() Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 1 / 52

Size: px
Start display at page:

Download "() Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 1 / 52"

Transcription

1 Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécanique. A.GLUMINEAU, IRCCyN Institut de Recherche en Communications et Cybernétique de Nantes, Nantes, France, from joint works with J. DE LEON (Universidad Autonoma de Nuevo Leon, Mexico), F. PLESTAN, D. TRAORE, M. HAMIDA, R. BOISLIVEAU (IRCCyN). IFAC WC 2008, IFAC PPPSC 2012, Groupe inter GDR MACS/SEEDS : CSE () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 1 / 52

2 Outline Introduction 1 Introduction () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 2 / 52

3 Outline Introduction 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 2 / 52

4 Outline Introduction 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 2 / 52

5 Outline Introduction 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 2 / 52

6 Outline Introduction 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 2 / 52

7 Introduction () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

8 Introduction () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

9 Introduction Classical control scheme x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

10 Introduction Classical control scheme x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

11 Introduction Classical control scheme x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

12 Introduction Classical control scheme Software sensor x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

13 Introduction Classical control scheme Software sensor x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. Control without mechanical sensor + low speed problems () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

14 Introduction Classical control scheme Software sensor x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. Control without mechanical sensor + low speed problems Loss of observability, () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

15 Introduction Classical control scheme Software sensor x: Fluxes, currents and speed u: Voltages T l : Load torque (disturbance) y: Currents, speed and load torque - Cost, - Breakdowns of sensor maintenance cost, - Fault tolerant control. Control without mechanical sensor + low speed problems Loss of observability, Robustness. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 3 / 52

16 Introduction Industrial sensorless inverter experimental results Figure : 1. Test on the sensorless benchmark. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 4 / 52

17 Outline Observer without mechanical sensor 2.a Observer design for non linear systems 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 5 / 52

18 Observer without mechanical sensor Observer design for non linear systems (1) 2.a Observer design for non linear systems () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 6 / 52

19 Observer without mechanical sensor Observer design for non linear systems (1) 2.a Observer design for non linear systems No general constructive algorithm for a non linear system: x = f ( x) + g( x)u, y = h( x). (1) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 6 / 52

20 Observer without mechanical sensor Observer design for non linear systems (1) 2.a Observer design for non linear systems No general constructive algorithm for a non linear system: x = f ( x) + g( x)u, y = h( x). (1) A first solution: to find a generalized transformation X = φ( x, u, u,, u (q 1) ) such that the nonlinear system (1) is equivalent to a linear one modulo an input-output (NL) injection: Ẋ = AX + ϕ(y, u, u,, u (q) ), ỹ = CX. (2) Hypothesis: A et C are in observability canonical form. Then a observer (Luenberger Like) can be: ˆX = A ˆX + ϕ(y, u, u,, u (q) ) + K C (X ˆX) Exponentiel convergence tuned by gain K, Observation of system (1) given by ˆ x = φ 1 ( ˆX, u, u,, u (q 1) )., See Souleiman, Glumineau, Guay, Respondek. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 6 / 52

21 Observer without mechanical sensor Observer design for non linear systems (2) 2.a Observer design for non linear systems () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 7 / 52

22 Observer without mechanical sensor Observer design for non linear systems (2) 2.a Observer design for non linear systems A second solution: to find a state transformation X = φ( x, u) such that the nonlinear system (1) is equivalent to an affine one modulo an input-output (NL) injection: Ẋ = A(y, u)x + ϕ(y, u) ỹ = CX. (3) with some observability hypothesis (see Besançon and al.), an Kalman Like observer can be designed: ˆX = A(y, u) ˆX + ϕ(y, u) S 1 C T (C ˆX ỹ) Ṡ = θs A(y, u) T S SA(y, u) + C T C ŷ = C ˆX There exists θ > 0 such that system (4) is an observer for (3) and ˆX X λ exp( τt), τ > 0. Observation of system (1) is given by ˆ x = φ 1 ( ˆX, u, u,, u (q 1) ). See Souleiman, Glumineau, Besancon (4) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 7 / 52

