Linear Algebra Provides a Basis for Elasticity without Stress or Strain

Size: px
Start display at page:

Download "Linear Algebra Provides a Basis for Elasticity without Stress or Strain"

Transcription

1 Soft, 05, 4, 5-4 Publshd Onln Sptmbr 05 n ScRs. Lnar Algbra Provds a Bass for Elastcty wthout Strss or Stran H. H. Hardy Math/Physcs Dpartmnt, Pdmont Collg, Dmorst, USA Rcvd 6 Novmbr 05; accptd 4 Dcmbr 05; publshd 7 Dcmbr 05 Copyrght 05 by author and Scntfc Rsarch Publshng Inc. Ths work s lcnsd undr th Cratv Commons Attrbuton Intrnatonal Lcns (CC BY). Abstract Lnar algbra provds nsghts nto th dscrpton of lastcty wthout strss or stran. Classcal dscrptons of lastcty usually bgn wth dfnng strss and stran and th consttutv quatons of th matral that rlat ths to ach othr. Elastcty wthout strss or stran bgns wth th postons of th ponts and th nrgy of dformaton. Th nrgy of dformaton as a functon of th postons of th ponts wthn th matral provds th matral proprts for th modl. A dscrt or contnuous modl of th dformaton can b constructd by mnmzng th total nrgy of dformaton. As prsntd, ths approach s lmtd to hypr-lastc matrals, but s approprat for nfntsmal and fnt dformatons, sotropc and ansotropc matrals, as wll as quas-statc and dynamc rsponss. Kywords Elastcty, Strss, Stran, Fnt Elastcty. Introducton Soft matrals lk rubbr, foam, and many bologcal matrals can strtch far byond th lmts of nfntsmal lastcty and yt rturn to thr orgnal shap whn forcs ar rmovd. It s usful to b abl to modl ths dformatons, but nfntsmal lastcty basd on strss and stran tnsors cannot b usd for ths larg dformatons. Th classcal quatons of fnt lastcty ar qut dffcult, rqurng 0 or mor tnsors to xplan th thory. Th dscrpton of lastcty prsntd hr prsnts th sam quatons for both nfntsmal and fnt lastcty, and rqurs only two tnsors to dfn th thory. Th dscrpton of lastcty prsntd hr wll b for hypr-lastc matrals. A hypr-lastc matral stors nrgy whn t s dformd and rturns ths nrgy to ts surroundngs whn t s rturnd to ts orgnal stat. Rubbr s th most common xampl. Th nrgy stord n th matral can b xprssd as a functon of th How to ct ths papr: Hardy, H.H. (05) Lnar Algbra Provds a Bass for Elastcty wthout Strss or Stran. Soft, 4,

2 postons of th ponts wthn th matral. By mnmzng th stord nrgy, dffrntal quatons of lastcty and forcs can b found. Th da of dscrbng dformatons n trms of ponts and forcs was frst usd by Eulr, Lagrang, and Posson and prdats Cauchy s ntroducton of strss and stran []. Th arlr rsarchrs, howvr, dd not complt th dscrpton of th gnral dffrntal quatons for fnt lastcty. I wll do that hr. To do ths, I wll follow th notaton of Spncr [] to dscrb th postons of th ponts wthn th body bfor and aftr dformaton.. Dformaton as a Mappng Dfn th ntal locaton of ach pont wthn a matral as th vctor, X, wth componnts X, =,,. Aftr th dformaton, ach pont n th matral wll b at som nw poston, x, wth componnts x, =,,. Th componnts of ach pont aftr th dformaton ar functons of th componnts of th poston of ach pont bfor dformaton. That s ( ) ( ) x = f X, X, X = x X, X, X. () To match th physcal ralty of th dformaton of a matral, nthr nvrsons nor a chang of dmnson of th matral wll b allowd (.. a thr-dmnsonal matral cannot b turnd nsd out or prssd nto a plan or a ln). As a rsult of ths rstrcton, vry pont n th matral aftr th dformaton wll corrspond to xactly on pont n th matral bfor dformaton, so that th mappng from X to x s on-to-on. Consdr now a pont nar th pont X,.. X = X + dx. Th pont X s mappd nto th pont x = x + dx. W can fnd th rlatonshp btwn dx and dx by dffrntatng Equaton () and usng th chan rul to gv x dx = d X, () X hr and throughout th rst of ths papr, th Enstn summaton notaton s usd so that rpatd ndcs ar x summd ovr. In gnral wll vary from pont to pont wthn th matral (s Fgur ). Th matrx formd by ths valus, X x = () X s calld th dformaton gradnt tnsor by Spncr []. Th rsults found so far ar approprat for any coordnat systm, but I wll us two spcfc nrtal coordnat systms (.. fxd coordnat systms whr Nw- Fgur. In ths fgur, ˆ llustrats th obsrvr coordnat systm. s th mappng dfnd at ach pont n spac from th X pont locaton bfor th dformaton to th sam pont x aftr th dformaton. Any local coordnat systm bfor th dformaton, ê, s mappd nto a nw local coordnat systm aftr th dformaton,. 6

