Homogenization of von Karman Plates Excited by Piezoelectric Patches

Size: px
Start display at page:

Download "Homogenization of von Karman Plates Excited by Piezoelectric Patches"

Transcription

1 Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 579 ZAMM Z. Angw. Math. Mch. 8 2) 9, 579 ±59 Hoffmann, K.-H.; Botkn, N. D. Homognzaton of von Karman Plats Ectd by Pzolctrc Patchs A modl dscrbng vbraton of nonlnar von Karman thn plats ctd by actuators mad of pzolctrc cramcs s consdrd. Th modl contans strong oscllatng coffcnts du to th pzolctrc actuators. A procdur of homognzaton basd on th so-calld two-scal convrgnc s appld to th modl. Ths ylds a nonlnar systm of quatons wth constant coffcnts. Th unqu solvablty of th rsultng systm s provd. Th convrgnc of all solutons of th orgnal systm to th soluton of th rsultng systm as th numbr of pzolctrc actuators gos to nfnty s provd. Ky words: nonlnar von Karman thn plats, pzolctrc actuators, homognzaton, two-scal convrgnc MC 99): 35B27, 73K, 73R5. Introducton Th problmof homognzaton of partal dffrntal quatons dscrbng vbraton of nonlnar thn plats ctd by actuators mad of pzolctrc cramcs s [] and [2]) s consdrd. It s assumd that th numbr of th actuators gos to nfnty whras thr dmnson tnds to zro. A procdur of homognzaton basd on th thory of two-scal convrgnc studd n [3, 4, 5, 6] s usd. pcfc faturs of th problmconsdrd ar: tm dpndnt quatons, th apparanc of th forth spatal drvatvs n th frst quaton dscrbng vrtcal dsplacmnts of th plat, and nonlnarts typcal for von Karman systms. W apply a rsult of [6] about two-scal convrgnc of th scond drvatvs of subsquncs of squncs boundd n L 2 ;T; H 2, whch nabls us to handl a wak formulaton of th problm. Rsults of [7] and [8] ar usd. Computr smulatons dmonstrat a good appromaton of solutons of th orgnal quatons by solutons of th homognzd quatons whnvr th numbr of pzolctrc patchs s suffcntly larg. 2. Notaton R 2 s th doman occupd by th plat. K t; s a prscrbd dstrbuton of th voltag ovr th whol plat. Pl s th doman occupd by th lth pzopatch. P :ˆ m s th doman occupd by all pzopatchs. Pl lˆ B :ˆ n P :ˆ ; Š ; Š hg :ˆ g y dy C # C R 2 H m # H# m =R Q :ˆ ;T C T Q C Q s th doman occupd by th bas matral. s th unt squar. s th man valu of a functon. s th subspac of prodc functons,.. g y ;y 2 ˆg y ;y 2 ˆg y ;y 2, for all y ;y 2 2R 2. s th complton of C # for th normof Hm ; t holds: D a uj ˆ yˆ Da uj and yˆ Da uj ˆ y2ˆ Da uj for y2ˆ a ˆ a ; a 2 ; a ; a 2 ; a a 2 m. s th quotnt spac. s th subspac of all functons whch vansh and at t ˆ T along wth all drvatvs. C ;T Q; C# s th spac of nfntly dffrntabl functons from Q nto C # whch vansh att ˆ, and t ˆ T along wth all drvatvs. HT 2 ;T; L 2 s th subspac of all functons from H 2 ;T; L 2 whch vansh at t ˆ T along wth th frst tm drvatv. X 2 :ˆ L ;T; H 2 L ;T; H L ;T; H X :ˆ L ;T; H L ;T; L 2 L ;T; L 2 L s th st of all functons ;u ;u 2 that ar lmts of Galrkn appromatons n problm ) w.r.t. wak * topology of X 2.

2 58 ZAMM Z. Angw. Math. Mch. 8 2) 9 d j ;u :ˆ 2 u j u j j s th n-plan stran tnsor. W us notaton: d j :ˆ d j ;u ; d w j :ˆ d j w ;u w ; ^d j :ˆ d j ^; ^u tc. j u :ˆ 2 u j u j s th lnar part of th n-plan stran tnsor. kfk :ˆ kfk L2 s L 2 normof a functon. f; g :ˆ f; g L2 s L 2 scalar product. W assum summaton ovr rpatng ndcs. For ampl, k a k 2 ˆk a kk a k :ˆ P2 k a kk a kˆkk 2 H : aˆ 3. Problm sttng Consdr a systmof nonlnar quatons dscrbng oscllatons of a thn plat ctd by patchs mad of a pzolctrc cramc s [2]). For smplcty, assum that th plat occups a rctangular doman and th pzolctrc patchs occupy rctangular domans Pl s Fg. ). It s assumd that th patchs form a prodc structur of th prod so that th objct s compltly dfnd by. Dnot P :ˆ m Pl and B :ˆ n P. lˆ Fg.. Plat wth patchs Pl Unt cll scald from to Equatons dscrbng th modl rad ~q tt dv ~mr tt D ~g ~t b ˆFv l t DI Pl Gv l a a I Pl ; ~t ab ˆGv l t I Pl ; whr ~t ab a 2 u j u j j : Hr and u a ; a ˆ ; 2, ar vrtcal and longtudnal dsplacmnts, D s th Laplac oprator, v l t s th voltag appld to th lth pzolctrc patch Pl, I Pl s th ndcator functon of th lth patch. Th ndcs a and b run ovr f; 2g, th nd l runs from to m, whr m s th numbr of pzopatchs. ummaton ovr rpatng ndcs s assumd. Th coffcnts F and G ar constant; ~q, ~m, ~g, and ~`jab ar dscontnuous pcws constant functons dfnd as follows: ~q ˆ qp ; 2 P ; ~m ˆ mp ; 2 P ; q B ; 2 B ; m B ; 2 B ; ~g ˆ gp ; 2 P ; `Pjab ~`jab ˆ ; 2 P ; g B ; 2 B : `Bjab ; 2 B : Nonzro componnts of `Pjab and `Bjab ar dfnd as follows: Ew `w ˆ s 2 ; `w22 ˆ Ews w w s 2 ; `w6ˆj a6ˆb ˆ ; `w22 ˆ `w22 ; `w2222 ˆ `w ; w ˆ P; B : w 2 s w Hr, E P and E B ar th lastc modul; s P and s B ar th Posson ratos. Indcs P and B pont out to th pzolctrc and bas matrals, rspctvly. It s assumd that v l 2 H ;T, q P > ; q B > ; m P > ; m B > ; g P > ; g B > ; and nd ab d ab `wjab d jd ab Nd ab d ab ; w ˆ P; B 2 for any symmtrc d j 2 R 2 2, whr n and N ar postv constants. Assum that th controls v l ar bng chosn as follows. A dstrbuton K t; 2H ;T; L 2 of th voltag ovr th whol plat s prscrbd and w st v l t ˆmas Pl K t; d : 3 Pl E w

