Theoretical and Simulation-guided Exploration of the AR(1) Model

Size: px
Start display at page:

Download "Theoretical and Simulation-guided Exploration of the AR(1) Model"

Transcription

1 Theoretical and Simulation-guided Exploration of the AR() Model Overview: Section : Motivation Section : Expectation A: Theory B: Simulation Section : Variance A: Theory B: Simulation Section : ACF A: Theory B: Simulation Section : Forecasting with AR() Section 5: A Glance at Imaginery Processes Section : A Glance at Exponentially Distributed Error Terms

2 Motivation: The first order autoregressive model, or AR(), is a probability model of time series whereby each step of the series is proportional to the previous step and each step is subject to random noise. The AR() is a special case of the AR(p) model, where each step in the time series is a weighted average of the previous p steps and is subject to random noise. The AR(p) model is, itself, a special case of the ARIMA(p,d,q) model which is widely used in forecasting time series. Some of the properties of the AR(p) model that make it useful for forecasting are that it is stationary in mean and stationary in variance for certain parameters. This allows one to compute forecasts quite far into the future with relatively low error bounds. In real-world cases, where the time-series data does not perfectly match a mathematical model, a function known as the Autocorrelation function can be used to identify particular ARIMA models when they are simple cases. One such example is the AR() model. Knowing which ARIMA model fits your data, and knowing that this model is stationary in mean and variance, allows one to compute accurate forecasts for a time-series. These properties will be explored for the AR() in this project. As some team members had prior experience using different software packages, each person did their own simulation using their respective software. As such, graphs to answer simulation questions will be provided from Excel, R and Matlab wherever each one is applicable. Y = α + αy + ε Model: Assumptions: t t t ( ε, ε ) are independent for all i j i j. ( Y, ε ) are independent for all (, i j ) i εt ~ N(, σ ) Y = j

3 Section A: Theory for Expectation Guided Theory: Y = α + αy + ε Consider the model expressed above: t t t Q. Based on the model above, using induction can Y t be expressed in terms of Yt? k Using the procedure suggested above, and the assumptions stated at the start of the document: Q. Can we express the expectation of Y t as a geometric series in α? Q. Use these guidelines to show that the expectation of the AR() process converges, as t increases, to the following: (eq) This result holds for any α (,). NOTE: A full answer to this question is provided in Appendix The above theory can be visualised using Simulation. The following section will provide a graphical representation to complement the above theory. The theory states that the expectation of the model is dependent only on α and α, and not on σ. Simulation will verify this.

4 Section B: Simulations The following graphs are single examples of an AR() processes. Simulation of varying values for α, α, σ can be found in Appendix (i)fig.. in Excel Y=AR() Y=AR() 8 Generic AR() Y(t)=Alpha()+Alpha().Y(t- )+ε α!!, a! =.5, σ! = = ; =.7; = Example of an AR() Process arima.sim(list(order = c(,, ), ar =.5), n = ) Time α!!, a! =.5, σ! = α!!, a! =.5, σ! = By varying the value of α! we discovered that the Expected value of the model changes By choosing a value of a! ε, the model is convergent, and the Expected Value is greater than α! What happens if a! ε,? - - -

5 = ; =.; = Generic AR() Y(t)=Alpha()+Alpha().Y(t- )+ ε By choosing a value of a! ε, the model is convergent, and the Expected Value is less than α The effect of a!, was examined α!!, a! =., σ! = Generic AR() Y(t)= Alpha()+Alpha().Y(t- )+ε x 8 Example of an AR() Process = ; =.; = 5 x 7 Example of an AR() Process Generic AR() Y(t)= Alpha()+Alpha().Y(t- )+ε

6 These simulations corroborate what was shown theoretically about the convergence of the mean in the AR() process. Convergence is seen above only when α <, and divergence is seen otherwise. In the case where < α <, the process undergoes a slight flurry before it settles down. This phenomenon is not immediately obvious from the theory and highlights the usefulness of simulation to compliment the findings of theory. It is also noteworthy that the process diverges to + when α > but that it fans out to span, when α <. In both cases, the absolute value of the process is rising with time, ( ) however in the latter case, the sign alternates. These findings on the convergence of the mean in the AR() process can be demonstrated more convincingly by taking multiple iterations of an AR() process. The following figures display how the mean on the y axis, at time t on the x axis, of 5 AR() iterations changes, as t increases, on the top graph. It compares this with the theoretical convergence value, as calculated from (eq), on the bottom graph Note: these will disagree outside the allowed bounds for α. = ; =.7; = = ; =.; = 8 Expectation of AR() Process Stabilizes 5 Expectation of AR() Process Stabilizes Theoretical Expectation for Given Parameters Theoretical Expectation for Given Parameters = ; =.; = = ; =.; =