23 Observer without mechanical sensor Observer design for non linear systems (2) 2.a Observer design for non linear systems A second solution: to find a state transformation X = φ( x, u) such that the nonlinear system (1) is equivalent to an affine one modulo an input-output (NL) injection: Ẋ = A(y, u)x + ϕ(y, u) ỹ = CX. (3) with some observability hypothesis (see Besançon and al.), an Kalman Like observer can be designed: ˆX = A(y, u) ˆX + ϕ(y, u) S 1 C T (C ˆX ỹ) Ṡ = θs A(y, u) T S SA(y, u) + C T C ŷ = C ˆX There exists θ > 0 such that system (4) is an observer for (3) and ˆX X λ exp( τt), τ > 0. Observation of system (1) is given by ˆ x = φ 1 ( ˆX, u, u,, u (q 1) ). See Souleiman, Glumineau, Besancon Otherwise... Other observers can be designed with Kalman Like High gain observer, Interconnected observers,... (see Besançon, Hammouri...) (4) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 7 / 52

24 Sensorless problem Observer without mechanical sensor 2.a Observer design for non linear systems Means () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 8 / 52

25 Sensorless problem Observer without mechanical sensor 2.a Observer design for non linear systems Means Design of an adaptive interconnected high-gain observers for the estimation of the magnetic(fluxes), mechanical (speed, load torque) variables, stator resistance value,... () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 8 / 52

26 Observer without mechanical sensor 2.a Observer design for non linear systems Sensorless problem Means Design of an adaptive interconnected high-gain observers for the estimation of the magnetic(fluxes), mechanical (speed, load torque) variables, stator resistance value,... Design of High Order Sliding Mode Controllers to achieve speed and flux tracking (IM) or speed and optimum torque (IPMSM) with robust performances () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 8 / 52

27 Observer without mechanical sensor 2.a Observer design for non linear systems Sensorless problem Means Design of an adaptive interconnected high-gain observers for the estimation of the magnetic(fluxes), mechanical (speed, load torque) variables, stator resistance value,... Design of High Order Sliding Mode Controllers to achieve speed and flux tracking (IM) or speed and optimum torque (IPMSM) with robust performances Analysis of the stability of the Schemes. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 8 / 52

28 Observer without mechanical sensor 2.a Observer design for non linear systems Sensorless problem Means Design of an adaptive interconnected high-gain observers for the estimation of the magnetic(fluxes), mechanical (speed, load torque) variables, stator resistance value,... Design of High Order Sliding Mode Controllers to achieve speed and flux tracking (IM) or speed and optimum torque (IPMSM) with robust performances Analysis of the stability of the Schemes. Validation on Sensorless Control Benchmarks from french research group of the CNRS Control of Electric Systems, () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 8 / 52

29 Outline Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 9 / 52

30 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Nonlinear model of the IPM synchronous motor in the dq frame From the PARK et CONCORDIA transformations: { ẋ = f (x) + g(x)u Σ NL : y = h(x) (5) with x = ( i d i q Ω θ ) T, u = ( ud, u q ) T, y = ( h1, h 2 ) T = ( id, i q ) T f (x) = p R s i L d + p Lq Ωi d L q d Rs i L q p L d Ωi q L q d p 1 φ L q f Ω s J (L d L q)i d i q fv J Ω + p J φ f i q 1 J T l Ω 1 0 and g(x) = 0 L d 1 L q with i d, i q, u d, u q: dq currents, voltages and Ω, T l, R s, θ: motor speed, load torque, stator resistance, rotor position. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 10 / 52

