information

J1.3 GENERATING INITIAL CONDITIONS FOR ENSEMBLE FORECASTS: MONTE-CARLO VS. DYNAMIC METHODS

J1.3 GENERATING INITIAL CONDITIONS FOR ENSEMBLE FORECASTS: MONTE-CARLO VS. DYNAMIC METHODS J1.3 GENERATING INITIAL CONDITIONS FOR ENSEMBLE FORECASTS: MONTE-CARLO VS. DYNAMIC METHODS Thomas M. Hamill 1, Jeffrey S. Whitaker 1, and Chris Snyder 2 1 NOAA-CIRES Climate Diagnostics Center, Boulder,

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96

A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Tellus 000, 000 000 (0000) Printed 20 October 2006 (Tellus LATEX style file v2.2) A Comparative Study of 4D-VAR and a 4D Ensemble Kalman Filter: Perfect Model Simulations with Lorenz-96 Elana J. Fertig

More information

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF

An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF An Ensemble Kalman Filter for NWP based on Variational Data Assimilation: VarEnKF Blueprints for Next-Generation Data Assimilation Systems Workshop 8-10 March 2016 Mark Buehner Data Assimilation and Satellite

More information

(Extended) Kalman Filter

(Extended) Kalman Filter (Extended) Kalman Filter Brian Hunt 7 June 2013 Goals of Data Assimilation (DA) Estimate the state of a system based on both current and all past observations of the system, using a model for the system

More information

Forecasting and data assimilation

Forecasting and data assimilation Supported by the National Science Foundation DMS Forecasting and data assimilation Outline Numerical models Kalman Filter Ensembles Douglas Nychka, Thomas Bengtsson, Chris Snyder Geophysical Statistics

More information

The Ensemble Kalman Filter:

The Ensemble Kalman Filter: p.1 The Ensemble Kalman Filter: Theoretical formulation and practical implementation Geir Evensen Norsk Hydro Research Centre, Bergen, Norway Based on Evensen 23, Ocean Dynamics, Vol 53, No 4 p.2 The Ensemble

More information

Fundamentals of Data Assimilation

Fundamentals of Data Assimilation National Center for Atmospheric Research, Boulder, CO USA GSI Data Assimilation Tutorial - June 28-30, 2010 Acknowledgments and References WRFDA Overview (WRF Tutorial Lectures, H. Huang and D. Barker)

More information

Phase space, Tangent-Linear and Adjoint Models, Singular Vectors, Lyapunov Vectors and Normal Modes

Phase space, Tangent-Linear and Adjoint Models, Singular Vectors, Lyapunov Vectors and Normal Modes Phase space, Tangent-Linear and Adjoint Models, Singular Vectors, Lyapunov Vectors and Normal Modes Assume a phase space of dimension N where Autonomous governing equations with initial state: = is a state

More information

Smoothers: Types and Benchmarks

Smoothers: Types and Benchmarks Smoothers: Types and Benchmarks Patrick N. Raanes Oxford University, NERSC 8th International EnKF Workshop May 27, 2013 Chris Farmer, Irene Moroz Laurent Bertino NERSC Geir Evensen Abstract Talk builds

More information

DATA ASSIMILATION FOR FLOOD FORECASTING

DATA ASSIMILATION FOR FLOOD FORECASTING DATA ASSIMILATION FOR FLOOD FORECASTING Arnold Heemin Delft University of Technology 09/16/14 1 Data assimilation is the incorporation of measurement into a numerical model to improve the model results

More information

arxiv: v1 [physics.ao-ph] 23 Jan 2009

arxiv: v1 [physics.ao-ph] 23 Jan 2009 A Brief Tutorial on the Ensemble Kalman Filter Jan Mandel arxiv:0901.3725v1 [physics.ao-ph] 23 Jan 2009 February 2007, updated January 2009 Abstract The ensemble Kalman filter EnKF) is a recursive filter

More information

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006

Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems. Eric Kostelich Data Mining Seminar, Feb. 6, 2006 Data Assimilation: Finding the Initial Conditions in Large Dynamical Systems Eric Kostelich Data Mining Seminar, Feb. 6, 2006 kostelich@asu.edu Co-Workers Istvan Szunyogh, Gyorgyi Gyarmati, Ed Ott, Brian