3 ton s laws apply). On I wll call th obsrvr coordnat systm. Ths coordnat systm s th on chosn to solv som problm n (.g. a smulaton or an ngnrng problm). Th scond nrtal coordnat systm I wll call th xprmntal coordnat systm. Ths coordnat systm wll b th on chosn by an xprmntalst who wshs to masur th nrgy assocat wth a partcular dformaton of a partcular sampl. In th obsrvr coordnat systm, I wll dnot th componnts of o as. In th xprmntal coordnat systm I wll dnot th componnts as. I wll frst dscrb how th xprmntr should masur th matral proprts of th matral n hs coordnat systm.. Masurng th Enrgy of Dformaton It s suffcnt to lmt xprmntal dformatons to homognous dformatons of a homognous porton of th matral n ordr to dfn th nrgy of dformaton. If th body s ansotropc, t s ncssary to dfn th orntaton of ths ansotropy. Ths could b dtrmnd by a vsual nspcton (.g. wood gran) or by a knowldg of how th matral was mad (.g. rbar n concrt). Ornt th ansotropy to algn wth th xprmntal coordnat systm so that n th xprmntal coordnat systm th ansotropc coordnat systm of th matr- ( ) ( ) ( ) al s ˆ for =,,, and ˆ = (,0,0 ), ˆ = ( 0,,0 ), ˆ = ( 0,0,), or ˆ ( k ) = δk. (Not that hr th suprscrpt, k, dnots whch coordnat vctor and th subscrpt,, dnots whch componnt.) Usng th notaton of Equaton (), Equaton () n th xprmntal coordnats systm bcoms dx = dx (4) A homognous dformaton s a dformaton n whch vry pont n th body undrgos an affn transformaton. Lnar algbra dfns an affn transformaton as a mappng that transforms any pont n spac X to anothr pont n spac x by a matrx transformaton F, followd by a translaton d. Applyng ths to our matral body, vry pont n th body aftr th dformaton, x, corrsponds to a pont bfor th dformaton, X, as x = FX + d (5) whr X = coordnats of th poston of any pont bfor th dformaton, x = coordnats of th poston of ths sam pont aftr th dformaton, F = matrx of valus that ar th sam throughout th body, and d = componnts of a vctor that ar th sam throughout th body. Takng th drvatv of Equaton (5) and comparng th rsult wth Equaton (4), w fnd that n our xprmntal coordnat systm F =. Equaton (5) ndcats that to compltly dfn any dformaton n our xprmntal coordnat systm, w nd th nn componnts of and th thr componnts d. Ths valus can b found by rcordng th locaton of any four non-coplanar ponts n th xprmntal matral bfor and aftr th homognous dformaton. Th coordnats of ach of ths ponts provds x and X n Equaton (5). Snc thr ar four ponts wth thr componnts ach, ths gvs a total of quatons and unknowns of th form of Equaton (5). From ths quatons, all componnts of and d can b found for any xprmntal dformaton. To masur th nrgy durng xprmnts, rcord th appld forcs, F m, and th corrspondng dsplacmnts of th ponts whr ths forcs ar appld, dx m wth m = to M, whr M s th numbr of appld forcs. Th nrgy of dformaton s th total work don by ths forcs,.. th sum of th ntgrals from th ntal to th fnal poston of th ponts whr th forcs ar appld: tot fnal = F dx (6) ntal Th nrgy pr orgnal volum, E, s found by dvdng th total nrgy by th ntal volum of th sampl, V. tot E = (7) V Wth ths masurmnts, an xprmntr can construct a tabl of th stord nrgy pr unt ntal volum as m m 7

4 a functon of th componnts of and d. To complt th dscrpton, us a lnar ntrpolaton or an quaton ft to th tabl of data to dfn E as a contnuous functon of and d,.. (, ) E = f d (8) Ths compltly dfns th nrgy pr unt orgnal volum for homognous dformatons of th matral sampl. 4. Spcal Exprmntal Cass W hav found that n gnral th xprmntally masurd nrgy pr unt volum, E, can b a functon of as many as componnt valus (nn n and thr n d ). It s a bt much to xpct an xprmntr to map out a dmnsonal nrgy spac for vry matral for vry applcaton, so t s usful to fnd som smplfcatons dpndng upon th partcular matral and applcaton w ar ntrstd n. For xampl, for most applcatons, th only xtrnal body forc that nds to b consdrd s gravty. In that cas, w only nd to xprss th nrgy of translaton as a functon of û d, whr û corrsponds to th drcton of th gravtatonal forc and d th dsplacmnt of th cntr of mass of th matral. If th xprmntal coordnat systm s algnd so that th thrd componnt of d s paralll wth th gravtatonal forc, w only nd to nclud nrgy changs du to d and can omt th two varabls d and d n our nrgy functon, bcaus ths dsplacmnts wll rsult n no chang n th nrgy of th body. A furthr rducton of paramtrs for rotatons and dformatons can b found f w tak a Sngular Valu Dcomposton (SVD) of. Th SVD of a matrx unquly dvds th matrx nto thr matrcs, two rotatonal ( R and R ), and on dagonal, Λ. In partcular, SVD = R ΛR (9) ( ) Ths form wll b usful n dscrbng both xprmntal procsss to masur th nrgy of dformaton and th quatons of lastcty. Snc any dformaton,, can b xprssd unquly as RΛR, thn vry possbl dformaton can b consdrd a combnaton of a rotaton, R followd by a strtch or comprsson along th thr fxd orthogonal coordnat axs, Λ, followd by a fnal rotaton, R. In th most gnral cas th nrgy of th matral can dpnd upon body forcs from lctrc or magntc forcs n addton to gravty. For xampl, a matral wth an lctrc dpol ( p ) or a magntc dpol ( µ ) n an lctrc (ξ ) or magntc ( ) fld, wll hav nrgy p ξ or µ, rspctvly so that th nrgy wll b a functon of R, Λ, and R. If th matral has a charg, q, nrgy must nclud qξ d. In ths cass th nrgy of dformaton may b a functon of all nn varabls n F as wll as th thr varabls n d. If th lctrc and magntc body forcs ar not sgnfcant n a partcular applcaton, th thr componnts of R nd not b ncludd n calculatng E snc n that cas th nrgy assocatd wth dformatons ar ndpndnt of body rotatons aftr th dformaton. If th body s sotropc, thn th nrgy wll b ndpndnt of both R and R snc rotatng th body bfor or aftr th dformaton wll produc no chang n th nrgy of dformaton. In that cas only th thr dagonal valus of Λ, Λ, ar ndd to dscrb th nrgy assocatd wth dformaton. If n addton, th matral can b consdrd ncomprssbl, thn th volum of th matral, V, s constant V = = Λ Λ Λ = constant, (0) and only two ndpndnt lmnts of Λ nd to b usd to dscrb th nrgy durng a dformaton. In addton to ths smplfcatons, t s suffcnt to masur th nrgy as a functon of only thos changs that ar xpctd n a partcular applcaton. So for xampl, f nfntsmal dformatons ar suffcnt to modl th problm at hand, only on small dsplacmnt masurmnt n ach drcton s rqurd. Altrnatvly, f th body s gong to b usd only n xtnson, thr s no nd to masur th nrgy assocatd wth comprssonal forcs. Rvln [] usd ths approach for rubbr. For hs applcaton th rubbr could b consdrd sotropc and ncomprssbl, so h only dformd th matral sampl n xtnson along two prpndcular drctons. Ths s suffcnt to fnd th nrgy as a functon of Λ and Λ. Fnally, f a dformaton contans only rgd body motons, matrals ar nthr comprssd nor xtnd, so that Λ = for =,,. Thus a rgd body rotaton, Equaton (9) gvs = RR. Snc rgd body rotatons can b xprssd n trms of a sngl rotaton matrx, th sx paramtrs n R and R rduc to only 8