7 -98 8 x 8 Expectation of AR() Process Stabilizes Theoretical Expectation for Given Parameters x 7 Expectation of AR() Process Stabilizes Theoretical Expectation for Given Parameters These plots further solidify what we have discussed in regards to the convergence of the mean of the AR() process. Interestingly, when α ( ),, the process appears to be slightly erratic for a short while before settling down to convergence (as was noted from the single iteration earlier). This suggests that such values for this parameter are appropriate for representing the time-series of systems which are initially not under control, but which subsequently become controlled. In the subsequent section we will discuss the variance of the AR() model. Section a: Theory for Variance Guided Theory: Q. Using a similar method as in Section A we can express the variance of Y t as a geometric series in α.use these guidelines to show that the variance of the AR() process converges to the following as t increases: σ Var[ Y t ] = α (eq) This result holds, again, for any (,) α. Note: A full answer to this question is provided in Appendix The above theory can be visualised using simulation. The following section will provide a graphical representation to complement the above theory. The theory states that the variance of the model is dependent only on α and σ, and not on α. Simulation will verify this. Similarly to the expectation section above, the following figures display how the variance on the y axis, at time t on x axis, of 5 AR() iterations changes, as t increases, on the top graph. It compares this with the theoretical convergence value (bottom graph) as calculated from (eq), on the bottom. Note: These will disagree outside the allowed bounds for α.

8 Section b: Simulations for Variance = ; =.5; = = ; =.7; =.8 Variance of AR() Process Stabilizes.5 Variance of AR() Process Stabilizes = ; =.; = = ; =.; = Variance of AR() Process Stabilizes Variance of AR() Process Stabilizes The above plots are in agreement with the theory discussed previously. Changing from α = to α = did not impact on the variance. Varying α in the allowed range caused changes in the variance of the model, but kept the variance convergent. Changing σ = to σ = doubled the variance, as was predicted by the theory. = ; =.; = = ; =.; =

9 8 x Variance of AR() Process Stabilizes x Variance of AR() Process Stabilizes Finally, when α >, the variance diverged, as expected. Section a: Theory for Autocorrelation (ACF) The autocorrelation function (acf) is a function of the lag of a time series Y t. The function is given by ( k) Corr( Y, Y ). p = t t+ k In order to find the acf, one first needs to find Cov( Y, Y ) series. Recall that the covariance of two random variables X,Y is given by: t t+ k, and then divide by the variance of the time (, ) = [( [ ])( [ ])] = [ ] [ ] [ ] Cov X Y E X E X Y E Y E XY E X E Y Show that Cov( Y, Y ) is given by: t t+ k k ( α σ ) t t+ k = ( α ) Cov( Y, Y ) (Hint: use properties of the model found earlier to express Y t+k in terms of Y t. We required the expectation of an AR() model and the variance of an AR() model found above to obtain this result. Both of these required that α be in the interval (, ) above covariance holds. The value of a does not impact on the covariance. and so this is the interval for which the Corr( Y, Y + ) = α k Show that: t t k. (eq)

10 N.B. A full answer to this question is provided in the.pdf document accompanying this document. Section b: Studying the ACF What happens to the ACF when α takes the following values? Explain the shape of the acf in each plot with reference to theory. a. b..,.7 c. -., -.7 d.. e. -. à Simulation of the ACF for each of the above values, and a comparison with the theoretical ACF can be found in Appendix. As before, these will disagree outside the allowed values of α. Answers to the above: a. The acf takes the value at lag and takes the value elsewhere. (This can be seen in the simulation below noting that on the x-axis corresponds to a lag of etc. This is consistent with theory as = and n = for any non-zero n. n b. The acf undergoes an exponential decay with a limit of. This is consistent with theory as α gets very small as n gets very large when α <. Also consistent with theory is that the decay occurs more quickly for smaller values of α. c. The acf is a damped sin wave, again with its limit as. This is consistent with theory because, as stated above a n gets very small as n gets very large when α <. Furthermore α n will be positive for n even, and negative for n odd when α <. d. The acf again undergoes exponential decay as demonstrated by simulation. Note that in this case, the simulation disagrees with the theoretical graph on the bottom. This is because α is outside the allowed range and thus, the theory above does not account for it. e. The acf decreases in absolute value for a short while but seems to stabilize at an absolute value just under.5. From here it alternates between positive and negative correlations. Again, this disagrees with the theoretical graph on the bottom because α is outside the allowed range. The following plots are simulations of the acf for AR() corresponding to the above values (.7 and not. in the case of b. and c.). The bottom graph in each corresponds to the theoretical acf. Note that in all cases the acf is calculated using (eq) (even when α is outside the allowed interval). Thus, as before, in these cases, the two plots will disagree.

