Intro to Annihilators. CS 362, Lecture 3. Today s Outline. Annihilator Operators

Size: px
Start display at page:

Download "Intro to Annihilators. CS 362, Lecture 3. Today s Outline. Annihilator Operators"

Transcription

1 Intro to Annihilators CS 36, Lecture 3 Jared Saia University of New Mexico Suppose we are given a sequence of numbers A = a 0, a 1, a, This might be a sequence like the Fibonacci numbers I.e. A = a 0, a 1, a,...) = (T(1), T(), T(3), Today s Outline Annihilator Operators Listen and Understand! That terminator is out there. It can t be bargained with, it can t be reasoned with! It doesn t feel pity, remorse, or fear. And it absolutely will not stop, ever, until you are dead! - The Terminator Solving Recurrences using Annihilators We define three basic operations we can perform on this sequence: 1. Multiply the sequence by a constant: ca = ca 0, ca 1, ca,. Shift the sequence to the left: LA = a 1, a, a 3, 3. Add two sequences: if A = a 0, a 1, a, and B = b 0, b 1, b,, then A + B = a 0 + b 0, a 1 + b 1, a + b, 1 3

2 Annihilator Description Example (II) Let s annihilate T = 0, 1,, 3, We first express our recurrence as a sequence T We use these three operators to annihilate T, i.e. make it all 0 s Key rule: can t multiply by the constant 0 We can then determine the solution to the recurrence from the sequence of operations performed to annihilate T Multiplying by a constant c = gets: T = 0, 1,, 3, = 1,, 3, 4, Shifting one place to the left gets LT = 1,, 3, 4, Adding the sequence LT and T gives: LT T = 1 1,, 3 3, = 0,0,0, The annihilator of T is thus L 4 6 Example Distributive Property Consider the recurrence T(n) = T(n 1), T(0) = 1 If we solve for the first few terms of this sequence, we can see they are 0, 1,, 3, Thus this recurrence becomes the sequence: T = 0, 1,, 3, The distributive property holds for these three operators Thus can rewrite LT T as (L )T The operator (L ) annihilates T (makes it the sequence of all 0 s) Thus (L ) is called the annihilator of T 5 7

3 0, the Forbidden Annihilator Example Multiplication by 0 will annihilate any sequence Thus we disallow multiplication by 0 as an operation In particular, we disallow (c c) = 0 for any c as an annihilator Must always have at least one L operator in any annihilator! If we apply operator (L 3) to sequence T above, it fails to annihilate T (L 3)T = LT + ( 3)T = 1,, 3, + 3 0, 3 1, 3, = ( 3) 0,( 3) 1,( 3), = ( 3)T = T 8 10 Uniqueness Example (II) What does (L c) do to other sequences A = a 0 d n when d c?: An annihilator annihilates exactly one type of sequence In general, the annihilator L c annihilates any sequence of the form a 0 c n If we find the annihilator, we can find the type of sequence, and thus solve the recurrence We will need to use the base case for the recurrence to solve for the constant a 0 (L c)a = (L c) a 0, a 0 d, a 0 d, a 0 d 3, = L a 0, a 0 d, a 0 d, a 0 d 3, c a 0, a 0 d, a 0 d, a 0 d 3, = a 0 d, a 0 d, a 0 d 3, ca 0, ca 0 d, ca 0 d, ca 0 d 3, = a 0 d ca 0, a 0 d ca 0 d, a 0 d 3 ca 0 d, = (d c)a 0,(d c)a 0 d,(d c)a 0 d, = (d c) a 0, a 0 d, a 0 d, = (d c)a 9 11

4 Uniqueness Example First calculate the annihilator: The last example implies that an annihilator annihilates one type of sequence, but does not annihilate other types of sequences Thus Annihilators can help us classify sequences, and thereby solve recurrences Recurrence: T(n) = 4 T(n 1), T(0) = Sequence: T =, 4, 4, 4 3, Calulate the annihilator: LT = 4, 4, 4 3, 4 4, 4T = 4, 4, 4 3, 4 4, Thus LT 4T = 0,0,0, And so L 4 is the annihilator 1 14 Lookup Table Example (II) Now use the annihilator to solve the recurrence The annihilator L a annihilates any sequence of the form c 1 a n Look up the annihilator in the Lookup Table It says: The annihilator L 4 annihilates any sequence of the form c 1 4 n Thus T(n) = c 1 4 n, but what is c 1? We know T(0) =, so T(0) = c = and so c 1 = Thus T(n) = 4 n 13 15