5 thr. What w hav found s that w can rduc th numbr of varabls that th nrgy s a functon of from to as fw as n th cas of an ncomprssbl, sotropc matral whr w can gnor xtrnal body forcs lk gravty n our applcaton. In gnral, howvr, all varabls may b rqurd and t s hlpful to fnd th most computatonally ffcnt way to rprsnt th nrgy for ach applcaton. 5. Som Applcaton Issus W hav found that SVD( ) can b usd to smplfy th xprmntal masurmnts for partcular cass; howvr, SVD s a rathr computatonally havy calculaton to b usd durng smulatons. It s thrfor usful to rprsnt th dformatons n a mor computatonally ffcnt mannr for applcatons. For xampl, f w consdr th cas whr th matral s sotropc and thr ar no body forcs, th nrgy pr unt volum s a functon of only Λ. Thus any thr ndpndnt varabls spannng th sam spac as Λ may b usd to charactrz th nrgy functon. Th valus Λ, Λ, and Λ can b rwrttn [4] as In addton I = Λ + Λ + Λ I I = ΛΛ + ΛΛ + ΛΛ = ΛΛ Λ. I = a a+ b b+ c c I = + + I = ( a b) ( a b) ( a c) ( a c) ( b c) ( b c) a ( b c), whr a, b, and c ar th column vctors of. Thus n smulatons of sotropc bods t s not ncssary to comput SVD as th smulaton progrsss. All that s rqurd ar th componnts of to comput th ndd thr ndpndnt valus. As a rsult t s bst n ths cas to rdfn th xprmntally dfnd nrgy, E f Λ E = f I abc,,, I abc,,, I abc,, aftr th xprmnts ar compltd. Onc E has bn = ( ) as ( ( ) ( ) ( )) convrtd from a functon of Λ to a functon of th column vctors of, t s only ncssary to fnd th componnts of durng smulatons. Th SVD( ) s no longr rqurd. If th matral s ansotropc, th nrgy pr unt volum s a functon of th sx ndpndnt valus of Λand R, Thr from th dagonal lmnts of Λ and thr angls from QRD, provds a mor ffcnt vnu for calculatons than dos SVD( ) R. QR dcomposton, ( ). (For ths applcaton w must us th Gram- Schmdt QRD algorthm nstad of th mor common Housholdr QRD, bcaus th Housholdr algorthm prmts nvrsons.) QRD( ) producs R, whr s an uppr trangular matrx and R s a rotaton matrx. Snc th nrgy of dformaton s ndpndnt of any rotaton aftr th dformaton, th sx componnts of, lk th thr valus of Λ for th sotropc cas, can b usd to dfn th nrgy of dformaton. Th Gram-Schmdt QRD algorthm s not a partcularly havy numrcal calculaton and can b usd n applcatons, but an altrnatv s also possbl. As I hav notd prvously [5] th componnts of can b wrttn n trms of dot and cross products of th column vctors of. Thus th nrgy of dformaton can b wrttn n trms of dot and cross products of th column vctors of and onc th nrgy s xprssd n ths trms, t s not ncssary to calculat any othr tnsors than n carryng out applcatons; howvr, w do hav to consdr th orntaton of any ansotropy for ngnrng applcatons. 6. Coordnat Algnmnt Whn an ansotropc matral s placd n srvc t s ncssary to know th ntal orntaton of th ansotropy. Ths s bcaus th stord nrgy s a functon of th orntaton of th sotropc matral rlatv to th obsrvr s coordnat systm. For xampl consdr a lamnat. If th lamnat s orntd so that th lamna ar paralll to th x-y plan n th obsrvr s coordnat systm and xtndd n th x drcton a fxd amount thr wll b a chang n nrgy of th matral. Howvr, f th sam lamnat s ntally orntd so that th lamna () () 9

6 ar paralll to th y-z plan n th obsrvr s coordnat systm and xtndd n th x drcton th sam fxd amount thr wll b a dffrnt chang n nrgy of th matral. Thus th ntal orntaton of th lamna n th obsrvr s coordnat systm must b known n ordr to corrctly calculat th stord nrgy n th matral. Whn th matral s placd n srvc bfor any dformaton has occurrd, th ansotropc coordnat systm n whch th nrgy masurmnts wr mad, ˆ ( k ), and th obsrvr coordnat systm, ˆ ( k ), may not algn. Dfn a rotaton matrx, ˆ ( k ) = δk 0 R, whr 0 R maps th componnts of th obsrvr s coordnat systm,, nto th componnts of ansotropc coordnat systm bfor any dformaton,.. ˆ = 0ˆ. () ( k) ( k) R Th local dformaton whch s xprssd n th obsrvr s coordnat systm, xprmntal coordnat systm, Not that 0 R l s at most only a functon of, by a smpl chang of coordnats of ( R ) T 0 o 0 k kl l o, can b xprssd n th o [6], = R (4) X. It s not a functon of x snc t s dfnd bfor any d- formaton has takn plac. For an nhomognous matral, th matrx may vary from pont to pont, so x that th nrgy would b a functon of X as wll as. (Of cours any nhomognous matral mght also b mad up of dffrnt matrals whch hav dffrnt nrgy maps at dffrnt locatons n spac, X X.) Thus n th most gnral cas, So that n gnral, 7. Is Ths Enrgy a Scalar? x = f, X an d d = f ( x, X ) (5) X x E = f (, d ) = f, x, X (6) X It may sm strang that w must transfr th coordnat valus of th matral n th obsrvr s coordnat systm back nto th xprmntal coordnat systm n ordr to fnd th local chang n nrgy, but ths s xactly as t should b. Enrgy must b a scalar, whch s ndpndnt of th choc of th coordnat systm. That ths s th cas can b sn f w xprss th nrgy n trms dot products of vctors, whch ar ndpndnt of th ( ) coordnat choc. Not that th local ansotropy coordnat systm vctors, ˆ k, ar mappd nto a nw st of ( k ) vctors,, whch ar n gnral nthr orthogonal, nor unt vctors (.g. s Fgur ). In th obsrvr s coordnat systm ths mappng s ( k) o ( k) = ˆ (7) Th corrspondng mappng of ths sam vctors n th xprmntal coordnat systm s ( k) ( k) ˆ = (8) ( ) ( ) W can choos to xprss th nrgy as a functon of th nvarant, ˆ, whch must hav th sam valu n both coordnat systms. To s th conncton btwn th maps n th dffrnt coordnat systms, xpand th dot product n both systms and compar th rsult. In th xprmntal coordnat systm, ( ) ( ) ( ) ( ) ( ) ( ) ˆ = ˆ ˆ ˆ k k = k k = δkk δ = (9) ( ) In th obsrvr s coordnat systm, whr ˆ k ( ) ( ) = δk and ˆ k 0ˆ k = R, w hav 0