31 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Nonlinear model + uncertainties of the IPMSM in the synchronous frame (d-q) or i d = k 4 i d + k 5 Ωi q + k 6 v d i q = k 9 i q + k 8 Ωi d + k 7 Ω + k 10 v q Ω = k 1 i d i q + k 3 Ω + k 2 i q θ = Ω (6) with Parameter uncertainties k 1 = k 01 + δk 1 = p J (L d L q), k 2 = k 02 + δk 2 = pφ f J, k 3 = k 03 + δk 3 = fv J, k 4 = k 04 + δk 4 = Rs, k 5 = k 05 + δk 5 = p Lq, k 6 = k 06 + δk 6 = 1, L d L d L d k 7 = k 07 + δk 7 = pφ f L q, k 8 = k 08 + δk 8 = pl d L q, k 9 = k 09 + δk 9 = Rs L q, k 10 = k δk 10 = 1 L q. (7) k 0i (1 i 10) the nominal value of the concerned parameter, δk i the uncertainty on this parameter such that δk i δk 0i < k 0i with δk 0i a known positive bound. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 11 / 52

32 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Interconnected Model The IPMSM model (1) can be written in an interconnected form: Σ 1 { Ẋ1 = A 1 (y)x 1 + g 1 (X 2, u) y 1 = C 1 X 1 (8) Σ 2 { Ẋ2 = A 2 (y)x 2 + g 2 (X 1, X 2, u) + ΦT l y 2 = C 2 X 2 (9) T l and R s are assumed to be piecewise functions of time. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 12 / 52

33 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Interconnected Model The IPMSM model (1) can be written in an interconnected form: Σ 1 { Ẋ1 = A 1 (y)x 1 + g 1 (X 2, u) y 1 = C 1 X 1 (8) Σ 2 { Ẋ2 = A 2 (y)x 2 + g 2 (X 1, X 2, u) + ΦT l y 2 = C 2 X 2 (9) T l and R s are assumed to be piecewise functions of time. where [ ] [ ] [ iq idω X 1 =, X R 2 =, A 1 ( ) = s 0 iq L q 0 0 ], A 2 ( ) = [ 0 p Lq L d i q 0 fv J ] g 1 ( ) = [ p L d L q Ωid p φ f L q Ω + 1 L q u q 0 ], g 2 ( ) = Rs L d i d + 1 L d u d p J Φ f i qi d + p J (L d L q)i q, [ Φ = 0 1 J ], C 1 = C 2 = [1 0]. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 12 / 52

34 Design (1) Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Objectives Design two adaptive interconnected observers for Σ 1 and Σ 2 to estimate the speed the load torque and the stator resistance. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 13 / 52

35 Design (1) Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Objectives Design two adaptive interconnected observers for Σ 1 and Σ 2 to estimate the speed the load torque and the stator resistance. Assumption 1 (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. (i.e. the inputs do not force the system to stay in an observability loss area) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 13 / 52

36 Design (1) Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Objectives Design two adaptive interconnected observers for Σ 1 and Σ 2 to estimate the speed the load torque and the stator resistance. Assumption 1 (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. (i.e. the inputs do not force the system to stay in an observability loss area) Remark 1. X 1 and X 2 are respectively considered as inputs for subsystem Σ 2 and Σ 1. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 13 / 52

37 Design (1) Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Objectives Design two adaptive interconnected observers for Σ 1 and Σ 2 to estimate the speed the load torque and the stator resistance. Assumption 1 (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. (i.e. the inputs do not force the system to stay in an observability loss area) Remark 1. X 1 and X 2 are respectively considered as inputs for subsystem Σ 2 and Σ 1. Remark 2. To design robust adaptive observers, it will be necessary to verify (easy to do): A 1 (y) is globally Lipschitz w.r.t.x 1. A 2 (y) is globally Lipschitz w.r.t.x 1. g 1 (X 2 ) is globally Lipschitz w.r.t.x 2 uniformly w.r.t.(u, y). g 2 (X 1, X 2 ) is globally Lipschitz w.r.t.x 1, X 2 uniformly w.r.t.(u, y). () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 13 / 52