5 In Class Exercise Multiple Operators Consider the recurrence T(n) = 3 T(n 1), T(0) = 3, Q1: Calculate T(0),T(1),T() and T(3) and write out the sequence T Q: Calculate LT, and use it to compute the annihilator of T Q3: Look up this annihilator in the lookup table to get the general solution of the recurrence for T(n) Q4: Now use the base case T(0) = 3 to solve for the constants in the general solution We can string operators together to annihilate more complicated sequences Consider: T = , , + 3, We know that (L ) annihilates the powers of while leaving the powers of 3 essentially untouched Similarly, (L 3) annihilates the powers of 3 while leaving the powers of essentially untouched Thus if we apply both operators, we ll see that (L )(L 3) annihilates the sequence T Multiple Operators The Details We can apply multiple operators to a sequence For example, we can multiply by the constant c and then by the constant d to get the operator cd We can also multiply by c and then shift left to get clt which is the same as LcT We can also shift the sequence twice to the left to get LLT which we ll write in shorthand as L T Consider: T = a 0 + b 0, a 1 + b 1, a + b, LT = a 1 + b 1, a + b, a 3 + b 3, at = a 1 + a b 0, a + a b 1, a 3 + a b, LT at = (b a)b 0,(b a)b 1,(b a)b, We know that (L a)t annihilates the a terms and multiplies the b terms by b a (a constant) Thus (L a)t = (b a)b 0,(b a)b 1,(b a)b, And so the sequence (L a)t is annihilated by (L b) Thus the annihilator of T is (L b)(l a) 17 19

6 Key Point Fibonnaci Sequence In general, the annihilator (L a)(l b) (where a b) will anihilate only all sequences of the form c 1 a n + c b n We will often multiply out (L a)(l b) to L (a+b)l+ab Left as an exercise to show that (L a)(l b)t is the same as (L (a + b)l + ab)t We now know enough to solve the Fibonnaci sequence Recall the Fibonnaci recurrence is T(0) = 0, T(1) = 1, and T(n) = T(n 1) + T(n ) Let T n be the n-th element in the sequence Then we ve got: T = T 0, T 1, T, T 3, (1) LT = T 1, T, T 3, T 4, () L T = T, T 3, T 4, T 5, (3) Thus L T LT T = 0,0,0, In other words, L L 1 is an annihilator for T 0 Lookup Table Factoring The annihilator L a annihilates sequences of the form c 1 a n The annihilator (L a)(l b) (where a b) anihilates sequences of the form c 1 a n + c b n L L 1 is an annihilator that is not in our lookup table However, we can factor this annihilator (using the quadratic formula) to get something similar to what s in the lookup table L L 1 = (L φ)(l ˆφ), where φ = 1+ 5 and ˆφ =

7 Quadratic Formula Back to Fibonnaci Me fail English? That s Unpossible! - Ralph, the Simpsons High School Algebra Review: To factor something of the form ax + bx + c, we use the Quadratic Formula: ax + bx + c factors into (x φ)(x ˆφ), where: φ = b + b 4ac (4) a ˆφ = b b 4ac (5) a Recall the Fibonnaci recurrence is T(0) = 0, T(1) = 1, and T(n) = T(n 1) + T(n ) We ve shown the annihilator for T is (L φ)(l ˆφ), where φ = 1+ 5 and ˆφ = 1 5 If we look this up in the Lookup Table, we see that the sequence T must be of the form c 1 φ n + c ˆφ n All we have left to do is solve for the constants c 1 and c Can use the base cases to solve for these 4 6 Example Finding the Constants To factor: L L 1 Rewrite: 1 L 1 L 1, a = 1, b = 1, c = 1 From Quadratic Formula: φ = 1+ 5 and ˆφ = 1 5 So L L 1 factors to (L φ)(l ˆφ) We know T = c 1 φ n + c ˆφ n, where φ = 1+ 5 and ˆφ = 1 5 We know T(0) = c 1 + c = 0 (6) T(1) = c 1 φ + c ˆφ = 1 (7) We ve got two equations and two unknowns Can solve to get c 1 = 1 and c 5 = 1, 5 5 7