11 Section : Forecasting with AR() It was claimed at the beginning of this document that the AR() model could be used for generating forecasts of time-series. Such forecasts are accomplished by the following procedure: First, one calculates a sample standard deviation for the time-series. Second, one determines how much error their forecast will have for each step after the last data point collected. This is done in a similar manner to the procedure used to prove convergence of the variance of the model. Doing this, one finds that the 95% confidence interval for their forecast of Y t + k Is given by: Y ˆ... t+ k= Yt± s + α + α + + α k Simulations demonstrating the accuracy of such a forecast are given below. Note that the top of each plot is a single iteration of a time-series simulated as before. The bottom of each plot is the same iteration, cut off early, and replaced with the forecast. The reader is invited to inspect how the forecast compares with the actual outcome. Example of an AR() Process Example of an AR() Process Forecast with 95% Confidence Interval = ; =.; = Forecast with 95% Confidence Interval = 5; =.; = Thus, it is evident that the further ahead in time we forecast, the wider the prediction intervals become, as a result of greater variability in the error terms Section 5: A Glance at Imaginary Processes

12 Since the theory found that the expectation, variance and autocorrelation were defined whenever α <, it was thought that the process might work when α. Indeed, this was found to be the case when the real and imaginary parts were plotted separately. However, the results, found in the real case for the variance and the correlation, were slightly off. Experimentation led to the guess that instead of having for the variance: σ Var[ Y t ] =, we instead had α and for the correlation, instead of having: σ Var[ Y t ] = α Corr( Y, Y ) a, we instead had Corr( Y, Y ) i + = k t t k k t t+ k = a The following are graphs of one example illustrating the above: α = α = σ = (with the amended formulae) ;.5 i; Example of an AR() Process Imaginary Example of an AR() Process

13 Expectation of AR() Process Stabilizes Imaginary Expectation of AR() Process Stabilizes Theoretical Expectation for Given Parameters Imaginary Theoretical Expectation for Given Parameters Variance of AR() Process Stabilizes ACF. Imaginary ACF Theoretical ACF Imaginary Theoretical ACF Plots of the same process with the original formulae: We were unable to find the theoretical justification for these amendments to the variance and acf formulae. However, simulation seems to support our guess. Nevertheless, there seems to be evidence that the AR() process is indeed stationary, in both the real and imaginary plane, when α.

14 Section : A Glance at Exponentially Distributed Error Terms Not all random error in real life situations will be normally distributed. Some processes, which vary by random small amounts with time, have occasional very large deviations. Such processes are relevant in domains such as webpage hits and the number of people at any one time in a retail centre. The error of such processes can be captured by the Exponential Distribution. It turns out that the theory of the AR() process with Exponentially distributed error terms can be derived quite similarly to the way it was derived previously for Normally distributed error terms. One amendment must be made to the assumptions underlying this theory: In place of assuming: εt ~ N(, σ ), we instead assume that: ε ~ Exp( λ ) t As such, we have that: λ [ ] = and Var[ ε t ] E ε t λ =. We find that the following changes occur in the results of the Expectation and the Variance of the AR() process (we find that the ACF remains unchanged): α + EY [ t ] = λ α Var[ Y t ] = λ ( α ) We conclude the document with graphical illustrations of this additional theory for two values of λ : λ = ; λ =.5 Note, that in the first of these cases, we have provided two graphs comparing the forecast with the actual outcome. This is because, by chance, the first stimulation generated a forecast from data where the last value was an exceptional value. As such, the error bounds were around an unusual value and did not make an accurate prediction. The second simulation provided a better forecast. We included both graphs to illustrate the danger of using a forecast which is based on the most recent data point when the error of the system is exponentially distributed.