7 ˆ R ˆ R ( ˆ ) ( ) ( ) ( ) ( ) ( ) o ( ) 0 ( ) o 0 ( ) = ˆ ˆ ˆ k k = k kl l = kmm kl lnn ( ) T o o o 0 kmδmkl lnδ n = kkl l k kl l = R R R R = R R. H. H. Hardy ( ) ( ) Comparng Equaton (9) to Equaton (0) rturns us to Equaton (4) snc ˆ s nvarant and must b th sam valu n both coordnat systms. Ths s th sam typ of xplanaton that must b usd n xprssng th nrgy n trms of th componnts of dsplacmnt vctors, although w usually do not dscuss t n ths trms. Usually th nrgy assocatd wth th dsplacmnt can b calculatd from a formula nstad of havng to carry out ndvdual xprmnts for ach matral. For xampl, a dsplacmnt n th prsnc of gravty changs th nrgy stord n th matral, but t s asly xprssd as mg d whr m s th mass and g s th acclraton du to gravty and no xprmnts ar ncssary. Howvr, f w dd carry out th xprmnts, w would masur th nrgy of dformaton n trms of th componnts of d n th xprmntal coordnat systm. In that cas w would nd to tak nto account any chang n th componnts of d n th obsrvrs coordnats. For xampl, assum th nrgy stord du to gravty s xprssd n th xprmntal coordnat systm as mgd, whr th forc of gravty n th xprmntal coordnat systm has bn chosn to algn wth X. If w placd ths matral nto an obsrvr coordnat systm whr gravty s n th X drcton, w must frst rotat th coordnat systm to algn th X drcton wth th X drcton bfor lookng up th corrspondng nrgy that w stord n our nrgy map w compld by masurng th nrgy n th xprmntal coordnat systm. Of cours f w choos to xprss th nrgy n trms of th dot product, mg d all of ths would tak car of tslf. ( ) A word of cauton s ncssary hr. Th vctors ˆ ( ) and ar th sam vctors n both th obsrvr and th xprmntal coordnat systms. On th othr hand, th column vctors, a, b, and c, ar only dfnd n th xprmntal coordnat systm, and thrfor th transformaton n Equaton (4) must b carrd out bfor xtractng th column vctors of to calculat th nrgy of dformaton for an ansotropc body. Ths s not ncssary for sotropc matrals bcaus n that cas th nrgy s ndpndnt of all rotatons and applyng th transformaton Equaton (4) has no ffct on th fnal nrgy calculaton,.. th Λ s ar th sam for and. 8. Smulatons o I hav now compltly dfnd a mthod to masur th nrgy of dformaton of a homognous body xprmntally and how to plac th matral n a gvn applcaton. Bcaus ngnrng applcatons ar oftn complx, t s usually ncssary to put ths nformaton nto a computr smulaton. Th smplst approach s to ust pastng small pcs of th matral togthr to dfn th complt matral. Ths can b don by randomly postonng ponts n th matral and us ths to dvd th matral to b smulatd nto small ttrahdrons of volum ΔV k, ach boundd by four ponts. Th ntal and fnal locatons of ths four ponts put nto Equaton (5) can b usd to dfn th paramtrs ndd to calculat th nrgy pr unt orgnal volum for ach ttrahdron. Th total nrgy of th systm s ust th wghtd sum of th nrgy pr unt volum of ach ttrahdron, x Etot = Ek, x, X ΔVk () X whr k s summd ovr all th ttrahdra n th matral. Apply th boundary condtons and mov th ntrnal ponts to produc mnmum total nrgy, E tot, and w hav a soluton. I hav calld ths ths dscrt rgon modl [4]. An altrnatv mthod s to us a contnuous Eulr-Lagrang tchnqu to mnmz th functonal, x Etot = E, x, d matral X V X () Th rsult of ths approach s a st of partal dffrntal quatons whch can b solvd by any numrcal tchnqu (.g. fnt dffrnc, fnt lmnt, Raylgh-Rtz, tc.). I hav calld ths Eulr-Lagrang lastcty [5]. (0)