8 The Punchline Example Recall Fibonnaci recurrence: T(0) = 0, T(1) = 1, and T(n) = T(n 1) + T(n ) The final explicit formula for T(n) is thus: T(n) = 1 5 ( ) n 1 5 ( ) n 1 5 (Amazingly, T(n) is always an integer, in spite of all of the square roots in its formula.) (L a) na n = (n + 1)a n+1 (a)na n = (n + 1)a n+1 na n+1 = (n + 1 n)a n+1 = a n+1 (L a) na n = (L a) a n+1 = A Problem Generalization Our lookup table has a big gap: What does (L a)(l a) annihilate? It turns out it annihilates sequences such as na n It turns out that (L a) d annihilates sequences of the form p(n)a n where p(n) is any polynomial of degree d 1 Example: (L 1) 3 annihilates the sequence n 1 n = 1,4,9,16,5 since p(n) = n is a polynomial of degree d 1 = 9 31

9 Lookup Table Examples (L a) annihilates only all sequences of the form c 0 a n (L a)(l b) annihilates only all sequences of the form c 0 a n + c 1 b n (L a 0 )(L a 1 )...(L a k ) annihilates only sequences of the form c 0 a n 0 + c 1a n c ka n k, here a i a j, when i j (L a) annihilates only sequences of the form (c 0 n+c 1 )a n (L a) k annihilates only sequences of the form p(n)a n, degree(p(n)) = k 1 Q: What does (L 3)(L )(L 1) annihilate? A: c 0 1 n + c 1 n + c 3 n Q: What does (L 3) (L )(L 1) annihilate? A: c 0 1 n + c 1 n + (c n + c 3 )3 n Q: What does (L 1) 4 annihilate? A: (c 0 n 3 + c 1 n + c n + c 3 )1 n Q: What does (L 1) 3 (L ) annihilate? A: (c 0 n + c 1 n + c )1 n + (c 3 n + c 4 ) n 3 34 Lookup Table Annihilator Method (L a 0 ) b 0(L a 1 ) b 1...(L a k ) b k annihilates only sequences of the form: p 1 (n)a n 0 + p (n)a n p k(n)a n k where p i (n) is a polynomial of degree b i 1 (and a i a j, when i j) Write down the annihilator for the recurrence Factor the annihilator Look up the factored annihilator in the Lookup Table to get general solution Solve for constants of the general solution by using initial conditions 33 35

10 Todo HW 1 36

Today s Outline. CS 362, Lecture 4. Annihilator Method. Lookup Table. Annihilators for recurrences with non-homogeneous terms Transformations

Today s Outline. CS 362, Lecture 4. Annihilator Method. Lookup Table. Annihilators for recurrences with non-homogeneous terms Transformations Today s Outline CS 362, Lecture 4 Jared Saia University of New Mexico Annihilators for recurrences with non-homogeneous terms Transformations 1 Annihilator Method Lookup Table Write down the annihilator

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

In-Class Soln 1. CS 361, Lecture 4. Today s Outline. In-Class Soln 2

In-Class Soln 1. CS 361, Lecture 4. Today s Outline. In-Class Soln 2 In-Class Soln 1 Let f(n) be an always positive function and let g(n) = f(n) log n. Show that f(n) = o(g(n)) CS 361, Lecture 4 Jared Saia University of New Mexico For any positive constant c, we want to

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

What if the characteristic equation has a double root?

What if the characteristic equation has a double root? MA 360 Lecture 17 - Summary of Recurrence Relations Friday, November 30, 018. Objectives: Prove basic facts about basic recurrence relations. Last time, we looked at the relational formula for a sequence

More information

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014

Warm-up Simple methods Linear recurrences. Solving recurrences. Misha Lavrov. ARML Practice 2/2/2014 Solving recurrences Misha Lavrov ARML Practice 2/2/2014 Warm-up / Review 1 Compute 100 k=2 ( 1 1 ) ( = 1 1 ) ( 1 1 ) ( 1 1 ). k 2 3 100 2 Compute 100 k=2 ( 1 1 ) k 2. Homework: find and solve problem Algebra

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7 Partial Fractions -4-209 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

What if the characteristic equation has complex roots?