38 Design (2) Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Observers Then adaptive interconnected observers of Σ 1 and Σ 2 are given by: (10) Ż 1 = Ṡ 1 = A 1 (y)z 1 + g 1 (y 2, Z 2, u) + S 1 1 CT 1 (y 1 ŷ 1 ) ρ 1 S 1 A T 1 (y)s 1 S 1 A 1 (y) + C1 T C 1 ŷ 1 = C 1 Z 1 Ż 2 = A 2 (y)z 2 + g 2 (y, Z 1, u) + ΦˆT l + KC1 T (y 1 ŷ 1 ) +(ϖλs 1 θ ΛT C2 T + ΓS 1 x C2 T )(y 2 ŷ 2 ) ˆT l = ϖs 1 θ ΛT C2 T (y 2 ŷ 2 ) + B(Z 1 )(y 1 ŷ 1 ) Ṡ x = ρ x S x A T 2 (Z 1, y)s x S x A 2 (Z 1, y) + C2 T C 2 Ṡ θ = ρ θ S θ + Λ T C2 T C 2Λ Λ = (A 2 (y) ΓSx 1 C2 T C 2)Λ + Φ ŷ 2 = C 2 Z 2 ] T ] T with Z 1 = [îq ˆRs et Z2 = [îd ˆΩ are the estimated states of X1 and X 2. S 1 1 CT 1 is the gain of the observer (10), ϖλs 1 θ ΛT C2 T + ΓS 1 x C2 T and KCT 1 are the gains of the observer (11). (11) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 14 / 52

39 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Observer Stability analysis under parameters uncertainties, [HAMIDA, 12], [Besançon, 06] Observer Stability Let us define: ɛ 1 = X 1 Z 1, ɛ 2 = X 2 Z 2, ɛ 3 = T l ˆT l. We take the following Lyapunov candidate function with V 1 = ɛ T 1 S 1ɛ 1, V 2 = ɛ T 2 S 2ɛ 2 et V 3 = ɛ T 3 S 3ɛ 3. The time derivative of V o is: V o = V 1 + V 2 + V 3 V o δ(v 1 + V 2 + V 3 ) + µ( V 1 + V 2 ). δv o + µψ V o, (12) where ψ > 0, such that ψ V 1 + V 2 + V 3 > V 1 + V 2 and δ = min(δ 1, δ 2, δ 3 ) with δ 1 = ρ 1 λψ 1 > 0, δ 2 = ρ 2 λ 2 ψ 2 λ 1 ψ 1 λ 3 > 0, δ 3 = ρ n λ 2 ψ 2 > 0 and µ an uncertainties parameter. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 15 / 52

40 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Discussion () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 16 / 52

41 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Discussion No parameters variation (i.e. nominal case) µ = 0, by choosing ρ 1, ρ 2 and ρ 3 such that δ 1 > 0, δ 2 > 0 and δ 3 > 0 implies V o δv o, () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 16 / 52

42 Observer without mechanical sensor 2.b Interior Permanent Magnet Synchronous Motor case (IPMSM) Discussion No parameters variation (i.e. nominal case) µ = 0, by choosing ρ 1, ρ 2 and ρ 3 such that δ 1 > 0, δ 2 > 0 and δ 3 > 0 implies V o δv o, Parameters variation µ 0 then V o (1 ς)δv o, ɛ ɛ such that B(0, ɛ ) is a ball which the radius depends of the uncertainties parameter µ and of the gains of the observer. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 16 / 52

43 Outline Observer without mechanical sensor 2.c Induction Motor case (IM) 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 17 / 52

44 Observer without mechanical sensor 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Nonlinear model of the induction motor (dq frame) From Park and Concorda transformations, one gets ẋ = f (x) + g(x)u y = h(x) (13) with x = ( ) i sd i sq φ rd φ rq Ω T l R T s, u = ( ) u sd u T sq, y = ( y 1 baφ rd + bpωφ rq γi sd + ω si sq m 1 0 ) y T 2 = ( i sd ) i T sq baφ rq bpωφ rd γi sq ω si sd 0 m 1 aφ rd + (ω s pω)φ rq + am sr i sd 0 0 f (x) = aφ rq (ω s pω)φ rd + am sr i sq and g(x) = 0 0. m(φ rd i sq φ rqi sd ) cω 1 J l with i sd, i sq, φ rd, φ rq, u sd, u sq: d q currents, flux, voltage, Ω, T l, ω s, R s: motor speed, load torque, stator pulsation, stator resistance. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 18 / 52