More information

Ensemble square-root filters

Ensemble square-root filters Ensemble square-root filters MICHAEL K. TIPPETT International Research Institute for climate prediction, Palisades, New Yor JEFFREY L. ANDERSON GFDL, Princeton, New Jersy CRAIG H. BISHOP Naval Research

More information

Accelerating the spin-up of Ensemble Kalman Filtering

Accelerating the spin-up of Ensemble Kalman Filtering Accelerating the spin-up of Ensemble Kalman Filtering Eugenia Kalnay * and Shu-Chih Yang University of Maryland Abstract A scheme is proposed to improve the performance of the ensemble-based Kalman Filters

More information

4. Assessment of model input uncertainties with 4D-VAR chemical data assimilation (Task 3)

4. Assessment of model input uncertainties with 4D-VAR chemical data assimilation (Task 3) TERC Project 98:- Air Quality Modeling of TexAQS-II Episodes with Data Assimilation 86 4. Assessment of model input uncertainties with 4D-VAR chemical data assimilation (Task 3) In this section we report

More information

Operational modal analysis using forced excitation and input-output autoregressive coefficients

Operational modal analysis using forced excitation and input-output autoregressive coefficients Operational modal analysis using forced excitation and input-output autoregressive coefficients *Kyeong-Taek Park 1) and Marco Torbol 2) 1), 2) School of Urban and Environment Engineering, UNIST, Ulsan,

More information

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF

Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Addressing the nonlinear problem of low order clustering in deterministic filters by using mean-preserving non-symmetric solutions of the ETKF Javier Amezcua, Dr. Kayo Ide, Dr. Eugenia Kalnay 1 Outline

More information

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems

Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Maximum Likelihood Ensemble Filter Applied to Multisensor Systems Arif R. Albayrak a, Milija Zupanski b and Dusanka Zupanski c abc Colorado State University (CIRA), 137 Campus Delivery Fort Collins, CO

More information

Dacian N. Daescu 1, I. Michael Navon 2

Dacian N. Daescu 1, I. Michael Navon 2 6.4 REDUCED-ORDER OBSERVATION SENSITIVITY IN 4D-VAR DATA ASSIMILATION Dacian N. Daescu 1, I. Michael Navon 2 1 Portland State University, Portland, Oregon, 2 Florida State University, Tallahassee, Florida

More information

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE

P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE P3.11 A COMPARISON OF AN ENSEMBLE OF POSITIVE/NEGATIVE PAIRS AND A CENTERED SPHERICAL SIMPLEX ENSEMBLE 1 INTRODUCTION Xuguang Wang* The Pennsylvania State University, University Park, PA Craig H. Bishop

More information

Irregularity and Predictability of ENSO

Irregularity and Predictability of ENSO Irregularity and Predictability of ENSO Richard Kleeman Courant Institute of Mathematical Sciences New York Main Reference R. Kleeman. Stochastic theories for the irregularity of ENSO. Phil. Trans. Roy.

More information

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics

The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich. Main topics The Local Ensemble Transform Kalman Filter (LETKF) Eric Kostelich Arizona State University Co-workers: Istvan Szunyogh, Brian Hunt, Ed Ott, Eugenia Kalnay, Jim Yorke, and many others http://www.weatherchaos.umd.edu

More information

Validation of Complex Data Assimilation Methods

Validation of Complex Data Assimilation Methods Fairmode Technical Meeting 24.-25.6.2015, DAO, Univ. Aveiro Validation of Complex Data Assimilation Methods Hendrik Elbern, Elmar Friese, Nadine Goris, Lars Nieradzik and many others Rhenish Institute

More information

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter

Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter arxiv:physics/0511236v2 [physics.data-an] 29 Dec 2006 Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter Brian R. Hunt Institute for Physical Science and Technology

More information

Kalman Filter and Ensemble Kalman Filter

Kalman Filter and Ensemble Kalman Filter Kalman Filter and Ensemble Kalman Filter 1 Motivation Ensemble forecasting : Provides flow-dependent estimate of uncertainty of the forecast. Data assimilation : requires information about uncertainty

More information

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données

4DEnVar. Four-Dimensional Ensemble-Variational Data Assimilation. Colloque National sur l'assimilation de données Four-Dimensional Ensemble-Variational Data Assimilation 4DEnVar Colloque National sur l'assimilation de données Andrew Lorenc, Toulouse France. 1-3 décembre 2014 Crown copyright Met Office 4DEnVar: Topics