What if the characteristic equation has complex roots? MA 360 Lecture 18 - Summary of Recurrence Relations (cont. and Binomial Stuff Thursday, November 13, 01. Objectives: Examples of Recurrence relation solutions, Pascal s triangle. A quadratic equation What

More information

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

Numerical Methods. Equations and Partial Fractions. Jaesung Lee Numerical Methods Equations and Partial Fractions Jaesung Lee Solving linear equations Solving linear equations Introduction Many problems in engineering reduce to the solution of an equation or a set

More information

Section 5.2 Solving Recurrence Relations

Section 5.2 Solving Recurrence Relations Section 5.2 Solving Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1 x n 1

More information

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack Today s Outline CS 561, Lecture 15 Jared Saia University of New Mexico Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Activity Selection Greed is Good - Michael Douglas in Wall

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

Today s Outline. CS 362, Lecture 13. Matrix Chain Multiplication. Paranthesizing Matrices. Matrix Multiplication. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 13. Matrix Chain Multiplication. Paranthesizing Matrices. Matrix Multiplication. Jared Saia University of New Mexico Today s Outline CS 362, Lecture 13 Jared Saia University of New Mexico Matrix Multiplication 1 Matrix Chain Multiplication Paranthesizing Matrices Problem: We are given a sequence of n matrices, A 1, A

More information

Lecture 3.2: Induction, and Strong Induction

Lecture 3.2: Induction, and Strong Induction Lecture 3.2: Induction, and Strong Induction CS 250, Discrete Structures, Fall 2015 Nitesh Saxena Adopted from previous lectures by Cinda Heeren, Zeph Grunschlag Course Admin Mid-Term 1 Graded; to be returned

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

CP Algebra 2. Unit 3B: Polynomials. Name: Period:

CP Algebra 2. Unit 3B: Polynomials. Name: Period: CP Algebra 2 Unit 3B: Polynomials Name: Period: Learning Targets 10. I can use the fundamental theorem of algebra to find the expected number of roots. Solving Polynomials 11. I can solve polynomials by

More information

Recurrences COMP 215

Recurrences COMP 215 Recurrences COMP 215 Analysis of Iterative Algorithms //return the location of the item matching x, or 0 if //no such item is found. index SequentialSearch(keytype[] S, in, keytype x) { index location

More information

Section 7.2 Solving Linear Recurrence Relations

Section 7.2 Solving Linear Recurrence Relations Section 7.2 Solving Linear Recurrence Relations If a g(n) = f (a g(0),a g(1),..., a g(n 1) ) find a closed form or an expression for a g(n). Recall: nth degree polynomials have n roots: a n x n + a n 1

More information

1.2. Indices. Introduction. Prerequisites. Learning Outcomes

1.2. Indices. Introduction. Prerequisites. Learning Outcomes Indices.2 Introduction Indices, or powers, provide a convenient notation when we need to multiply a number by itself several times. In this section we explain how indices are written, and state the rules

More information

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico CS 561, Lecture: Greedy Algorithms Jared Saia University of New Mexico Outline Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Greed is Good - Michael Douglas in Wall Street A greedy

More information

Section 7.1 Quadratic Equations

Section 7.1 Quadratic Equations Section 7.1 Quadratic Equations INTRODUCTION In Chapter 2 you learned about solving linear equations. In each of those, the highest power of any variable was 1. We will now take a look at solving quadratic

More information

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials Algebra 1: Hutschenreuter Chapter 10 Notes Name 10.1 Adding and Subtracting Polynomials Polynomial- an expression where terms are being either added and/or subtracted together Ex: 6x 4 + 3x 3 + 5x 2 +

More information

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative

Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Section 0.6: Factoring from Precalculus Prerequisites a.k.a. Chapter 0 by Carl Stitz, PhD, and Jeff Zeager, PhD, is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license. 201,