3 Lt K t; ˆ K t; ; 2 B ; 4 v l t ; 2 Pl : It s obvous that K! K n H ;T; L 2. On can rwrt ) as follows: q tt dv m r tt D g t a b ˆ FD K t; I a K t; I ; 5 whr q u t b t ab ˆ a a 2 u j u j : j K t; I ; a ˆ ; 2 ; P Hr q; m; g, I, `jab ar prodc functons dfnd on as follows: I y ˆI D y ; q y ˆI D y q P I D y q B ; m y ˆI D y m P I D y m B ; g y ˆI D y g I D y g B ; `jab y ˆI D y `Pjab I D y `Bjab ; 6 whr I D s th ndcator functon of D s Fg. rght). It follows from 2) that nd ab d ab `jab y d j d ab Nd ab d ab 7 for any y 2 and any symmtrc d j 2 R 22. Boundary and ntal condtons ar ˆ ; j tˆ ˆ ; t j tˆ ˆ ; u a ˆ ; u a j tˆ ˆ u a ; u at j tˆ ˆ u a ; a ˆ ; 2 : 8 Not that 5) should b suppld wth th followng ntrfac condtons: ˆ ; gdš gd ˆ ; u a Š ˆ ; t ab n b ˆ ; a ˆ ; 2 ; 9 that hold on th boundary btwn P and B bcaus of th ntgraton by parts whn drvng 5) froma wak formulaton. Hr, Š dnots th jump of a functon on th boundary btwn P and B. W do not pay any attnton to ths condtons bcaus w wll go back to th wak formulaton. Dfnton : W say that functons 2 L 2 ;T; H 2 ; u a 2 L 2 ;T; H ; a ˆ ; 2 ; forma wak soluton to systm 5) ± 9) f th followng qualty holds: for all Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 58 T h q j tt m r rj tt g D Dj t ab b j a FK t; I Dj GK t; I a j a q u a y att t ab y ab GK t; I y aa d dt h q j t ; j ; u ay at ; u a y a ; m r rj t ; r rj ; d ˆ j 2 H 2 T ;T; H \ L 2 ;T; H 2 ; y a 2 H 2 T ;T; L 2 \ L 2 ;T; H : Proposton : Lt m and u m a b Galrkn appromatons computd usng th abov dfnton of solutons. Thn: a) If 2 H 2 ; 2 H, u a 2 H ; u a 2 L 2, and K 2 H ;T; L 2, thn thr sts a constant C ndpndnt of ;m such that k m k 2 H 2 for any t 2 ;TŠ. km t k 2 H kum a k2 H kum at k2 L 2 C

4 582 ZAMM Z. Angw. Math. Mch. 8 2) 9 b) If ˆ ; ˆ ; u a ˆ ; u a ˆ, K 2 H2 ;T; L 2, and Kj tˆ ˆ, thn thr sts a constant C ndpndnt of ; msuch that k m t k 2 H 2 km tt k2 H kum at k2 H kum att k2 L 2 C 2 for any t 2 ;TŠ. Rmark : Th proof of th scond part of th proposton s basd on th formal tm dffrntaton of quatons dfnng m and u m a. Th trm K t s 3) and 4)) arss on th rght-hand-sd of ths quatons. Th assumpton K 2 H 2 ;T; L 2 s ncssary to stmat trms contanng K t. Th rqurmnts ˆ ; ˆ ; u a ˆ ; u a ˆ, and Kj tˆ ˆ provd th so-calld compatblty condtons s.g. [9]), whch guarants that th formally dffrntatd quatons dfn tm drvatvs of m and u m a. For ampl, on of th compatblty condtons rads g = D 2 H. Ths can b satsfd by vry spcal choc of usng th structur of th dscontnuous functon g =. To avod such dffcults, w st ˆ. mlar argumnts plan th choc of th othr ntal condtons to b homognous. P r o o f : Th proof of th frst part of th proposton can b found n [2]. Prov th scond part. Lt m ˆ Pm ˆ a m t w ; u m a ˆ Pm ˆ b m a t h ; a ˆ ; 2 ; whr fw g ˆ, fh g ˆ ar bass of H2 and H, rspctvly, and th coffcnts am t, bm a t satsfyng th ntal condtons a m ˆ; d=dt am ˆ; bm a ˆ; d=dt bm a ˆ ar found from ), that s q m tt j m r m tt rj g D m Dj t m ab m b j a d ˆ FK t; Dj d P q u m att y a t m ab P GK t; m a j a d ; y ab d ˆ P GK t; y aa d for all t 2 ;TŠ, j 2 spanfw ;...; w m g; y a 2 spanfh ;...; h m g: Hr t m j ˆ j m ; ;j ˆ ; 2 : j Formal dffrntaton w.r.t. t ylds q w m tt j m rw m tt rj g Dw m Dj _t ab m m b j a t m ab Hr ˆ FK t t; Dj d P q _t m j v m att y a _t ab m ˆ `jab 2 P GK t t; m a j a d y j P P GK t t; y aa j GK t; w m a j a w m b j a ; ;j ˆ ; 2 : nc th compatblty condtons ar fulflld, t holds w m ˆ m t and v m a ˆ um at. W st j ˆ w t, y a ˆ v at and sumup th quatons. Ths ylds th followng qualty: 2 d dt ˆ 3 2 kqw m t k 2 kmrw m k 2 kgdw m k 2 kqv m _t ab m wm a w m b d FK t t; P GK t w m a w m a d t at k2 d dt Dwm d ` abj _tm ab _tm j d P GK t t; d dt ` aaj _tm j d d t m ab wm a w m b d GK t; w m a w m a d ; 3! P P