8 9. Dffrntal Equatons Th dscrt rgon mthod collapss nto Eulr-Lagrang lastcty f th sz of ach ttrahdron approachs zro as th numbr of ttrahdra, N, ncras wthout bound,.. N x x Etot = lm Ek, x, X Vk = E, x, X d V. N V 0 k = X X () To fnd th dffrntal quatons of lastcty w nd to mnmz (or fnd th xtrma) of E tot,.. x δetot = δ E, x, X dv = 0. X (4) Wth dv = dxdxdx. Ths s a classc Calculus of Varatons problm wth multpl varabls [7]. Th rsults of ths mnmzaton ar th followng thr Eulr quatons: E d E = 0. x dx ( x X ) Ths thr quatons ar qut gnral, bng approprat for both nfntsmal and fnt dformatons, for sotropc and ansotropc matrals, and can nclud surfac forcs, gravty, and lctrcal and magntc forcs. 0. Spcal Applcaton Cass If th matral s homognous, E df wll not b a functon of X. If gravty s th only xtrnal body forc, E can b sparatd nto th nrgy of dformaton, E df, and nrgy of body forcs, E body : x x E, x, X = Edf + Ebody ( x, X) (6) X X If only nfntsmal dformatons ar ndd, thn E can b xpandd n a Taylor s xpanson whch ylds th sam dffrntal quatons Landau drvd for nfntsmal dformatons [8] usng classcal strss and stran tchnqus. If tm dpndnc s rqurd, dfn th Lagrangan, = T E, (7) x x x ρv ρ whr T = = + + t t t, wth ρ th mass pr orgnal volum. Fndng th xtrma of (5) dx dx dx dt (8) = rsults agan n thr Eulr quatons, now of th followng form: d d = 0 x dx ( x ) dt X ( x t) Ths thr quatons ar th tm dpndnt dffrntal quatons for hypr-lastcty [9]. All that s ndd now s to nclud boundary condtons and forc. Boundary condtons consst of Numann and Drchlt boundary condtons. Drchlt boundary condtons ust st th postons of boundary ponts of th matral. Numann boundary condtons can b xprssd n trms of appld forcs on th surfacs of th matral [5], surfac forc E df = da (0) x X ( ) whr d A ar th componnts of th orgnal surfac ara whr th forcs ar appld. Equatons (0) provd dffrntal quatons to st th boundary condtons f th appld surfac forcs ar known. (9)

9 . Comparson to Othr Elastcty Thors Th most obvous dffrnc of ths approach and classcal lastcty s that n ths approach thr s no dfnton of strss or stran. Hr dsplacmnts and forcs ar th altrnatvs to strss and stran. Ths approach also rqurs th dfnton of only on scond ordr tnsor, th dformaton gradnt tnsor. In lastcty wth strss and stran mor than 0 tnsors hav bn usd to dscrb fnt lastcty [0] []. ( ) ( ) ( ) ( ) For classcal lastcty wth strss and stran, th nvarants ˆ ˆ, or, ar usd to dscrb stran n T T trms of or. In that cas stran s scond ordr n th dsplacmnts, dx In th approach pr- ( ) ( ) sntd n ths papr, th nvarants usd ar ˆ, and th nrgy of dformaton s calculatd from th matrx tslf, whch s only frst ordr n dx. Infntsmal lastcty also rqurs compatblty quatons rlatng strss and stran whch xprsss matral proprts as fourth ordr tnsors. Th approach gvn hr xprsss matral proprts for all hypr-lastc matrals as a scalar, th nrgy pr orgnal volum, E. Som dscrptons of lastcty dfn dx and dx to b rprsntd n dffrnt coordnat bass []. In ths dscrptons, s thn calld a two-pont tnsor. In ths prsntaton, all vctors and tnsors ar xprssd n th sam coordnat bass, thr all n th obsrvr or all n th xprmnt coordnat systms. Thr ar no two-pont tnsors. In som dscrptons of lastcty, only obctv tnsors ar usd to formulat th consttutv quatons. Obctv tnsors ar rqurd to b ndpndnt of th moton of th matral that s bng dformd. That s, ths tnsors should b th sam n both a fxd rfrnc coordnat systm and n a coordnat systm that dforms wth th matral []. In ths papr all physcal quantts ar xprssd only n trms of on of two coordnat systms fxd n spac bfor any dformaton taks plac. In ths papr, nthr th obsrvr coordnats nor th xprmntal coordnats dform as th matral dforms. Both ar nrtal coordnat systms fxd n spac. (Th ansotropy coordnats ˆ ( k ) ( k ) do dform n spac nto aftr a dformaton, but ths ar not usd as bass to dscrb th componnts of vctors or tnsors.) Som dtals may b asly confusd btwn ths approach and th Classcal approach. Thr xampls follow: T Λ ar not th of nvarants of th rght Cauchy-Grn dformaton tnsor, whch s dscrbd as. Instad th Λ valus ar th dagonal lmnts of SVD( ). QRD s not th sam as Polar dcomposton that s usd n classcal lastcty thory. Polar dcomposton producs R, whr s a symmtrc matrx, whras QRD producs R, whr s an uppr trangular matrx. E Th trm n Equaton (0) s quvalnt to Cauchy strss only for nfntsmal dformatons. x X. Concluson ( ) A mthod of dscrbng hypr-lastcty usng lnar algbra has bn prsntd that uss ponts wthn th matral and forcs nstad of strss and stran. Th thory provds a straght forward way to masur matral proprts and allows th ncluson of magntc and lctrc flds as wll as gravty. Ths dscrpton uss th sam quatons for both fnt and nfntsmal dformatons. Numann boundary condtons ar xprssd n trms of masurd forcs nstad of computd strsss. Th rsult s a complt thory of hypr-lastcty whch ncluds nfntsmal and fnt dformatons, sotropc and ansotropc matrals, quas-statc and dynamc lastc rsponss. Acknowldgmnts I would lk to acknowldg Mr. Joshua Wood and Dr. Mchal Brglund for thr vry frutful dscussons and hlpful suggstons. Rfrncs [] Todhuntr, I. (886) A Hstory of th Thory of Elastcty and of th Strngth of Matrals from Gall to th Prsnt Tm. Cambrdg Unvrsty Prss, Cambrdg. [] Spncr, A.J. (980) Contnuum Mchancs. Dovr, Nw York.