More information

The University of Reading

The University of Reading The University of Reading Radial Velocity Assimilation and Experiments with a Simple Shallow Water Model S.J. Rennie 2 and S.L. Dance 1,2 NUMERICAL ANALYSIS REPORT 1/2008 1 Department of Mathematics 2

More information

Large-Scale Simulations Using First and Second Order Adjoints with Applications in Data Assimilation

Large-Scale Simulations Using First and Second Order Adjoints with Applications in Data Assimilation Large-Scale Simulations Using First and Second Order Adjoints with Applications in Data Assimilation Lin Zhang Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

The hybrid ETKF- Variational data assimilation scheme in HIRLAM

The hybrid ETKF- Variational data assimilation scheme in HIRLAM The hybrid ETKF- Variational data assimilation scheme in HIRLAM (current status, problems and further developments) The Hungarian Meteorological Service, Budapest, 24.01.2011 Nils Gustafsson, Jelena Bojarova

More information

Sensitivity analysis in variational data assimilation and applications

Sensitivity analysis in variational data assimilation and applications Sensitivity analysis in variational data assimilation and applications Dacian N. Daescu Portland State University, P.O. Box 751, Portland, Oregon 977-751, U.S.A. daescu@pdx.edu ABSTRACT Mathematical aspects

More information

Will it rain? Predictability, risk assessment and the need for ensemble forecasts

Will it rain? Predictability, risk assessment and the need for ensemble forecasts Will it rain? Predictability, risk assessment and the need for ensemble forecasts David Richardson European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, UK Tel. +44 118 949

More information

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES

P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES P 1.86 A COMPARISON OF THE HYBRID ENSEMBLE TRANSFORM KALMAN FILTER (ETKF)- 3DVAR AND THE PURE ENSEMBLE SQUARE ROOT FILTER (EnSRF) ANALYSIS SCHEMES Xuguang Wang*, Thomas M. Hamill, Jeffrey S. Whitaker NOAA/CIRES

More information

Abstract The Kinetic PreProcessor KPP was extended to generate the building blocks needed for the direct and adjoint sensitivity analysis of chemical

Abstract The Kinetic PreProcessor KPP was extended to generate the building blocks needed for the direct and adjoint sensitivity analysis of chemical Direct and Adjoint Sensitivity Analysis of Chemical Kinetic Systems with KPP: II Numerical Validation and Applications Dacian N. Daescu Institute for Mathematics and its Applications, University of Minnesota,

More information

Model-error estimation in 4D-Var

Model-error estimation in 4D-Var QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 33: 67 80 (007) Published online 3 July 007 in Wiley InterScience (www.interscience.wiley.com) DOI: 0.00/qj.94 Model-error

More information

ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER

ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER ESTIMATING CORRELATIONS FROM A COASTAL OCEAN MODEL FOR LOCALIZING AN ENSEMBLE TRANSFORM KALMAN FILTER Jonathan Poterjoy National Weather Center Research Experiences for Undergraduates, Norman, Oklahoma

More information

Conjugate Directions for Stochastic Gradient Descent

Conjugate Directions for Stochastic Gradient Descent Conjugate Directions for Stochastic Gradient Descent Nicol N Schraudolph Thore Graepel Institute of Computational Science ETH Zürich, Switzerland {schraudo,graepel}@infethzch Abstract The method of conjugate

More information

variability and their application for environment protection

variability and their application for environment protection Main factors of climate variability and their application for environment protection problems in Siberia Vladimir i Penenko & Elena Tsvetova Institute of Computational Mathematics and Mathematical Geophysics

More information

Data Assimilation Working Group

Data Assimilation Working Group Data Assimilation Working Group Dylan Jones (U. Toronto) Kevin Bowman (JPL) Daven Henze (CU Boulder) IGC7 4 May 2015 1 Chemical Data Assimilation Methodology State optimization: x is the model state (e.g.,

More information

Ensemble Kalman Filter

Ensemble Kalman Filter Ensemble Kalman Filter Geir Evensen and Laurent Bertino Hydro Research Centre, Bergen, Norway, Nansen Environmental and Remote Sensing Center, Bergen, Norway The Ensemble Kalman Filter (EnKF) Represents

More information

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation.

DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. DART_LAB Tutorial Section 2: How should observations impact an unobserved state variable? Multivariate assimilation. UCAR 2014 The National Center for Atmospheric Research is sponsored by the National

More information

Evolution of Analysis Error and Adjoint-Based Sensitivities: Implications for Adaptive Observations

Evolution of Analysis Error and Adjoint-Based Sensitivities: Implications for Adaptive Observations 1APRIL 2004 KIM ET AL. 795 Evolution of Analysis Error and Adjoint-Based Sensitivities: Implications for Adaptive Observations HYUN MEE KIM Marine Meteorology and Earthquake Research Laboratory, Meteorological

More information

Analysis Scheme in the Ensemble Kalman Filter

Analysis Scheme in the Ensemble Kalman Filter JUNE 1998 BURGERS ET AL. 1719 Analysis Scheme in the Ensemble Kalman Filter GERRIT BURGERS Royal Netherlands Meteorological Institute, De Bilt, the Netherlands PETER JAN VAN LEEUWEN Institute or Marine

More information

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008

Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 Bred vectors: theory and applications in operational forecasting. Eugenia Kalnay Lecture 3 Alghero, May 2008 ca. 1974 Central theorem of chaos (Lorenz, 1960s): a) Unstable systems have finite predictability

More information

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations

The ECMWF Hybrid 4D-Var and Ensemble of Data Assimilations The Hybrid 4D-Var and Ensemble of Data Assimilations Lars Isaksen, Massimo Bonavita and Elias Holm Data Assimilation Section lars.isaksen@ecmwf.int Acknowledgements to: Mike Fisher and Marta Janiskova

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Convergence of the Ensemble Kalman Filter in Hilbert Space

Convergence of the Ensemble Kalman Filter in Hilbert Space Convergence of the Ensemble Kalman Filter in Hilbert Space Jan Mandel Center for Computational Mathematics Department of Mathematical and Statistical Sciences University of Colorado Denver Parts based

More information

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas

1. Current atmospheric DA systems 2. Coupling surface/atmospheric DA 3. Trends & ideas 1 Current issues in atmospheric data assimilation and its relationship with surfaces François Bouttier GAME/CNRM Météo-France 2nd workshop on remote sensing and modeling of surface properties, Toulouse,

More information

Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation

Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation APRIL 2008 L A W L E S S E T A L. 1511 Using Model Reduction Methods within Incremental Four-Dimensional Variational Data Assimilation A. S. LAWLESS AND N. K. NICHOLS Department of Mathematics, University

More information

On the Kalman Filter error covariance collapse into the unstable subspace

On the Kalman Filter error covariance collapse into the unstable subspace Nonlin. Processes Geophys., 18, 243 250, 2011 doi:10.5194/npg-18-243-2011 Author(s) 2011. CC Attribution 3.0 License. Nonlinear Processes in Geophysics On the Kalman Filter error covariance collapse into

More information

Lagrangian data assimilation for point vortex systems

Lagrangian data assimilation for point vortex systems JOT J OURNAL OF TURBULENCE http://jot.iop.org/ Lagrangian data assimilation for point vortex systems Kayo Ide 1, Leonid Kuznetsov 2 and Christopher KRTJones 2 1 Department of Atmospheric Sciences and Institute

More information

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators

Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Variational data assimilation of lightning with WRFDA system using nonlinear observation operators Virginia Tech, Blacksburg, Virginia Florida State University, Tallahassee, Florida rstefane@vt.edu, inavon@fsu.edu

More information

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP

Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Inter-comparison of 4D-Var and EnKF systems for operational deterministic NWP Project eam: Mark Buehner Cecilien Charette Bin He Peter Houtekamer Herschel Mitchell WWRP/HORPEX Workshop on 4D-VAR and Ensemble

More information

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model

Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var. and an ensemble Kalman filter in a global primitive equations model 1 2 3 4 Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var and an ensemble Kalman filter in a global primitive equations model 5 6 7 8 9 10 11 12 Junjie Liu and Eugenia Kalnay Dept.

More information

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results

Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results Radar data assimilation using a modular programming approach with the Ensemble Kalman Filter: preliminary results I. Maiello 1, L. Delle Monache 2, G. Romine 2, E. Picciotti 3, F.S. Marzano 4, R. Ferretti

More information

Ensemble Kalman Filter based snow data assimilation

Ensemble Kalman Filter based snow data assimilation Ensemble Kalman Filter based snow data assimilation (just some ideas) FMI, Sodankylä, 4 August 2011 Jelena Bojarova Sequential update problem Non-linear state space problem Tangent-linear state space problem

More information