5 Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 583 whr ` abj s th nvrs of `abj, that s ` abpq`jpqs j ˆ s ab 4 for any symmtrc s 2 R 2 2. Not that n=n _t ab m _tm ab ` abj _tm ab _tm j =n _t ab m _tm ab 5 bcaus of 2) and 4). Intgraton of 3) ovr t gvs kqw m t ˆ k 2 kmrw m t k 2 kgdw m k 2 kqv m at k2 t m ab wm a w m b d 3 t 2 t FK tt t; Dw m d 2 P P 2 GK t w m a w m a d 2 P ` abj _tm ab _tm j d _t ab m wm a w m b d 2 FK t t; Dw m d P Usng th nqualts of chwartz and Gaglardo-Nrnbrg ylds P GK t t; ` aaj _tm j d 2 t GK tt t; ` aaj _tm j d P GK t; w m a w m a d : 6 kw m a w m b kkrw m k 2 L 4 Ckrwm kkw m k H 2 Ckwm k H 2 : Th fnal nqualty s tru bcaus of th boundnss of krw m k du to ). Usng that kt m ab k2 C du to ), w obtan from 6) kw m k 2 H 2 kwm t k 2 H kvm at k2 k_t ab m k2 C: 7 Takng nto account m b ˆ ` abj _tm j a 2 m a w m b w m a m b ; w obtan m a C k _tm ab k km a w m b k C k _t ab m k km a k 2 L 4 kwm a k 2 L 4 C k _t ab m k km k 2 H 2 kwm k 2 H 2 C usng ), 7) and th contnuous mbddng H 2 W 4. Th nqualty of Korn mpls kv m a k2 H C; whch complts th proof of proposton. & Proposton 2: Lt L b th st of all lmt ponts n wak * topology of X 2 ) of all possbl Galrkn appromatons n. Thn: a) L 6ˆ;and ach ;u ;u 2 2L s a waksoluton of. b) If th frst assumpton of proposton holds, thn thr sts a constant C ndpndnt of such that k k 2 L ;T; H 2 k t k2 L ;T; H ku a k2 L ;T; H ku at k2 L ;T; L 2 C 8 for any ;u ;u 2 2L. c) If th scond assumpton of proposton holds, thn thr sts a constant C ndpndnt of such that k t k2 L ;T; H 2 k tt k2 L ;T; H ku at k2 L ;T; H ku att k2 L ;T; L 2 C 9 for any ;u ;u 2 2L. P r o o f : Nonmptnss of L follows from ). Th proof that ach ;u ;u 2 2L s a wak soluton of ) can b found n [2]. It follows from ) and 2) that all ncssary tm drvatvs n 8) and 9) st, and that 8) and 9) hold. &

6 584 ZAMM Z. Angw. Math. Mch. 8 2) 9 4. Homognzaton Th followng holds for any ;u ;u 2 2L du to Proposton 2: k k 2 L ;T; H 2 ku k2 L ;T; H ku 2 k2 L ;T; H C; wth C ndpndnt from. Thrfor, th squnc ;u ;u 2 contans a wak * convrgng subsqunc n X2.Now w drv quatons that dfn lmt functons of such subsquncs ffctv quatons). W wll show that ths quatons hav a unqu soluton undr assumptons of th scond part of Proposton, and that th coffcnts of th ffctv quatons ar ndpndnt of th choc of subsquncs. Ths ylds that th squnc ;u ;u 2 2L convrgs wak * n X 2 to th soluton of th ffctv systm. mlar argumnts show that t ;u t ;u 2 t convrgs wak * n X 2, and tt ;u tt ;u 2 tt convrgs wak * n X to tm drvatvs of th soluton of th ffctv systm. Thn, usng Corollary 4 of mon [] and Thorm6. of Lons [], w conclud that ;u ;u 2 and t ;u t ;u 2t convrgs strongly n C ;TŠ; H 2 s C ;TŠ; H s C ;TŠ; H s for any postv ral s. In partcular, and t convrg unformly on ;TŠ. Now w apply two-scal convrgnc to drvaton of th ffctv quatons. For th ponrng works on twoscal convrgnc for tm-ndpndnt problms w rfr to [3] and [4]. Two-scal convrgnc for tm-dpndnt problms was consdrd n [5]. Ths rsults wr gnralzd n [6]. Lt us rproduc th dfnton of two-scal convrgnc of functons dpndng on addtonal paramtrs Dfnton 6.8 of Hallr [6]): Lt v 2 L 2 Q ; v 2 L 2 Q. It s sad that v 2! scal v,f lm T v t; y t; ; = d dt ˆ T v t; ; y y t; ; y dy d dt! for all y 2 C ;T Q; C#. It s provd Thorm6.5 of Hallr [6]) that all proprts of two-scal convrgnc hold, f th tst functons n th abov dfnton ar rplacd by mor gnral tst functons of th form: y t; ; y ˆf t; g y s t; ; y, whr f 2 L Q, g 2 L #, and s 2 C Q; C# not ncssary vanshs). Thorm6.2 of Hallr [6] s a gnralzaton of rsults of [4, 5] about two-scal convrgnc of boundd functonal squncs. Lt kv k L2 ;T; H m C wth C ndpndnt of and m ˆ ; 2. Thn thr st j, v t; 2L 2 ;T; H m, and v t; ; y 2L 2 Q; H# m such that v j wak! * v n L ;T; H m ; D k v 2 j! scal D k v ; k 2 ;m ; D m v 2 j! scal D m v D m y v: Du to th abov rsult, thr st j, t; 2L 2 ;T; H 2, u a t; 2L 2 ;T; H, t; ; y 2 L 2 Q; H# 2, and u a t; ; y 2L 2 Q; H# such that j u j a wak! * n L ;T; H 2 ; j 2! scal ; r j 2! scal r ; D j 2! scal D D y ; wak! * ua n L ;T; H ; uj a 2! scal u a ; u j a b 2! scal u ab u ayb : Morovr, from 8) and from th compact mbddng H 2 W q, for any q>, w conclud that f j g s rlatv compact n C;T ; Wq for any q> s []). o, w can assum that j! n C ;TŠ; Wq for any q>. To obtan ffctv quatons dfnng and u a, st j t; ˆh t; 2 f t; ; = ; y a t; ˆc a t; q a t; ; = ; whr h t; ; c a t; 2C T Q, and f t; ; y ; q a t; ; y 2C ;T Q; C#. ubsttutng ths functons nto ) ylds w omt th nd j for brvty) T q h tt 2 f tt Š m r rh tt 2... Š g D Dh D y f 2... Š t ab b h a 2... Š FK t; I Dh D y f 2... Š GK t; I a h a 2... Š q u a c att q. attš t ab c ab q ayb.. Š GK t; I. c aa q aya.. Š d dt n q h t ; h ; u ac at ; u a c a ; Š m o r rh t ; r rh ; Š d ˆ : 2