10 [] Rvln, R.S. and Saundrs, D.W. (95) Larg Elastc Dformatons of Isotropc Matrals. VII. Exprmnts on th Dformaton of Rubbr. Phlosophcal Transactons of th Royal Socty of London. Srs A. Mathmatcal and Physcal Scncs, 4, [4] Hardy, H.H. and Shmdhsr, H. (0) A Dscrt Rgon Modl of Isotropc Elastcty. Mathmatcs and Mchancs of Solds, 6, [5] Hardy, H.H. (0) Eulr-Lagrang Elastcty: Dffrntal Equaton for Elastcty wthout Strss or Stran. Journal of Appld Mathmatcs and Physcs,, [6] Glbrt, J.D. (970) Elmnts of Lnar Algbra. Intrnatonal Txtbook Company, Scranton. [7] Glfand, I.M. and Fomn, S.V. (99) Calculus of Varatons. Dovr, Nw York. [8] Landau, L.D. and Lfshtz, E.M. (005) Thory of Elastcty, Cours of Thortcal Physcs. Volum 7, Elsvr, London. [9] Hardy, H.H. (04) Eulr-Lagrang Elastcty wth Dynamcs. Journal of Appld Mathmatcs and Physcs,, [0] Trusdal, C. and Noll, W. (004) Th Non-Lnar Fld Thors of Mchancs. Sprngr-Vrlag, Nw York. [] Wu, H.-C. (004) Contnuum Mchancs and Plastcty. CRC Prss, Nw York. [] Klly, P. (05) Mchancs Lctur Nots Part III: Foundatons of Contnuum Mchancs. 4

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM Avalabl onln at www.scncdrct.com Procda Engnrng 9 () 373 377 Intrnatonal Workshop on Informaton and Elctroncs Engnrng (IWIEE) Thr-Nod Eulr-Brnoull Bam Elmnt Basd on Postonal FEM Lu Jan a *,b, Zhou Shnj

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

From Structural Analysis to Finite Element Method

From Structural Analysis to Finite Element Method From Structural Analyss to Fnt Elmnt Mthod Dhman Basu II Gandhnagar -------------------------------------------------------------------------------------------------------------------- Acknowldgmnt Followng

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University Statc/Dynamc Dormaton wth Fnt Elmnt Mthod Graphcs & Mda Lab Sol Natonal Unvrsty Statc/Dynamc Dormaton Statc dormaton Dynamc dormaton ndormd shap ntrnal + = nrta = trnal dormd shap statc qlbrm dynamc qlbrm

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Α complete processing methodology for 3D monitoring using GNSS receivers

Α complete processing methodology for 3D monitoring using GNSS receivers 7-5-5 NATIONA TECHNICA UNIVERSITY OF ATHENS SCHOO OF RURA AND SURVEYING ENGINEERING DEPARTMENT OF TOPOGRAPHY AORATORY OF GENERA GEODESY Α complt procssng mthodology for D montorng usng GNSS rcvrs Gorg

More information

INTERFACE CORNERS IN ANISOTROPIC/PIEZOELECTRIC/ VISCOELASTIC MATERIALS

INTERFACE CORNERS IN ANISOTROPIC/PIEZOELECTRIC/ VISCOELASTIC MATERIALS INERFAE ORNERS IN ANISOROPI/PIEZOELERI/ VISOELASI MAERIALS hyanbn Hwu a-lang uo Insttut of Aronautcs and Astronautcs Natonal hng ung Unvrsty anan AIWAN R.O.. Ansotropc matrals bhav dffrntly n dffrnt drctons.

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering Last Lcturs: Polaraton of Elctromagntc Wavs Phys 774: Nonlnar Spctroscopy: SHG and Scattrng Gnral consdraton of polaraton Jons Formalsm How Polarrs work Mullr matrcs Stoks paramtrs Poncar sphr Fall 7 Polaraton

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti

A NON-LINEAR MODEL FOR STUDYING THE MOTION OF A HUMAN BODY. Piteşti, , Romania 2 Department of Automotive, University of Piteşti ICSV Carns ustrala 9- July 7 NON-LINER MOEL FOR STUYING THE MOTION OF HUMN OY Ncola-oru Stănscu Marna Pandra nl Popa Sorn Il Ştfan-Lucan Tabacu partnt of ppld Mchancs Unvrsty of Ptşt Ptşt 7 Roana partnt

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m hy3: Gnral hyscs III 4/0/008 haptr Worksht lctrc Flds: onsdr a fxd pont charg of 0 µ (q ) q = 0 µ d = 0 a What s th agntud and drcton of th lctrc fld at a pont, a dstanc of 0? q = = 8x0 ˆ o d ˆ 6 N ( )

More information

6 Finite element methods for the Euler Bernoulli beam problem

6 Finite element methods for the Euler Bernoulli beam problem 6 Fnt lmnt mtods for t Eulr Brnoull bam problm Rak-54.3 Numrcal Mtods n Structural Engnrng Contnts. Modllng prncpls and boundary valu problms n ngnrng scncs. Enrgy mtods and basc D fnt lmnt mtods - bars/rods

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Variational Approach in FEM Part II

Variational Approach in FEM Part II COIUUM & FIIE ELEME MEHOD aratonal Approach n FEM Part II Prof. Song Jn Par Mchancal Engnrng, POSECH Fnt Elmnt Mthod vs. Ralgh-Rtz Mthod On wants to obtan an appromat solton to mnmz a fnctonal. On of th

More information

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza

Lecture 08 Multiple View Geometry 2. Prof. Dr. Davide Scaramuzza Lctr 8 Mltpl V Gomtry Prof. Dr. Dad Scaramzza sdad@f.zh.ch Cors opcs Prncpls of mag formaton Imag fltrng Fatr dtcton Mlt- gomtry 3D Rconstrcton Rcognton Mltpl V Gomtry San Marco sqar, Vnc 4,79 mags, 4,55,57

More information

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation.