More information

Lecture 26. Quadratic Equations

Lecture 26. Quadratic Equations Lecture 26 Quadratic Equations Quadratic polynomials....................................................... 2 Quadratic polynomials....................................................... 3 Quadratic equations

More information

Adding and Subtracting Polynomials

Adding and Subtracting Polynomials Adding and Subtracting Polynomials Polynomial A monomial or sum of monomials. Binomials and Trinomial are also polynomials. Binomials are sum of two monomials Trinomials are sum of three monomials Degree

More information

Discrete Math. Instructor: Mike Picollelli. Day 10

Discrete Math. Instructor: Mike Picollelli. Day 10 Day 10 Fibonacci Redux. Last time, we saw that F n = 1 5 (( 1 + ) n ( 5 2 1 ) n ) 5. 2 What Makes The Fibonacci Numbers So Special? The Fibonacci numbers are a particular type of recurrence relation, a

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT30 Discrete Mathematics Fall 018 MAT30 (Discrete Math) Mathematical Induction Fall 018 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

More information

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Find two positive factors of 24 whose sum is 10. Make an organized list.

Find two positive factors of 24 whose sum is 10. Make an organized list. 9.5 Study Guide For use with pages 582 589 GOAL Factor trinomials of the form x 2 1 bx 1 c. EXAMPLE 1 Factor when b and c are positive Factor x 2 1 10x 1 24. Find two positive factors of 24 whose sum is

More information

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson JUST THE MATHS UNIT NUMBER 1. ALGEBRA (The theory of partial fractions) by A.J.Hobson 1..1 Introduction 1..2 Standard types of partial fraction problem 1.. Exercises 1..4 Answers to exercises UNIT 1. -

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

Warm-Up. Use long division to divide 5 into

Warm-Up. Use long division to divide 5 into Warm-Up Use long division to divide 5 into 3462. 692 5 3462-30 46-45 12-10 2 Warm-Up Use long division to divide 5 into 3462. Divisor 692 5 3462-30 46-45 12-10 2 Quotient Dividend Remainder Warm-Up Use

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers SECTION P.6 Complex Numbers 49 P.6 Complex Numbers What you ll learn about Complex Numbers Operations with Complex Numbers Complex Conjugates and Division Complex Solutions of Quadratic Equations... and

More information

Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff

Partial Fractions and the Coverup Method Haynes Miller and Jeremy Orloff Partial Fractions and the Coverup Method 8.03 Haynes Miller and Jeremy Orloff *Much of this note is freely borrowed from an MIT 8.0 note written by Arthur Mattuck. Heaviside Cover-up Method. Introduction

More information

Calculus with business applications, Lehigh U, Lecture 03 notes Summer

Calculus with business applications, Lehigh U, Lecture 03 notes Summer Calculus with business applications, Lehigh U, Lecture 03 notes Summer 01 1 Lines and quadratics 1. Polynomials, functions in which each term is a positive integer power of the independent variable include

More information

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise:

Wed Feb The vector spaces 2, 3, n. Announcements: Warm-up Exercise: Wed Feb 2 4-42 The vector spaces 2, 3, n Announcements: Warm-up Exercise: 4-42 The vector space m and its subspaces; concepts related to "linear combinations of vectors" Geometric interpretation of vectors

More information

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions CP Algebra Unit -1: Factoring and Solving Quadratics NOTE PACKET Name: Period Learning Targets: 0. I can add, subtract and multiply polynomial expressions 1. I can factor using GCF.. I can factor by grouping.

More information

A2 HW Imaginary Numbers

A2 HW Imaginary Numbers Name: A2 HW Imaginary Numbers Rewrite the following in terms of i and in simplest form: 1) 100 2) 289 3) 15 4) 4 81 5) 5 12 6) -8 72 Rewrite the following as a radical: 7) 12i 8) 20i Solve for x in simplest

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

CS 361, Lecture 14. Outline

CS 361, Lecture 14. Outline Bucket Sort CS 361, Lecture 14 Jared Saia University of New Mexico Bucket sort assumes that the input is drawn from a uniform distribution over the range [0, 1) Basic idea is to divide the interval [0,