7 Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 585. Th symbol... dnots trms wth th multplrs and, whras th symbol.. dnots trms wth th multplrs. Ths trms appar whn applyng dffrntal oprators of ) to th functons f t; ; = and q a t; ; =. For ampl, th trm... n th frst ln of 2) s qual to r f tt = r y f tt, whr r and r y dnot th gradnts wth rspct to th scond and th thrd varabls of f t; ; =. Consdrng q y h tt t; 2 f tt t; ; y Š ; m y rh tt t; 2... Š ; g y Dh t; D y f t; ; y 2... Š ; `jab y b t; h a t; 2... Š ; I y Dh t; D y f t; ; y 2... Š ; I y a t; h a t; 2... Š ;. q y c tt t; q tt t; ; y Š ; `jab y c ab t; q ayb t; ; y.. Š ;. I y c aa t; q aya t; ; y.. Š. as tst functons, on can pass to th two-scal lmt n 2) takng nto account that 2... and.. convrg unformly to, K! K n H ;T; L 2, and a! a n C ;TŠ; L q for any q>. nc th last systm contans two tst functons, th lmtng systm wll b splt nto two ons. Th frst, ffctv, systmdfnng th lmt functons and u a rads T fq y h tt m y rrh tt g y D D yš Dh `jab y 2 u j u j j u yj u jy b h a FK t; I y Dh GK t; I y a h a q y u a c att `jab y 2 u j u j j u yj u jy c ab GK t; I y c aa g dy d dt fq y h t ; h ; u ac at ; u a c a ; Š m y r rh t ; r rh ; Šg dy d ˆ : 2 Th so-calld cll quatons dfnng aulary functons and u a rad t fg y D D yš Dy f FK t; I y D y f `jab y 2 u j u j j u yj u jy q ayb GK t; I y q aa g dy d dt ˆ : 22 Hr y s th ndpndnt varabl, whras s tratd as a paramtr. nc th systm 22) s lnar, th suprposton prncpl ylds t; ; y ˆN y D M y FK t; ; u t; ; y ˆN mn y 2 u m n u nm n m M y GK t; ; whr N; M 2 H# 2 and N mn;m 2 H# ar unknown functons. ubsttutng thm n 22) and som computaton yld t fdg y D y NŠ FK t; g y D y M I y Šg D y f dy d dt ˆ ; T d mn ;u `jab y d m d jn 2 GK t; `jab y j d ab I q ayb dy d dt ˆ : Bcaus of th suprposton prncpl on can sk N; M; N mn, and M sparatly. Takng th tst functons of th form f t; ; y ˆf t; f 2 y, q a t; ; y ˆq a t; q2 a y, w obtan g y D y N D y f 2 dy ˆ ; 25 g y D y M I y D y f 2 dy ˆ ; 26

8 586 ZAMM Z. Angw. Math. Mch. 8 2) 9 `jb y `j2b y `jb y `j2b y 2d m d jmn q 2 b dy ˆ ; 2d m d jmn q 2 b dy 2d b I y 2d 2b I y q 2 y b dy ˆ ; q 2 2y b dy ˆ for all f 2 2 H# 2 ; q2 a 2 H # ; a ˆ ; 2; m; n ˆ ; ; 2; 2 ; ; 2. Not that th cass 2; and ; 2 ar quvalnt. Proposton 3: Th quaton 25 s quvalnt to th followng on: g y D y N ˆh=g ; for a:: y 2 : 29 Th quaton 29 has a unqu soluton N 2 H# 2 =R. Th quaton 26 s quvalnt to th followng on: g y D y M I y ˆ h=g hi=g ; for a:: y 2 : 3 Th quaton 3 has a unqu soluton M 2 H# 2 =R. P r o o f : Lt us sktch th proof of 29). Th clam 3) can b handld smlarly. Not that th quaton 25) s quvalnt to th followng on: g y D y N CŠ D y f dy ˆ ; 8f 2 H# 2 ; 3 whr C s an arbtrary constant. Ths holds bcaus Thn th quaton D y f dy ˆ for all f 2 H# 2. LtC ˆ g y D y N dy. D y f ˆ g y D y N C s solvabl n H# 2 =R bcaus g y D y N CŠ dy ˆ. ubsttutng th soluton nto 3) ylds g y D y N ˆC for a:: y2 : Dvdng ths quaton ovr g y, ntgratng ovr, and takng nto account that D y Ndyˆ, w obtan that C ˆh=g, whch provs 29). [2] for mor dtals f ncssary. & Proposton 4: ystms 27 ; 28 ar unquly solvabl: N mn ;M 2 H# =R. P r o o f : Lt us consdr th blnar formdfnd on H# =RŠ2 H# =RŠ2 that corrsponds to both 27) and p N; L ˆ dy @L b dy j b j a Th form s symmtrc and contnuous on H# =RŠ2 H# =RŠ2. It follows from 7) that p N; N n r j r j dy ; whr r j : Modfyng argumnts of th proof of Korn's nqualty s [3]), w obtan p N; N C N j N j dy ˆ C knk 2 H : # =RŠ2 Th lnar forms m mn L ˆ a `jab d m d jn dy ; m L ˆ b d ab I b corrspondng to 27) and 28) ar dfnd and contnuous on H# =RŠ2. Applyng th La-Mlgram lmma complts th proof. & dy