45 Observer without mechanical sensor 2.c Induction Motor case (IM) Interconnected observers: principle [Besançon, 98], [Besançon, 06] () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 19 / 52

46 Observer without mechanical sensor 2.c Induction Motor case (IM) Interconnected observers: principle [Besançon, 98], [Besançon, 06] A class of nonlinear systems may be seen as the interconnection between several subsystems, such that each of these subsystems satisfies some required properties to build an observer. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 19 / 52

47 Observer without mechanical sensor 2.c Induction Motor case (IM) Interconnected observers: principle [Besançon, 98], [Besançon, 06] A class of nonlinear systems may be seen as the interconnection between several subsystems, such that each of these subsystems satisfies some required properties to build an observer. The main idea is to design adaptive interconnected observers for the whole system, from the separate synthesis of an observer for each subsystem, assuming that, for each of these separate observer, the state of the other subsystem is available. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 19 / 52

48 Observer without mechanical sensor 2.c Induction Motor case (IM) Design (1) The IM model (13) can be written in an interconnection form { X Σ 1 : 1 = A 1 (X 2, y)x 1 + g 1 (u, y, X 2, X 1 ) + ΦT l (14) y 1 = C 1 X 1 { X Σ 2 : 2 = A 2 (X 1 )X 2 + g 2 (u, y, X 1, X 2 ) (15) y 2 = C 2 X 2 X 1 = ( i sd, Ω, R s ) T, X2 = ( i sq, φ rd, φ rq ) T, u = ( usd, u sq ) T, y = ( isd, i sq ) T, C 1 = C 2 = ( ). T l is the unknown load torque supposed a piecewise constant function. R s is the unknown stator resistance value supposed constant. 0 bpφ rq m 1 i sd A 1 ( ) = mφ rq c 0, A 2 ( ) = γ 1 bpω ab 0 a pω, pω a g 1 ( ) = γ 1i sd + abφ rd + m 1 u sd + ω si sq mφ rd i sq, 0 g 2 ( ) = m 1R si sq ω si sd + m 1 u sq ω sφ rq + am sr i sd ω sφ rd + am sr i sq, Φ = 0 1 J 0 () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 20 / 52

49 Design (2) Observer without mechanical sensor 2.c Induction Motor case (IM) Objectives Design of two adaptive interconnected high-gains observers for Σ 1 and Σ 2 in order to estimate mechanical variables (speed, load torque) and stator resistance value and magnetic variables (fluxes) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 21 / 52

50 Design (2) Observer without mechanical sensor 2.c Induction Motor case (IM) Objectives Design of two adaptive interconnected high-gains observers for Σ 1 and Σ 2 in order to estimate mechanical variables (speed, load torque) and stator resistance value and magnetic variables (fluxes) Assumption 1 1. X 1 and X 2 are respectively considered as inputs for subsystem Σ 2 and Σ 1, 2. (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 21 / 52

51 Design (2) Observer without mechanical sensor 2.c Induction Motor case (IM) Objectives Design of two adaptive interconnected high-gains observers for Σ 1 and Σ 2 in order to estimate mechanical variables (speed, load torque) and stator resistance value and magnetic variables (fluxes) Assumption 1 1. X 1 and X 2 are respectively considered as inputs for subsystem Σ 2 and Σ 1, 2. (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. Assumption 2 g 1 (u, y, X 2, X 1 ) is globally Lipschitz with respect to X 2, X 1 and uniformly w.r.t. (u, y). () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 21 / 52