15 α = ; α =.5; λ = Example of an AR() Process Example of an AR() Process Forecast with 95% Confidence Interval Forecast with 95% Confidence Interval Note that this model has occasional large upward spikes due to occasional large error terms (due to the Exponential Distribution). 5 Expectation of AR() Process Stabilizes.5 Variance of AR() Process Stabilizes Theoretical Expectation for Given Parameters α = ; α =.5; λ =.5 ACF Example of an AR() Process Theoretical ACF Forecast with 95% Confidence Interval

16 5 Expectation of AR() Process Stabilizes 8 Variance of AR() Process Stabilizes Theoretical Expectation for Given Parameters ACF Theoretical ACF

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

2. An Introduction to Moving Average Models and ARMA Models

2. An Introduction to Moving Average Models and ARMA Models . An Introduction to Moving Average Models and ARMA Models.1 White Noise. The MA(1) model.3 The MA(q) model..4 Estimation and forecasting of MA models..5 ARMA(p,q) models. The Moving Average (MA) models

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Time series models in the Frequency domain. The power spectrum, Spectral analysis

Time series models in the Frequency domain. The power spectrum, Spectral analysis ime series models in the Frequency domain he power spectrum, Spectral analysis Relationship between the periodogram and the autocorrelations = + = ( ) ( ˆ α ˆ ) β I Yt cos t + Yt sin t t= t= ( ( ) ) cosλ

More information

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 1. Construct a martingale difference process that is not weakly stationary. Simplest e.g.: Let Y t be a sequence of independent, non-identically

More information

The Identification of ARIMA Models

The Identification of ARIMA Models APPENDIX 4 The Identification of ARIMA Models As we have established in a previous lecture, there is a one-to-one correspondence between the parameters of an ARMA(p, q) model, including the variance of

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

A Data-Driven Model for Software Reliability Prediction

A Data-Driven Model for Software Reliability Prediction A Data-Driven Model for Software Reliability Prediction Author: Jung-Hua Lo IEEE International Conference on Granular Computing (2012) Young Taek Kim KAIST SE Lab. 9/4/2013 Contents Introduction Background

More information

Decision 411: Class 9. HW#3 issues

Decision 411: Class 9. HW#3 issues Decision 411: Class 9 Presentation/discussion of HW#3 Introduction to ARIMA models Rules for fitting nonseasonal models Differencing and stationarity Reading the tea leaves : : ACF and PACF plots Unit

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010

Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Problem Set 2 Solution Sketches Time Series Analysis Spring 2010 Forecasting 1. Let X and Y be two random variables such that E(X 2 ) < and E(Y 2 )

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

Ch 9. FORECASTING. Time Series Analysis

Ch 9. FORECASTING. Time Series Analysis In this chapter, we assume the model is known exactly, and consider the calculation of forecasts and their properties for both deterministic trend models and ARIMA models. 9.1 Minimum Mean Square Error

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

IDENTIFICATION OF ARMA MODELS

IDENTIFICATION OF ARMA MODELS IDENTIFICATION OF ARMA MODELS A stationary stochastic process can be characterised, equivalently, by its autocovariance function or its partial autocovariance function. It can also be characterised by

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

Stochastic Modelling Solutions to Exercises on Time Series

Stochastic Modelling Solutions to Exercises on Time Series Stochastic Modelling Solutions to Exercises on Time Series Dr. Iqbal Owadally March 3, 2003 Solutions to Elementary Problems Q1. (i) (1 0.5B)X t = Z t. The characteristic equation 1 0.5z = 0 does not have

More information

The autocorrelation and autocovariance functions - helpful tools in the modelling problem

The autocorrelation and autocovariance functions - helpful tools in the modelling problem The autocorrelation and autocovariance functions - helpful tools in the modelling problem J. Nowicka-Zagrajek A. Wy lomańska Institute of Mathematics and Computer Science Wroc law University of Technology,

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle

data lam=36.9 lam=6.69 lam=4.18 lam=2.92 lam=2.21 time max wavelength modulus of max wavelength cycle AUTOREGRESSIVE LINEAR MODELS AR(1) MODELS The zero-mean AR(1) model x t = x t,1 + t is a linear regression of the current value of the time series on the previous value. For > 0 it generates positively

More information

MAT3379 (Winter 2016)

MAT3379 (Winter 2016) MAT3379 (Winter 2016) Assignment 4 - SOLUTIONS The following questions will be marked: 1a), 2, 4, 6, 7a Total number of points for Assignment 4: 20 Q1. (Theoretical Question, 2 points). Yule-Walker estimation

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Applied Econometrics. Professor Bernard Fingleton

Applied Econometrics. Professor Bernard Fingleton Applied Econometrics Professor Bernard Fingleton 1 Causation & Prediction 2 Causation One of the main difficulties in the social sciences is estimating whether a variable has a true causal effect Data