9 Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 587 Aftr substtutng th functons, u a ; a ˆ ; 2; s 23) and 24)) nto th ffctv systm 2), w obtan T hq h tt hm rrh tt hg D y NŠ D Dh `jab y d m d jmn d mn b h a FK t; hgd y M I Dh d GK t; `jab j d ab I b h a d dt fhq h t ; h ; hm r rh t ; r rh ; g d ˆ ; 32 T hq u a c att `jab y d m d jmn d mn ;u GK t; `jab j d ab I y ab d dt hq u a c at ; u a c a ; d ˆ : P Thus, th followng systmwth constant coffcnts s obtand: T f^qh tt ^mrrh tt ^gd Dh ^t ab b h a FK t; ^I Dh GK t; ^J ab b h a g d dt f^q h t ; h ; ^m r rh t ; r rh ; g d ˆ ; 33 T f^qu a c att ^t ab c ab GK t; ^J ab c ab g d dt ^q u a c at ; u a c a ; d ˆ : P Th classcal formrads ^q tt ^m D tt ^g a ^t ab b ˆF ^I DK t; G ^J ab b ^t ab ˆ G a b K b K t; ; whr ^t ab ˆ ^`jab u j u j j : Th boundary and ntal condtons ar ; ; j tˆˆ ; t j tˆˆ ; u a ; u a j tˆˆ u a ; u at j tˆˆ u a : Comparng 32) and 33) and usng 29) and 3), w obtan plctly ^q ˆhq ; ^m ˆhm ; ^g ˆh=g ; ^I ˆh=g hi=g : Morovr, comparng 32) and 33) gvs ^`mnab ˆ `jab y d m d mn jmn y ; 35 ^J ab ˆ `jab j y d ab I y : 36 Conjctur: Th tnsor ^`mnab s postv dfnt,.., thr s a postv constant n such that ^`mnab d j d ab nd j d j for any symmtrc d 2 R 22. Unfortunatly, w wr not abl to succd n formal provng ths proprty. On th othr hand, numrous computatons show ts valdty for a wd rang of valus of s B ; s P, and E B =E P th aulary functons dpnd on th rato E B =E P ) that covr all ralstc matrals. Furthr, th proprty 37) s assumd to b vald. Th nt thorm follows mmdatly from th homognzaton procdur

10 588 ZAMM Z. Angw. Math. Mch. 8 2) 9 Thorm : Lt k ;u k ;u k 2 b a squnc of waksolutons of 5 convrgng to som ; u ;u 2 n th wak * topology of X 2 not that such a squnc always sts du to Proposton 2). Thn ; u ;u 2 s a waksoluton to problm 34. Dfnton 2: W say that functons ; u ;u 2 forma strong soluton to systm 34) f th followng holds: ;u ;u 2 2C ;TŠ; H 2 C ;TŠ; H C ;TŠ; H ; t ;u t ;u 2t 2C ;TŠ; H C ;TŠ; L 2 C ;TŠ; L 2 ; 38 and tt ;u tt ;u 2tt 2L ;T; H L ;T; L 2 L ;T; L 2 ; j tˆ ˆ 2 H 2 ; tj tˆ ˆ 2 H ; u a j tˆ ˆ u a 2 H ; u atj tˆ ˆ u a 2 L 2 ; ^q tt ; j ^m r tt ; rj ^g D; Dj ^t ab b ; j a F ^I K; Dj G^J ab K b ; j a ˆ; ^q u att ; y a ^t ab ; y ab G^J ab K; y ab ˆ 39 4 for any j 2 H 2, y a 2 H, and a.. t 2 ;TŠ. Lmma : If K 2 L ;T; H ; thn any strong soluton ;u ;u 2 of 34 posssss th proprty 2 L ;T; H 3 ; u ;u 2 2 L ;T; H 2 : 4 P r o o f : Th proof s just smlar to th on of Lmma 5.2 of [7]. Namly, w can rwrt 4) as follows: ^`jab j u ; ab y ˆ ^q u att ; y a ^`jab j ; ab y G ^J ab K b ; y a : 42 Usng ntgraton by parts and th proprts 38), on can prov that ; j ; ab y s from C ;TŠ; L q L q for any q>2. Thrfor, ; j ; ab y s from C ;TŠ; H s H s for any <s< bcaus H s L 2= s n two dmnsons. Th othr trms on th rght-hand sd ar from L ;T; L 2 L 2. Thrfor s.g. []), u and u 2 ar from L ;T; H 2 s, so thr sts a constant C> such that Hnc, k j u k H s C; t2 ;TŠ : kd j ;u b kˆk j u b 2 j b kk j u k L4 k b k L4 k b k 3 L 6 C k j u k H s kk H 2 kk3 H 2 C 2 ; 43 for t 2 ;TŠ, f w tak <s<=2. Now, rwrt 39) as follows: ^g D; Dj ˆ ^q tt ; j ^m r tt ; rj ^`jab d j ;u b ; j a F^I rk; rj G^J ab K b ; j a : Not 38) and 43) mply that all trms on th rght-hand-sd ar from L ;T; H. Thrfor s.g. []), s from L ;T; H 3. Th last rsult mpls that th rght-hand-sd of 42) s from L ;T; L 2 L 2. Thrfor u and u 2 ar from L ;T; H 2. Thus 4) s provd. & Lmma 2: If K 2 L ;T; H ; thn th strong soluton of 34 s unqu whnvr t sts. P r o o f : Assum that thr ar two strong solutons ;u a and 2 ;u 2 a. Thn th dffrnc ˆ 2 ; u a ˆ u a u2 a satsfs th quatons ^q tt ; j ^m r tt ; rj ^g D ; Dj ^`jab d j b d 2 j 2 b ; j a ^J ab K b ; j a ˆ ; ^q u att ; y a ^`jab d j d2 j ; ab y ˆ for any j 2 H 2, y a 2 H, and for a.. t 2 ;TŠ. W st j ˆ t h t h =2h, y a ˆ u a t h u a t h =2h and ntgrat from h to t h. Th passag to th lmt as h! gvs ^qk t k 2 ^mkr t k 2 ^gkd k 2 ^qku at k 2 ^`abj ab u ; j u C t kd j b d 2 j 2 b k 2 kk b k 2 kr t k 2 kr a b 2 a 2 b k 2 ku at k 2 dt : 46