Heating of a solid cylinder immersed in an insulated bath. Thermal diffusivity and heat capacity experimental evaluation. Hatng of a sold cylndr mmrsd n an nsulatd bath. Thrmal dffusvty and hat capacty xprmntal valuaton. Žtný R., CTU FE Dpartmnt of Procss Engnrng, arch. Introducton Th problm as ntatd by th follong E-mal from

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Spectral stochastic finite element analysis of structures with random field parameters under bounded-but-uncertain forces

Spectral stochastic finite element analysis of structures with random field parameters under bounded-but-uncertain forces Southrn Cross Unvrsty Publcatons@SCU 23rd Australasan Confrnc on th Mchancs of Structurs and Matrals 24 Spctral stochastc fnt lmnt analyss of structurs wth random fld paramtrs undr boundd-but-uncrtan forcs

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article Avalabl onln www.ocpr.com Journal of Chmcal and Pharmacutcal Rsarch, 214, 6(7):1394-14 Rsarch Artcl ISSN : 975-7384 COEN(USA) : JCPRC5 Rsarch on fatgu damag of suckr rod basd on damag mchancs Ru-fn Zhou,

More information

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges

Physics of Very High Frequency (VHF) Capacitively Coupled Plasma Discharges Physcs of Vry Hgh Frquncy (VHF) Capactvly Coupld Plasma Dschargs Shahd Rauf, Kallol Bra, Stv Shannon, and Kn Collns Appld Matrals, Inc., Sunnyval, CA AVS 54 th Intrnatonal Symposum Sattl, WA Octobr 15-19,

More information

PREDICTION OF STRESS CONCENTRATION FACTORS IN UNLAPPED SQUARE HOLLOW "K" JOINTS BY THE FINITE ELEMENT METHOD

PREDICTION OF STRESS CONCENTRATION FACTORS IN UNLAPPED SQUARE HOLLOW K JOINTS BY THE FINITE ELEMENT METHOD Ngran Journal of chnology, Vol. 5, No., March 006 Jk 5 PREDICION OF SRESS CONCENRAION FACORS IN UNLAPPED SQUARE HOLLOW "K" JOINS BY HE FINIE ELEMEN MEHOD DR.P.N.JIKI Dpartmnt of Cvl Engnrng, Unvrsty of

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

7 Finite element methods for the Euler Bernoulli beam problem

7 Finite element methods for the Euler Bernoulli beam problem 7 Fnt lmnt mtods for t Eulr Brnoull bam problm CIV-E6 Engnrng Computaton and Smulaton Contnts. Modllng prncpls and boundary alu problms n ngnrng scncs. Bascs of numrcal ntgraton and dffrntaton 3. Basc

More information

Gravitation as Geometry or as Field

Gravitation as Geometry or as Field Journal of Appld Mathmatcs and Physcs, 7, 5, 86-87 http://wwwscrporg/journal/jamp ISSN Onln: 37-4379 ISSN Prnt: 37-435 Gravtaton as Gomtry or as Fld Waltr Ptry Mathmatcal Insttut of th Unvrsty Dussldorf,

More information

JEE-2017 : Advanced Paper 2 Answers and Explanations

JEE-2017 : Advanced Paper 2 Answers and Explanations DE 9 JEE-07 : Advancd Papr Answrs and Explanatons Physcs hmstry Mathmatcs 0 A, B, 9 A 8 B, 7 B 6 B, D B 0 D 9, D 8 D 7 A, B, D A 0 A,, D 9 8 * A A, B A B, D 0 B 9 A, D 5 D A, B A,B,,D A 50 A, 6 5 A D B

More information

Study interaction between intensive circularly polarized laser and hydrogen atom using a matrix method

Study interaction between intensive circularly polarized laser and hydrogen atom using a matrix method ISBN 978-1-84626-020-9 Procdngs of 3 rd Intrnatonal Workshop on Matrx Analyss angzhou,p.r.chna.july 9-13, 2009, pp. 199-202 ( Wll st y th pulshr ) Study ntracton twn ntnsv crcularly polarzd lasr and hydrogn

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS

OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS Th Svnth East Asa-Pacfc Confrnc on Structural Engnrng & Constructon August 27-29, 1999, Koch, Japan OPTIMAL TOPOLOGY SELECTION OF CONTINUUM STRUCTURES WITH STRESS AND DISPLACEMENT CONSTRAINTS Qng Quan

More information

Properties of ferromagnetic materials, magnetic circuits principle of calculation

Properties of ferromagnetic materials, magnetic circuits principle of calculation Proprts of frromagntc matrals magntc crcuts prncpl of calculaton Frromagntc matrals Svral matrals rprsnt dffrnt macroscopc proprts thy gv dffrnt rspons to xtrnal magntc fld Th rason for dffrnc s crtan

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES

MP IN BLOCK QUASI-INCOHERENT DICTIONARIES CHOOL O ENGINEERING - TI IGNAL PROCEING INTITUTE Lornzo Potta and Prr Vandrghynst CH-1015 LAUANNE Tlphon: 4121 6932601 Tlfax: 4121 6937600 -mal: lornzo.potta@pfl.ch ÉCOLE POLYTECHNIQUE ÉDÉRALE DE LAUANNE

More information

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time. Elctroncphalography EEG Dynamc Causal Modllng for M/EEG ampltud μv tm ms tral typ 1 tm channls channls tral typ 2 C. Phllps, Cntr d Rchrchs du Cyclotron, ULg, Blgum Basd on slds from: S. Kbl M/EEG analyss

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

Naresuan University Journal: Science and Technology 2018; (26)1

Naresuan University Journal: Science and Technology 2018; (26)1 Narsuan Unvrsty Journal: Scnc and Tchnology 018; (6)1 Th Dvlopmnt o a Corrcton Mthod or Ensurng a Contnuty Valu o Th Ch-squar Tst wth a Small Expctd Cll Frquncy Kajta Matchma 1 *, Jumlong Vongprasrt and

More information

CLASSICAL STATISTICS OF PARAMAGNETISM

CLASSICAL STATISTICS OF PARAMAGNETISM Prof. Dr. I. assr Phys 530 8-Dc_0 CLASSICAL STATISTICS OF PARAMAGETISM Th most famous typs of Magntc matrals ar: () Paramagntc: A proprty xhbt by substancs whch, whn placd n a magntc fld, ar magntd paralll

More information

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs)

EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In the absence of or in between ELMs) I. EDGE PEDESTAL STRUCTURE AND TRANSPORT INTERPRETATION (In th absnc of or n btwn ELMs) Abstract W. M. Stacy (Gorga Tch) and R. J. Grobnr (Gnral Atomcs) A constrant on th on prssur gradnt s mposd by momntum