52 Design (2) Observer without mechanical sensor 2.c Induction Motor case (IM) Objectives Design of two adaptive interconnected high-gains observers for Σ 1 and Σ 2 in order to estimate mechanical variables (speed, load torque) and stator resistance value and magnetic variables (fluxes) Assumption 1 1. X 1 and X 2 are respectively considered as inputs for subsystem Σ 2 and Σ 1, 2. (u, X 2 ) and (u, X 1 ) are respectively regularly persistent inputs for Σ 1 and Σ 2. Assumption 2 g 1 (u, y, X 2, X 1 ) is globally Lipschitz with respect to X 2, X 1 and uniformly w.r.t. (u, y). Remark It is easy to verify that A 1 (X 2, y) is globally Lipschitz w.r.t. X 2, A 2 (X 1 ) is globally Lipschitz w.r.t. X 1 and g 2 (u, y, X 2, X 1 ) is globally Lipschitz w.r.t. X 2, X 1 and uniformly w.r.t. (u, y) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 21 / 52

53 Design (3) Observer without mechanical sensor 2.c Induction Motor case (IM) Observers Then, the adaptive interconnected observers of Σ 1 and Σ 2 read as O 1 : Ż 1 = A 1 (Z 2, y)z 1 + g 1 (u, y, Z 2, Z 1 ) + ΦˆT l +(ϖλs 1 3 ΛT C1 T + ΓS 1 1 CT 1 )(y 1 ŷ 1 ) + KC2 T (y 2 ŷ 2 ) ˆT l = ϖs 1 3 ΛT C1 T (y 1 ŷ 1 ) + B 1 (Z 2 )(y 2 ŷ 2 ) + B 2 (Z 2 )(y 1 ŷ 1 ) Ṡ 1 = θ 1 S 1 A T 1 (Z 2, y)s 1 S 1 A 1 (Z 2, y) + C1 T C 1 Ṡ 3 = θ 3 S 3 + Λ T C1 T C 1Λ Λ = (A 1 (Z 2, y) ΓS 1 1 CT 1 C 1)Λ + Φ ŷ 1 = C 1 Z 1 Ż 2 = A 2 (Z 1 )Z 2 + g 2 (u, y, Z 1, Z 2 ) + S 1 2 CT 2 (y 2 ŷ 2 ) O 2 : S 2 = θ 2 S 2 A T 2 (Z 1)S 2 S 2 A 2 (Z 1 ) + C2 T C 2 ŷ 2 = C 2 Z 2 () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 22 / 52

54 Design (4) Observer without mechanical sensor 2.c Induction Motor case (IM) Definitions Z 1 = ( î sd, ˆΩ, ˆR ) T s, Z2 = ( ) T î sq, ˆφ rd, ˆφ rq are the estimated states. θ1, θ 2, θ 3 are positive constants and S 1, S 2 are symmetric positive definite matrices [Besançon, 96], S 3 (0) > 0. B 1 (Z 2 ) = km ˆφ rd, B 2 (Z 2 ) = km ˆφ rq, K = k c1 0 0 k c2 0 0, Γ = , where k, α k c1, k c2, α and ϖ are positive constants. Note that (ϖλs 1 3 ΛT C1 T + ΓS 1 1 CT 1 ) and KCT 2 are the gains of observer (O 1) and S 1 2 CT 2 gain of observer (O 2 ). is the () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 23 / 52

55 Observer without mechanical sensor 2.c Induction Motor case (IM) Observer Stability analysis under parameters uncertainties (and tuning), [Traore, 07], [Besançon, 06] Observer Stability and Tuning Let us define V o = V 1 + V 2 + V 3 a candidate Lyapunov function where V 1 = ɛ T 1 S 1ɛ 1, V 2 = ɛ T 2 S 2ɛ 2 and V 3 = ɛ T 3 S 3ɛ 3. with ɛ 1, ɛ 2 and ɛ 3 are the errors between the state and its estimation. The time derivative of V o is: V o δ(v 1 + V 2 + V 3 ) + µ( V 1 + V 2 ) where ψ > 0, such that ψ V 1 + V 2 + V 3 > V 1 + V 2. δv o + µψ V o. (16) δ = min(δ 1, δ 2, δ 3 ) and µ = max(µ 6, µ 7 ) parameters uncertainties, δ 1 = θ 1 2k 12 2k 1 k 16 µϕ 1 µ 9 ϕ 3 > 0, δ 3 = θ 3 + 2k 10 µ 8 ϕ 2 µ 9 ϕ 3 > 0, and ϕ i (i = 1, 2, 3) ]0, 1[ () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 24 / 52