11 Hoffmann, K.-H.; Botkn, N. D.: Homognzaton of von Karman Plats 589 Usng 38), 4) and mbddng thorms, w obtan that kd j b d 2 j 2 b k 2 kr a b 2 a 2 b k 2 C ku j b u 2 j 2 b k 2 k j b 2 2 j 2 b k 2 k a b g 2 a 2 b g k 2 C ku j b 2 b k 2 k 2 b u j u 2 j k 2 k j b 2 b k 2 k a b g 2 b g k 2 k b g a 2 a k 2 C ku j k 2 L 4 k b 2 b k 2 L 4 k2 b k 2 L ku j u 2 j k 2 k j k 2 L 4 k b 2 b k 2 L 4 k a k 2 L k b g 2 b g k 2 k b g k 2 L 4 k a 2 a k 2 L 4 C kk 2 H 2 ku ak 2 H ; t 2 ;TŠ : 47 It s asy to s that kk b k 2 kkk 2 L 4 k b k 2 L 4 CkKk2 H k k 2 H 2 Ck k 2 H 2 ; t 2 ;TŠ : 48 From 46), 47), 48), 2), and th nqualty of Korn, w gt kk 2 H 2 k t k 2 H ku ak 2 H ku atk 2 t C kk 2 H 2 k t k 2 H ku ak 2 H ku atk 2 dt : Takng nto account that ˆ; u a ˆ, w obtan ˆ ; u a ˆ, whch provs Lmma 2. Th nt thormstats a mor usful rlaton btwn 5) and 34) than Thorm. Thorm 2: Lt ˆ ; ˆ ; u a ˆ ; u a ˆ, K 2 H2 ;T; L 2 \ L ;T; H ; and Kj tˆ ˆ ; thn 34 has a unqu strong global soluton ;u ;u 2. Th sts L shrnkto ;u ;u 2 n wak * topology of X 2. That s, any squnc ;u ;u 2 2L convrgs to ;u ;u 2 n wak * topology of X 2 as!. P r o o f : Usng Proposton 2, w conclud that thr sts a squnc k ;u k ;u k 2 2L k convrgng to som trpl ;u ;u 2 n wak * topology of X 2 as k!. Thorm clams that ;u ;u 2 s a wak soluton of 34). Morovr, ; u ;u 2 2X 2 ; t;u t ;u 2t 2X 2 ; tt; u tt ;u 2tt 2X 49 du to Proposton 2. Usng Thorm6. of [], w obtan that ;u ;u 2 posssss th proprts 38). Thrfor, ;u ;u 2 s a strong soluton of 34). It s unqu du to Lmma 2. Assum that L dos not shrnk to ;u ;u 2. Thn on can fnd a subsqunc k ;u k ;u k 2 2L k sparatd from ;u ;u 2 n th wak * topology of X 2. Thr sts a sub-subsqunc kl k l ;u ;u k l 2 2Lk l that convrgs to som *;u* ;u* 2 n th wak * topology of X 2. Th sam argumnts as abov yld that *;u* ;u* 2 s a strong soluton of 34). Hnc, *;u* ;u* 2 ˆ ;u ;u 2, whch s a contradcton. & Rmark 2: It s suffcnt to assum that 2 H 2 \H3 ; 2 H2 ; u a 2 H \H2 ; u a 2 H, K 2 H 2 ;T; L 2 \ L ;T; H for th stnc of strong global solutons of 34). Th prov s basd on th tm dffrntaton of a rlatonshp dfnng Galrkn appromatons m ;u m ;um 2 for 34). Ths ylds an quaton that dfns th tm drvatvs w m ˆ m t ;vm ˆ um t ;vm 2 ˆ um 2t, f th ntal valus for wm ;v m ;vm 2 ar chosn proprly. Du to constant coffcnts of 34), th abov assumptons nsur compatblty condtons s.g. [9]) that mak possbl to fnd such approprat ntal valus for w m ;v m ;vm 2. Thus, an stmat lk 2) holds for m ;u m ;um 2. Ths s suffcnt to prov that any lmt pont of f m ;u m ;um 2 g s a strong global soluton of 34). 5. mulaton Th smulaton was don wth th followng paramtrs: s th unt squar, Pl s th =2 dg squar cntrd w.r.t. th corrspondng structural cll s Fg. ). Th othr valus ar: q P ˆ 2 ; q B ˆ ; g P ˆ 5 ; g B ˆ 3 ; m P ˆ : ; m B ˆ : ; E P ˆ 2 ; E B ˆ ; s P ˆ :4 ; s B ˆ :2 ; ˆ =6 ; F ˆ 5 ; G ˆ 5 ; K t; ; 2 ˆsn 5t cos 5 2 : Th ntal valus wr qual to zro. Th Bognr-Fo-chmt fnt lmnts s Carlt [4]) wr appld. Th numbr of fnt lmnts was qual to Each structural cll s Fg. ) occups 4 4 lmnts. Each pzopatch occups 2 2 lmnts. Each fgur blow shows th soluton of 5), th soluton of 34), and thr dffrnc at tms ndcatd.