More information

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach

Green Functions, the Generating Functional and Propagators in the Canonical Quantization Approach Grn Functons, th Gnratng Functonal and Propagators n th Canoncal Quantzaton Approach by Robrt D. Klaubr 15, 16 www.quantumfldthory.nfo Mnor Rv: Spt, 16 Sgnfcant Rv: Fb 3, 16 Orgnal: Fbruary, 15 Th followng

More information

On 2D elliptic discontinuous Galerkin methods

On 2D elliptic discontinuous Galerkin methods INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numr. Mth. Engng 26; 65:752 784 Publshd onln 9 Sptmbr 25 n Wly IntrScnc (www.ntrscnc.wly.com). DOI:.2/nm.466 On 2D llptc dscontnuous Galrkn

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

On 2D Elliptic Discontinuous Galerkin Methods

On 2D Elliptic Discontinuous Galerkin Methods On 2D Ellptc Dscontnuous Galrkn Mthods S.J. Shrwn Dpartmnt of Aronautcs Impral Collg London, UK J. Pró Dpartmnt of Aronautcs Impral Collg London, UK R.L. Taylor R.M. Krby School of Computng Unvrsty of

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Decision-making with Distance-based Operators in Fuzzy Logic Control

Decision-making with Distance-based Operators in Fuzzy Logic Control Dcson-makng wth Dstanc-basd Oprators n Fuzzy Logc Control Márta Takács Polytchncal Engnrng Collg, Subotca 24000 Subotca, Marka Orškovća 16., Yugoslava marta@vts.su.ac.yu Abstract: Th norms and conorms

More information

FINITE ELEMENT METHOD II Autumn 2015

FINITE ELEMENT METHOD II Autumn 2015 FEM II - Lctur Pag of 4 FINITE ELEMENT METHOD II Autumn 05 Lcturs (5h):. Accuracy, rror stmaton and adaptv rmshng. Hat flow and thrmal strsss n FEM 3. Introducton to structural dynamcs, fr vbratons 4.

More information

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

MECH321 Dynamics of Engineering System Week 4 (Chapter 6) MH3 Dynamc of ngnrng Sytm Wk 4 (haptr 6). Bac lctrc crcut thor. Mathmatcal Modlng of Pav rcut 3. ompl mpdanc Approach 4. Mchancal lctrcal analogy 5. Modllng of Actv rcut: Opratonal Amplfr rcut Bac lctrc

More information

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab

Fundamentals of Continuum Mechanics. Seoul National University Graphics & Media Lab Fndmntls of Contnm Mchncs Sol Ntonl Unvrsty Grphcs & Md Lb Th Rodmp of Contnm Mchncs Strss Trnsformton Strn Trnsformton Strss Tnsor Strn T + T ++ T Strss-Strn Rltonshp Strn Enrgy FEM Formlton Lt s Stdy

More information

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS 4. ODELING OF IN-WALLED SELLS AND PLAES. INRODUCION O E EORY OF SELL FINIE ELEEN ODELS Srő: Dr. András Skréns Dr. András Skréns BE odlng of thn-walld shlls and plats. Introducton to th thor of shll fnt

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

1- Summary of Kinetic Theory of Gases

1- Summary of Kinetic Theory of Gases Dr. Kasra Etmad Octobr 5, 011 1- Summary of Kntc Thory of Gass - Radaton 3- E4 4- Plasma Proprts f(v f ( v m 4 ( kt 3/ v xp( mv kt V v v m v 1 rms V kt v m ( m 1/ v 8kT m 3kT v rms ( m 1/ E3: Prcntag of

More information

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Basic Electrical Engineering for Welding [ ] --- Introduction --- Basc Elctrcal Engnrng for Wldng [] --- Introducton --- akayosh OHJI Profssor Ertus, Osaka Unrsty Dr. of Engnrng VIUAL WELD CO.,LD t-ohj@alc.co.jp OK 15 Ex. Basc A.C. crcut h fgurs n A-group show thr typcal

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

ECE507 - Plasma Physics and Applications

ECE507 - Plasma Physics and Applications ECE57 - Plasa Physcs and Applcatons Lctur Prof. Jorg Rocca and Dr. Frnando Toasl Dpartnt of Elctrcal and Coputr Engnrng Introducton: What s a plasa? A quas-nutral collcton of chargd (and nutral) partcls

More information

:2;$-$(01*%<*=,-./-*=0;"%/;"-*

:2;$-$(01*%<*=,-./-*=0;%/;-* !"#$%'()%"*#%*+,-./-*+01.2(.*3+456789*!"#$%"'()'*+,-."/0.%+1'23"45'46'7.89:89'/' ;8-,"$4351415,8:+#9' Dr. Ptr T. Gallaghr Astrphyscs Rsarch Grup Trnty Cllg Dubln :2;$-$(01*%

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Euler-Lagrange Elasticity: Differential Equations for Elasticity without Stress or Strain

Euler-Lagrange Elasticity: Differential Equations for Elasticity without Stress or Strain Journal of Appled Mathematcs and Physcs,,, 6- Publshed Onlne December (http://wwwscrporg/ournal/amp) http://dxdoorg/46/amp74 Euler-Lagrange Elastcty: Dfferental Equatons for Elastcty wthout Stress or Stran

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

Mathematical Model of Arterial Hemodynamics, Description, Computer Implementation, Results Comparison

Mathematical Model of Arterial Hemodynamics, Description, Computer Implementation, Results Comparison Appld Physcs Rsarch; Vol. 5, No. 3; 3 ISSN 96-9639 E-ISSN 96-9647 Publshd by Canadan Cntr of Scnc and Educaton Mathmatcal Modl of Artral Hmodynamcs, Dscrpton, Computr Implmntaton, Rsults Comparson Elshn

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

Optimal Topology Design for Replaceable of Reticulated Shell Based on Sensitivity Analysis

Optimal Topology Design for Replaceable of Reticulated Shell Based on Sensitivity Analysis Optmal Topology Dsgn for Rplacabl of Rtculatd Shll Basd on Snstvty Analyss Yang Yang Dpartmnt of Naval Archtctur, Dalan Unvrsty of Tchnology, Laonng, CN Ma Hu Collg of Rsourc and Cvl Engnrng, Northastrn

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information