More information

Regression with correlation for the Sales Data

Regression with correlation for the Sales Data Regression with correlation for the Sales Data Scatter with Loess Curve Time Series Plot Sales 30 35 40 45 Sales 30 35 40 45 0 10 20 30 40 50 Week 0 10 20 30 40 50 Week Sales Data What is our goal with

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

A Beginner s Introduction. Box-Jenkins Models

A Beginner s Introduction. Box-Jenkins Models A Beginner s Introduction To Box-Jenkins Models I. Introduction In their seminal work, Time Series Analysis: Forecasting and Control (1970, Holden Day), Professors Box and Jenkins introduced a set of time

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

Comparing the Univariate Modeling Techniques, Box-Jenkins and Artificial Neural Network (ANN) for Measuring of Climate Index

Comparing the Univariate Modeling Techniques, Box-Jenkins and Artificial Neural Network (ANN) for Measuring of Climate Index Applied Mathematical Sciences, Vol. 8, 2014, no. 32, 1557-1568 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4150 Comparing the Univariate Modeling Techniques, Box-Jenkins and Artificial

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects.

1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects. 1. How can you tell if there is serial correlation? 2. AR to model serial correlation. 3. Ignoring serial correlation. 4. GLS. 5. Projects. 1) Identifying serial correlation. Plot Y t versus Y t 1. See

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 Introduction to Econometrics (3 rd Updated Edition) by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 (This version July 0, 014) 015 Pearson Education,

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Probabilistic forecasting of solar radiation

Probabilistic forecasting of solar radiation Probabilistic forecasting of solar radiation Dr Adrian Grantham School of Information Technology and Mathematical Sciences School of Engineering 7 September 2017 Acknowledgements Funding: Collaborators:

More information

Time Series Analysis. Nonstationary Data Analysis by Time Deformation

Time Series Analysis. Nonstationary Data Analysis by Time Deformation Communications in Statistics Theory and Methods, 34: 163 192, 2005 Copyright Taylor & Francis, Inc. ISSN: 0361-0926 print/1532-415x online DOI: 10.1081/STA-200045869 Time Series Analysis Nonstationary

More information

6 NONSEASONAL BOX-JENKINS MODELS

6 NONSEASONAL BOX-JENKINS MODELS 6 NONSEASONAL BOX-JENKINS MODELS In this section, we will discuss a class of models for describing time series commonly referred to as Box-Jenkins models. There are two types of Box-Jenkins models, seasonal

More information

Regression of Time Series

Regression of Time Series Mahlerʼs Guide to Regression of Time Series CAS Exam S prepared by Howard C. Mahler, FCAS Copyright 2016 by Howard C. Mahler. Study Aid 2016F-S-9Supplement Howard Mahler hmahler@mac.com www.howardmahler.com/teaching

More information

Circle the single best answer for each multiple choice question. Your choice should be made clearly.

Circle the single best answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 6, 2017 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 32 multiple choice

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

TMA4285 December 2015 Time series models, solution.

TMA4285 December 2015 Time series models, solution. Norwegian University of Science and Technology Department of Mathematical Sciences Page of 5 TMA4285 December 205 Time series models, solution. Problem a) (i) The slow decay of the ACF of z t suggest that

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Modeling and Performance Analysis with Discrete-Event Simulation

Modeling and Performance Analysis with Discrete-Event Simulation Simulation Modeling and Performance Analysis with Discrete-Event Simulation Chapter 9 Input Modeling Contents Data Collection Identifying the Distribution with Data Parameter Estimation Goodness-of-Fit

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 8 Input Modeling Purpose & Overview Input models provide the driving force for a simulation model. The quality of the output is no better than the quality

More information

Financial Econometrics Review Session Notes 3

Financial Econometrics Review Session Notes 3 Financial Econometrics Review Session Notes 3 Nina Boyarchenko January 22, 2010 Contents 1 k-step ahead forecast and forecast errors 2 1.1 Example 1: stationary series.......................... 2 1.2 Example

More information

Improved Holt Method for Irregular Time Series

Improved Holt Method for Irregular Time Series WDS'08 Proceedings of Contributed Papers, Part I, 62 67, 2008. ISBN 978-80-7378-065-4 MATFYZPRESS Improved Holt Method for Irregular Time Series T. Hanzák Charles University, Faculty of Mathematics and

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Time Series Modeling. Shouvik Mani April 5, /688: Practical Data Science Carnegie Mellon University