12 59 ZAMM Z. Angw. Math. Mch. 8 2) Fg. 2. t ˆ :7 Fg. 3. t ˆ :4 Rfrncs Banks, H. T; mth, R. C; Wang,.: mart matral structurs: modlng, stmaton and control. Wly, Chchstr Hoffmann, K.-H.; Botkn, N. D.: Oscllatons of nonlnar thn plats ctd by pzolctrc patchs. ZAMM ), 495 ±53. 3 Ngutsng, G.: A gnral convrgnc rsult for a functonal rlatd to th thory of homognzaton. IAM J. Math. Anal ) 3, 68 ± Allar, G.: Homognzaton and two-scal Convrgnc. IAM J Math. Anal ) 6, 482 ±58. 5 Allar, G: Homognzaton of th unstady toks quatons n porous mda. In: Bandl, C. t al. ds.): Progrss n partal dffrntal quatons: calculus of varatons, applcatons. Ptman Rsarch Nots n Mathmatcs rs 267. Longman Hghr Educaton, Nw ork 992, pp. 9 ±23. 6 Hallr, H.: Vrbundwrkstoff mt Formgdachtnslgrung ± Mkromchansch Modllrung und Homognsrung. Dssrtaton. TU-Munchn, Munchn Pul, J.-P.; Tucsnak, M.: Global stnc for th full Karman systm. Appl. Math. Optmz ), 39 ±6. 8 Horn, M. A.; Lascka, I.: Global stablzaton of a dynamc von Karman plat wth nonlnar boundary fdback. Appl. Math. Optmz ), 57 ±84. 9 Wloka, J.: Partll Dffrntalglchungn. Tubnr, tuttgart 982. mon, J.: Compact sts n th spac L p ;T; B. Ann. Mat. Pura Appl., IV. r ), 65 ±96. Lons, J. L.; Magns, E.: Non-homognous boundary valu problms and applcatons. Vol. I. prngr Vrlag, Brln ± Hdlbrg ±Nw ork Botkn, N. D.: Homognzaton of an quaton dscrbng lnar thn platsctd by pzopatchs. Commun. Appl. Anal ) 2, 27 ±28. 3 Zdlr, E.: Nonlnar functonal analyss and ts applcatons. IV: Applcatons to mathmatcal physcs. prngr-vrlag, Nw ork ±Brln ±Hdlbrg ±London ±Pars ±Tokyo Carlt, P. G.: Th fnt lmnt mthod for llptc problms. North-Holland, Amstrdam 978. Rcvd August 2, 998, rvsd Jun 28, 999, accptd Novmbr 23, 999 Addrss: Prof. Dr. Karl-Hnz Hoffmann, Dr. Nkola D. Botkn, tftung casar, Frdnsplatz 6, D-53 Bonn, Grmany, -mal: hoffmann@casar.d, botkn@casar.d

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

6 Finite element methods for the Euler Bernoulli beam problem

6 Finite element methods for the Euler Bernoulli beam problem 6 Fnt lmnt mtods for t Eulr Brnoull bam problm Rak-54.3 Numrcal Mtods n Structural Engnrng Contnts. Modllng prncpls and boundary valu problms n ngnrng scncs. Enrgy mtods and basc D fnt lmnt mtods - bars/rods

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Deift/Zhou Steepest descent, Part I

Deift/Zhou Steepest descent, Part I Lctur 9 Dift/Zhou Stpst dscnt, Part I W now focus on th cas of orthogonal polynomials for th wight w(x) = NV (x), V (x) = t x2 2 + x4 4. Sinc th wight dpnds on th paramtr N N w will writ π n,n, a n,n,

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

arxiv: v1 [math.pr] 28 Jan 2019

arxiv: v1 [math.pr] 28 Jan 2019 CRAMÉR-TYPE MODERATE DEVIATION OF NORMAL APPROXIMATION FOR EXCHANGEABLE PAIRS arxv:190109526v1 [mathpr] 28 Jan 2019 ZHUO-SONG ZHANG Abstract In Stn s mthod, an xchangabl par approach s commonly usd to

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

7 Finite element methods for the Euler Bernoulli beam problem

7 Finite element methods for the Euler Bernoulli beam problem 7 Fnt lmnt mtods for t Eulr Brnoull bam problm CIV-E6 Engnrng Computaton and Smulaton Contnts. Modllng prncpls and boundary alu problms n ngnrng scncs. Bascs of numrcal ntgraton and dffrntaton 3. Basc

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti ICSV Carns ustrala 9- July 7 NON-LINER MOEL FOR STUYING THE MOTION OF HUMN OY Ncola-oru Stănscu Marna Pandra nl Popa Sorn Il Ştfan-Lucan Tabacu partnt of ppld Mchancs Unvrsty of Ptşt Ptşt 7 Roana partnt

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Linear Algebra Provides a Basis for Elasticity without Stress or Strain

Linear Algebra Provides a Basis for Elasticity without Stress or Strain Soft, 05, 4, 5-4 Publshd Onln Sptmbr 05 n ScRs. http://www.scrp.org/ournal/soft http://dx.do.org/0.46/soft.05.400 Lnar Algbra Provds a Bass for Elastcty wthout Strss or Stran H. H. Hardy Math/Physcs Dpartmnt,