More information

Foundations of Math II Unit 5: Solving Equations

Foundations of Math II Unit 5: Solving Equations Foundations of Math II Unit 5: Solving Equations Academics High School Mathematics 5.1 Warm Up Solving Linear Equations Using Graphing, Tables, and Algebraic Properties On the graph below, graph the following

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

1.2. Indices. Introduction. Prerequisites. Learning Outcomes

1.2. Indices. Introduction. Prerequisites. Learning Outcomes Indices 1.2 Introduction Indices, or powers, provide a convenient notation when we need to multiply a number by itself several times. In this Section we explain how indices are written, and state the rules

More information

Solve Quadratic Equations by Using the Quadratic Formula. Return to Table of Contents

Solve Quadratic Equations by Using the Quadratic Formula. Return to Table of Contents Solve Quadratic Equations by Using the Quadratic Formula Return to Table of Contents 128 Solving Quadratics At this point you have learned how to solve quadratic equations by: graphing factoring using

More information

Jong C. Park Computer Science Division, KAIST

Jong C. Park Computer Science Division, KAIST Jong C. Park Computer Science Division, KAIST Today s Topics Introduction Solving Recurrence Relations Discrete Mathematics, 2008 2 Computer Science Division, KAIST Definition A recurrence relation for

More information

2.5 The Fundamental Theorem of Algebra.

2.5 The Fundamental Theorem of Algebra. 2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:

More information

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. Section 6.3 - Solving Trigonometric Equations Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations. These are equations from algebra: Linear Equation: Solve:

More information

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0)

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0) Quadratic Inequalities In One Variable LOOKS LIKE a quadratic equation but Doesn t have an equal sign (=) Has an inequality sign (>,

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5 Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x - 15 2. x 2-9x + 14 3. x 2 + 6x + 5 Solving Equations by Factoring Recall the factoring pattern: Difference of Squares:...... Note: There

More information

MATH 190 KHAN ACADEMY VIDEOS

MATH 190 KHAN ACADEMY VIDEOS MATH 10 KHAN ACADEMY VIDEOS MATTHEW AUTH 11 Order of operations 1 The Real Numbers (11) Example 11 Worked example: Order of operations (PEMDAS) 7 2 + (7 + 3 (5 2)) 4 2 12 Rational + Irrational Example

More information

Problems in Algebra. 2 4ac. 2a

Problems in Algebra. 2 4ac. 2a Problems in Algebra Section Polynomial Equations For a polynomial equation P (x) = c 0 x n + c 1 x n 1 + + c n = 0, where c 0, c 1,, c n are complex numbers, we know from the Fundamental Theorem of Algebra

More information

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX

TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX #A05 INTEGERS 9 (2009), 53-64 TILING PROOFS OF SOME FORMULAS FOR THE PELL NUMBERS OF ODD INDEX Mark Shattuck Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300 shattuck@math.utk.edu

More information

Theory of Computation

Theory of Computation Theory of Computation Dr. Sarmad Abbasi Dr. Sarmad Abbasi () Theory of Computation 1 / 33 Lecture 20: Overview Incompressible strings Minimal Length Descriptions Descriptive Complexity Dr. Sarmad Abbasi

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

MCR3U Unit 7 Lesson Notes

MCR3U Unit 7 Lesson Notes 7.1 Arithmetic Sequences Sequence: An ordered list of numbers identified by a pattern or rule that may stop at some number or continue indefinitely. Ex. 1, 2, 4, 8,... Ex. 3, 7, 11, 15 Term (of a sequence):

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Read the following definitions and match them with the appropriate example(s) using the lines provided.