Time Series Modeling. Shouvik Mani April 5, /688: Practical Data Science Carnegie Mellon University Time Series Modeling Shouvik Mani April 5, 2018 15-388/688: Practical Data Science Carnegie Mellon University Goals After this lecture, you will be able to: Explain key properties of time series data Describe,

More information

Econometrics of financial markets, -solutions to seminar 1. Problem 1

Econometrics of financial markets, -solutions to seminar 1. Problem 1 Econometrics of financial markets, -solutions to seminar 1. Problem 1 a) Estimate with OLS. For any regression y i α + βx i + u i for OLS to be unbiased we need cov (u i,x j )0 i, j. For the autoregressive

More information

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005 Lecture # 37 Prof. John W. Sutherland Nov. 28, 2005 Linear Regression 8 y 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 x Modeling To describe the data above, propose the model: y = B 0 + B 1 x + ε Fitted model will

More information

Problem Set 6 Solution

Problem Set 6 Solution Problem Set 6 Solution May st, 009 by Yang. Causal Expression of AR Let φz : αz βz. Zeros of φ are α and β, both of which are greater than in absolute value by the assumption in the question. By the theorem

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models

Chapter 3. ARIMA Models. 3.1 Autoregressive Moving Average Models Chapter 3 ARIMA Models Classical regression is often insu cient for explaining all of the interesting dynamics of a time series. For example, the ACF of the residuals of the simple linear regression fit

More information

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu Volume 109 No. 8 2016, 225-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

More information

Moving Average (MA) representations

Moving Average (MA) representations Moving Average (MA) representations The moving average representation of order M has the following form v[k] = MX c n e[k n]+e[k] (16) n=1 whose transfer function operator form is MX v[k] =H(q 1 )e[k],

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information

Issues in estimating past climate change at local scale.

Issues in estimating past climate change at local scale. 14th EMS Annual Meeting, Prague Oct. 6th 2014 Issues in estimating past climate change at local scale. Case study: the recent warming (1959-2009) over France. Lola Corre (Division de la Climatologie, Météo-France)

More information

Applied Forecasting (LECTURENOTES) Prof. Rozenn Dahyot

Applied Forecasting (LECTURENOTES) Prof. Rozenn Dahyot Applied Forecasting (LECTURENOTES) Prof. Rozenn Dahyot SCHOOL OF COMPUTER SCIENCE AND STATISTICS TRINITY COLLEGE DUBLIN IRELAND https://www.scss.tcd.ie/rozenn.dahyot Michaelmas Term 2017 Contents 1 Introduction

More information

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

A SARIMAX coupled modelling applied to individual load curves intraday forecasting A SARIMAX coupled modelling applied to individual load curves intraday forecasting Frédéric Proïa Workshop EDF Institut Henri Poincaré - Paris 05 avril 2012 INRIA Bordeaux Sud-Ouest Institut de Mathématiques

More information

Univariate ARIMA Forecasts (Theory)

Univariate ARIMA Forecasts (Theory) Univariate ARIMA Forecasts (Theory) Al Nosedal University of Toronto April 10, 2016 Al Nosedal University of Toronto Univariate ARIMA Forecasts (Theory) April 10, 2016 1 / 23 All univariate forecasting

More information

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model

INTRODUCTION TO TIME SERIES ANALYSIS. The Simple Moving Average Model INTRODUCTION TO TIME SERIES ANALYSIS The Simple Moving Average Model The Simple Moving Average Model The simple moving average (MA) model: More formally: where t is mean zero white noise (WN). Three parameters:

More information

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y).

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). (sin(x)) 2 + (cos(x)) 2 = 1. 28 1 Characteristics of Time

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES

THE ROYAL STATISTICAL SOCIETY 2009 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES THE ROYAL STATISTICAL SOCIETY 9 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULAR FORMAT MODULE 3 STOCHASTIC PROCESSES AND TIME SERIES The Society provides these solutions to assist candidates preparing

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information

ECE 673-Random signal analysis I Final

ECE 673-Random signal analysis I Final ECE 673-Random signal analysis I Final Q ( point) Comment on the following statement "If cov(x ; X 2 ) 0; then the best predictor (without limitation on the type of predictor) of the random variable X

More information

Forecasting Data Streams: Next Generation Flow Field Forecasting

Forecasting Data Streams: Next Generation Flow Field Forecasting Forecasting Data Streams: Next Generation Flow Field Forecasting Kyle Caudle South Dakota School of Mines & Technology (SDSMT) kyle.caudle@sdsmt.edu Joint work with Michael Frey (Bucknell University) and

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information