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

Variational Approach in FEM Part II

Variational Approach in FEM Part II COIUUM & FIIE ELEME MEHOD aratonal Approach n FEM Part II Prof. Song Jn Par Mchancal Engnrng, POSECH Fnt Elmnt Mthod vs. Ralgh-Rtz Mthod On wants to obtan an appromat solton to mnmz a fnctonal. On of th

More information

arxiv: v1 [math.ap] 22 Jun 2017

arxiv: v1 [math.ap] 22 Jun 2017 THE QKP LIMIT OF THE QUANTUM EULER-POISSON EQUATION arxv:706.0733v [math.ap] Jun 07 HUIMIN LIU AND XUEKE PU Abstract. In ths papr, w consdr th drvaton of th Kadomtsv-Ptvashvl KP quaton for cold on-acoustc

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM

ANALYTICITY THEOREM FOR FRACTIONAL LAPLACE TRANSFORM Sc. Rs. hm. ommn.: (3, 0, 77-8 ISSN 77-669 ANALYTIITY THEOREM FOR FRATIONAL LAPLAE TRANSFORM P. R. DESHMUH * and A. S. GUDADHE a Prof. Ram Mgh Insttt of Tchnology & Rsarch, Badnra, AMRAVATI (M.S. INDIA

More information

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University Statc/Dynamc Dormaton wth Fnt Elmnt Mthod Graphcs & Mda Lab Sol Natonal Unvrsty Statc/Dynamc Dormaton Statc dormaton Dynamc dormaton ndormd shap ntrnal + = nrta = trnal dormd shap statc qlbrm dynamc qlbrm

More information

Math 656 March 10, 2011 Midterm Examination Solutions

Math 656 March 10, 2011 Midterm Examination Solutions Math 656 March 0, 0 Mdtrm Eamnaton Soltons (4pts Dr th prsson for snh (arcsnh sng th dfnton of snh w n trms of ponntals, and s t to fnd all als of snh (. Plot ths als as ponts n th compl plan. Mak sr or

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP

FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP C O L L O Q U I U M M A T H E M A T I C U M VOL. 80 1999 NO. 1 FACTORIZATION IN KRULL MONOIDS WITH INFINITE CLASS GROUP BY FLORIAN K A I N R A T H (GRAZ) Abstract. Let H be a Krull monod wth nfnte class

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Spectral Synthesis in the Heisenberg Group

Spectral Synthesis in the Heisenberg Group Intrnational Journal of Mathmatical Analysis Vol. 13, 19, no. 1, 1-5 HIKARI Ltd, www.m-hikari.com https://doi.org/1.1988/ijma.19.81179 Spctral Synthsis in th Hisnbrg Group Yitzhak Wit Dpartmnt of Mathmatics,

More information

MA 262, Spring 2018, Final exam Version 01 (Green)

MA 262, Spring 2018, Final exam Version 01 (Green) MA 262, Spring 218, Final xam Vrsion 1 (Grn) INSTRUCTIONS 1. Switch off your phon upon ntring th xam room. 2. Do not opn th xam booklt until you ar instructd to do so. 3. Bfor you opn th booklt, fill in

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS 4. ODELING OF IN-WALLED SELLS AND PLAES. INRODUCION O E EORY OF SELL FINIE ELEEN ODELS Srő: Dr. András Skréns Dr. András Skréns BE odlng of thn-walld shlls and plats. Introducton to th thor of shll fnt

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM Avalabl onln at www.scncdrct.com Procda Engnrng 9 () 373 377 Intrnatonal Workshop on Informaton and Elctroncs Engnrng (IWIEE) Thr-Nod Eulr-Brnoull Bam Elmnt Basd on Postonal FEM Lu Jan a *,b, Zhou Shnj

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Exercise 1. Sketch the graph of the following function. (x 2

Exercise 1. Sketch the graph of the following function. (x 2 Writtn tst: Fbruary 9th, 06 Exrcis. Sktch th graph of th following function fx = x + x, spcifying: domain, possibl asymptots, monotonicity, continuity, local and global maxima or minima, and non-drivability

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

Gravitation as Geometry or as Field

Gravitation as Geometry or as Field Journal of Appld Mathmatcs and Physcs, 7, 5, 86-87 http://wwwscrporg/journal/jamp ISSN Onln: 37-4379 ISSN Prnt: 37-435 Gravtaton as Gomtry or as Fld Waltr Ptry Mathmatcal Insttut of th Unvrsty Dussldorf,

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis

Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 3 Solutions Introduction To Complex Analysis Dpartmt of Mathmatcs ad Statstcs Ida Isttut of Tchology Kapur MSOA/MSO Assgmt 3 Solutos Itroducto To omplx Aalyss Th problms markd (T) d a xplct dscusso th tutoral class. Othr problms ar for hacd practc..

More information

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES CHOOL O ENGINEERING - TI IGNAL PROCEING INTITUTE Lornzo Potta and Prr Vandrghynst CH-1015 LAUANNE Tlphon: 4121 6932601 Tlfax: 4121 6937600 -mal: lornzo.potta@pfl.ch ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUANNE

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Appendix for Causal Interaction in Factorial Experiments: Application to Conjoint Analysis A Appendx for Causal Interacton n Factoral Experments: Applcaton to Conjont Analyss Mathematcal Appendx: Proofs of Theorems A. Lemmas Below, we descrbe all the lemmas, whch are used to prove the man theorems

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY

Study of Dynamic Aperture for PETRA III Ring K. Balewski, W. Brefeld, W. Decking, Y. Li DESY Stud of Dnamc Aprtur for PETRA III Rng K. Balws, W. Brfld, W. Dcng, Y. L DESY FLS6 Hamburg PETRA III Yong-Jun L t al. Ovrvw Introducton Dnamcs of dampng wgglrs hoc of machn tuns, and optmzaton of stupol

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation.

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation. Hatng of a sold cylndr mmrsd n an nsulatd bath. Thrmal dffusvty and hat capacty xprmntal valuaton. Žtný R., CTU FE Dpartmnt of Procss Engnrng, arch. Introducton Th problm as ntatd by th follong E-mal from

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information