Read the following definitions and match them with the appropriate example(s) using the lines provided. Algebraic Expressions Prepared by: Sa diyya Hendrickson Name: Date: Read the following definitions and match them with the appropriate example(s) using the lines provided. 1. Variable: A letter that is

More information

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Lecture 11 Andrei Antonenko February 6, 003 1 Examples of bases Last time we studied bases of vector spaces. Today we re going to give some examples of bases. Example 1.1. Consider the vector space P the

More information

Generating Function Notes , Fall 2005, Prof. Peter Shor

Generating Function Notes , Fall 2005, Prof. Peter Shor Counting Change Generating Function Notes 80, Fall 00, Prof Peter Shor In this lecture, I m going to talk about generating functions We ve already seen an example of generating functions Recall when we

More information

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010

Announcements. CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis. Today. Mathematical induction. Dan Grossman Spring 2010 Announcements CSE332: Data Abstractions Lecture 2: Math Review; Algorithm Analysis Dan Grossman Spring 2010 Project 1 posted Section materials on using Eclipse will be very useful if you have never used

More information

Chapter 1: Foundations for Algebra

Chapter 1: Foundations for Algebra Chapter 1: Foundations for Algebra 1 Unit 1: Vocabulary 1) Natural Numbers 2) Whole Numbers 3) Integers 4) Rational Numbers 5) Irrational Numbers 6) Real Numbers 7) Terminating Decimal 8) Repeating Decimal

More information

A Few Examples of Limit Proofs

A Few Examples of Limit Proofs A Few Examples of Limit Proofs x (7x 4) = 10 SCRATCH WORK First, we need to find a way of relating x < δ and (7x 4) 10 < ɛ. We will use algebraic manipulation to get this relationship. Remember that the

More information

INTRODUCTION TO SIGMA NOTATION

INTRODUCTION TO SIGMA NOTATION INTRODUCTION TO SIGMA NOTATION The notation itself Sigma notation is a way of writing a sum of many terms, in a concise form A sum in sigma notation looks something like this: 3k The Σ sigma) indicates

More information

LESSON 7.2 FACTORING POLYNOMIALS II

LESSON 7.2 FACTORING POLYNOMIALS II LESSON 7.2 FACTORING POLYNOMIALS II LESSON 7.2 FACTORING POLYNOMIALS II 305 OVERVIEW Here s what you ll learn in this lesson: Trinomials I a. Factoring trinomials of the form x 2 + bx + c; x 2 + bxy +

More information

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes Solving polynomial equations 3.3 Introduction Linear and quadratic equations, dealt within sections 1 and 2 are members of a class of equations called polynomial equations. These have the general form:

More information

Integer-Valued Polynomials

Integer-Valued Polynomials Integer-Valued Polynomials LA Math Circle High School II Dillon Zhi October 11, 2015 1 Introduction Some polynomials take integer values p(x) for all integers x. The obvious examples are the ones where

More information

CS383, Algorithms Spring 2009 HW1 Solutions

CS383, Algorithms Spring 2009 HW1 Solutions Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ 21 Campanella Way, room 569 alvarez@cs.bc.edu Computer Science Department voice: (617) 552-4333 Boston College fax: (617) 552-6790 Chestnut Hill,

More information

Math 1230, Notes 8. Sep. 23, Math 1230, Notes 8 Sep. 23, / 28

Math 1230, Notes 8. Sep. 23, Math 1230, Notes 8 Sep. 23, / 28 Math 1230, Notes 8 Sep. 23, 2014 Math 1230, Notes 8 Sep. 23, 2014 1 / 28 algebra and complex numbers Math 1230, Notes 8 Sep. 23, 2014 2 / 28 algebra and complex numbers Math 1230, Notes 8 Sep. 23, 2014

More information

A repeated root is a root that occurs more than once in a polynomial function.

A repeated root is a root that occurs more than once in a polynomial function. Unit 2A, Lesson 3.3 Finding Zeros Synthetic division, along with your knowledge of end behavior and turning points, can be used to identify the x-intercepts of a polynomial function. This information allows

More information

and the compositional inverse when it exists is A.

and the compositional inverse when it exists is A. Lecture B jacques@ucsd.edu Notation: R denotes a ring, N denotes the set of sequences of natural numbers with finite support, is a generic element of N, is the infinite zero sequence, n 0 R[[ X]] denotes

More information

CHMC: Finite Fields 9/23/17

CHMC: Finite Fields 9/23/17 CHMC: Finite Fields 9/23/17 1 Introduction This worksheet is an introduction to the fascinating subject of finite fields. Finite fields have many important applications in coding theory and cryptography,

More information

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By TECHNIQUES OF INTEGRATION OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral. Evaluating the indefinite integral,

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Basic Linear Algebra in MATLAB