56 Observer without mechanical sensor 2.c Induction Motor case (IM) Discussion () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 25 / 52

57 Observer without mechanical sensor 2.c Induction Motor case (IM) Discussion Known parameters µ = 0, to choose θ 1, θ 2 and θ 3 such that δ 1 > 0, δ 2 > 0 and δ 3 > 0 then V o δv o, () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 25 / 52

58 Observer without mechanical sensor 2.c Induction Motor case (IM) Discussion Known parameters µ = 0, to choose θ 1, θ 2 and θ 3 such that δ 1 > 0, δ 2 > 0 and δ 3 > 0 then V o δv o, Parameters variation µ 0 then V o (1 ς)δv o, ɛ µψ ςδ, 1 > ς > 0 () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 25 / 52

59 Outline High Order Sliding Mode Control (HOSMC) 3.a HOSMC design 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 26 / 52

60 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design Hypothesis and Definition HOSM (1) Consider the uncertain nonlinear system ẋ = f (x) + g(x)v (17) y = σ(x, t) (18) with x the state variable, v the input control and σ(x, t) a smooth output function (sliding variable) defined to satisfy the control objective (tracking trajectory,...). H1. The relative degree r d of (17) with respect to s is assumed to be constant and known, and the associated zero dynamics are stable. After a possible preliminary I/0 linearization feedback (computed with the nominal parameters) applied to the nonlinear system (17) there exists χ and Γ such that σ (r d ) = χ( ) + Γ( )v (19) H2. Functions χ( ) and Γ( ) are such that there exist K m IR +, K M IR +, C 0 IR + with χ C 0, 0 < K m < Γ < K M. Furthermore, control input v is bounded. (20) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 27 / 52

61 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (1) The design of the controller is obtained in two steps () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 28 / 52

62 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (1) The design of the controller is obtained in two steps Design of a switching variable S(σ, σ,...) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 28 / 52

63 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (1) The design of the controller is obtained in two steps Design of a switching variable S(σ, σ,...) Design of a control to maintain, from t = 0, the system trajectories on the corresponding switching surface which ensures the establishment of a r th order sliding mode, in spite of uncertainties in a fixed finite time t F. = for t > t F, σ = 0, σ = 0,..., σ (r) = 0, with r the relative degree r d. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 28 / 52

64 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (2) Switching variable. S denotes the switching variable defined as S = σ (r 1) F (r 1) [ (t) + λ r 2 σ (r 2) F (r 2) (t) ] + + λ 0 [σ(x, t) F(t)] (21) with () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 29 / 52

65 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (2) Switching variable. S denotes the switching variable defined as with S = σ (r 1) F (r 1) (t) + λ r 2 [ σ (r 2) F (r 2) (t) ] + + λ 0 [σ(x, t) F(t)] (21) λ r 2,, λ 0 defined such that P(z) = z (r 1) + λ r 2 z (r 2) + + λ 0 is a Hurwitz polynomial in the complex variable z, () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 29 / 52

66 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (2) Switching variable. S denotes the switching variable defined as with S = σ (r 1) F (r 1) (t) + λ r 2 [ σ (r 2) F (r 2) (t) ] + + λ 0 [σ(x, t) F(t)] (21) λ r 2,, λ 0 defined such that P(z) = z (r 1) + λ r 2 z (r 2) + + λ 0 is a Hurwitz polynomial in the complex variable z, F(t) is a C r function defined such that and σ (k) (x(0), 0) F (k) (0) = 0 σ (k) (x(t F ), t F ) F (k) (t F ) = 0 (0 k r 1), t F the desired convergence time. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 29 / 52