Basic Linear Algebra in MATLAB Basic Linear Algebra in MATLAB 9.29 Optional Lecture 2 In the last optional lecture we learned the the basic type in MATLAB is a matrix of double precision floating point numbers. You learned a number

More information

Ch 5.7: Series Solutions Near a Regular Singular Point, Part II

Ch 5.7: Series Solutions Near a Regular Singular Point, Part II Ch 5.7: Series Solutions Near a Regular Singular Point, Part II! Recall from Section 5.6 (Part I): The point x 0 = 0 is a regular singular point of with and corresponding Euler Equation! We assume solutions

More information

If you buy 4 apples for a total cost of 80 pence, how much does each apple cost?

If you buy 4 apples for a total cost of 80 pence, how much does each apple cost? Introduction If you buy 4 apples for a total cost of 80 pence, how much does each apple cost? Cost of one apple = Total cost Number 80 pence = 4 = 20 pence In maths we often use symbols to represent quantities.

More information

QUADRATIC FUNCTIONS AND MODELS

QUADRATIC FUNCTIONS AND MODELS QUADRATIC FUNCTIONS AND MODELS What You Should Learn Analyze graphs of quadratic functions. Write quadratic functions in standard form and use the results to sketch graphs of functions. Find minimum and

More information

32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE

32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE get the complete book: /getfulltextfullbook.htm 32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE classifying families of sentences In mathematics, it is common to group together sentences of the same type

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Week 2 Techniques of Integration

Week 2 Techniques of Integration Week Techniques of Integration Richard Earl Mathematical Institute, Oxford, OX LB, October Abstract Integration by Parts. Substitution. Rational Functions. Partial Fractions. Trigonometric Substitutions.

More information

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation:

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation: CS 124 Section #1 Big-Oh, the Master Theorem, and MergeSort 1/29/2018 1 Big-Oh Notation 1.1 Definition Big-Oh notation is a way to describe the rate of growth of functions. In CS, we use it to describe

More information

Barrier Method. Javier Peña Convex Optimization /36-725

Barrier Method. Javier Peña Convex Optimization /36-725 Barrier Method Javier Peña Convex Optimization 10-725/36-725 1 Last time: Newton s method For root-finding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapter 0 By Dr. Dalia M. Gil, Ph.D. Statement Statement is an ordinary English statement of fact. It has a subject, a verb, and a predicate. It can be assigned a true

More information

( ) Chapter 6 ( ) ( ) ( ) ( ) Exercise Set The greatest common factor is x + 3.

( ) Chapter 6 ( ) ( ) ( ) ( ) Exercise Set The greatest common factor is x + 3. Chapter 6 Exercise Set 6.1 1. A prime number is an integer greater than 1 that has exactly two factors, itself and 1. 3. To factor an expression means to write the expression as the product of factors.

More information

Math Lecture 23 Notes

Math Lecture 23 Notes Math 1010 - Lecture 23 Notes Dylan Zwick Fall 2009 In today s lecture we ll expand upon the concept of radicals and radical expressions, and discuss how we can deal with equations involving these radical

More information

1 Closest Pair of Points on the Plane

1 Closest Pair of Points on the Plane CS 31: Algorithms (Spring 2019): Lecture 5 Date: 4th April, 2019 Topic: Divide and Conquer 3: Closest Pair of Points on a Plane Disclaimer: These notes have not gone through scrutiny and in all probability

More information

V. Adamchik 1. Recurrences. Victor Adamchik Fall of 2005

V. Adamchik 1. Recurrences. Victor Adamchik Fall of 2005 V. Adamchi Recurrences Victor Adamchi Fall of 00 Plan Multiple roots. More on multiple roots. Inhomogeneous equations 3. Divide-and-conquer recurrences In the previous lecture we have showed that if the

More information

Properties of a Taylor Polynomial

Properties of a Taylor Polynomial 3.4.4: Still Better Approximations: Taylor Polynomials Properties of a Taylor Polynomial Constant: f (x) f (a) Linear: f (x) f (a) + f (a)(x a) Quadratic: f (x) f (a) + f (a)(x a) + 1 2 f (a)(x a) 2 3.4.4:

More information