67 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (3) More precisely, the problem consists in finding the function F(t) such that from initial and final conditions σ(x(0), 0) = F(0), σ(x(t F ), t F ) = F(t F ) = 0, σ(x(0), 0) = F(0), σ(x(t F ), t F ) = F(t F ) = 0,. σ (r 1) (x(0), 0) = F (r 1) (0), σ (r 1) (x(t F ), t F ) = F (r 1) (t F ) = 0 (22) A solution for F(t) reads as (1 j r) F(t) = Ke Ft T σ (r j) (0) (23) with F a 2r 2r-dimensional Hurwitz matrix (strictly negative eigenvalues), T a 2r 1-dimensional vector and j such that σ (r j) (0) 0 and bounded. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 30 / 52

68 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (4) Then, the switching variable S (7) reads as S = σ (r 1) KF r 1 e Ft T σ (r j) [ (0) + λ r 2 σ (r 2) KF r 2 e Ft T σ (r j) (0) ] [ + + λ 0 σ(x, t) Ke Ft T σ (r j) (0) ]. (24) H3. There exists a finite positive constant Θ IR + such that KF r e Ft T σ (r j )(0) λ r 2 [ σ (r 1) KF r 1 e Ft T σ (r j) (0) ] λ 0 [ σ(x, t) KFe Ft T σ (r j) (0) ] < Θ (25) Equation S = 0 describes the desired dynamics which satisfy the finite time stabilization of vector [σ (r 1) σ (r 2) σ] T to zero. Then, the switching manifold on which system is forced to slide on, via a discontinuous control v, is defined as S = {x S = 0} (26) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 31 / 52

69 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design HOSM controller design (5) The discontinuous control law v must force the system trajectories to slide on S, to reach in finite time the origin and to maintain the system at the origin. Theorem Consider nonlinear system (17) with a relative degree r d with respect to σ(x, t). Suppose that it is minimum phase and that hypotheses H 1 and H 2 are fulfilled. Let r be the sliding mode order and 0 < t F < the desired convergence time. Define S IR by (24) with K unique solution of (23) and that assumption H3 is fulfilled. The control input v defined by with v = α sign(s) (27) α C 0 + Θ + η K m, (28) C 0, K m defined by (20), Θ defined by (25), η > 0, leads to the establishment of a r th order sliding mode with respect to σ. The convergence time is t F. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 32 / 52

70 High Order Sliding Mode Control (HOSMC) 3.a HOSMC design SM1 and this HOSM Figure : 2. Comparaison of SM of order 1 and this HOSM design. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 33 / 52

71 Outline High Order Sliding Mode Control (HOSMC) 3.b IPMSM case 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 34 / 52

72 High Order Sliding Mode Control (HOSMC) 3.b IPMSM case The control objective is double: Ω Ω ref i d i dref where i dref is computed by the Maximum-Torque-Per-Ampere method [Uddin et al. 2007] to increase the efficiency of the drive. HOSM controller design (1) The design of the controller is given by: The choice of sliding variables for system (2), to obtain trajectory tracking to Ω ref and i dref. The sliding variables are chosen as: [ ] [ ] σω Ω Ωref (t) σ = = (29) σ id i d i dref (t) The vector relative degree of σ = [2 1] T. Design of a control to maintain, from t = 0, the system trajectories on a switching manifold which ensures the establishment of a r th order sliding mode, in spite of uncertainties in a fixed finite time t F. = for t > t F, σ = 0, σ = 0,..., σ (r) = 0, with r the relative degree. As the discontinuous control introduced in the following, could imply a chattering phenomenon, the controller is chosen as a [3 2] order sliding mode. = The discontinuity control part will act on the first time derivative of the control inputs. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 35 / 52

73 High Order Sliding Mode Control (HOSMC) 3.b IPMSM case HOSM controller design (2) The second and first time derivatives of σ Ω and σ id are: σ (2) Ω = χ 1 + Γ 11 u d + Γ 12 u q, σ (1) i d = χ 2 + Γ 21 u q. (30) Applying the following static state feedback [ ] ud = Γ 1 u q 0 [ χ 0 + v] (31) denoting [ Γ110 Γ Γ 0 = 120 Γ ] [ ] χ10, χ 0 = χ 20 (32) with Γ 0, χ 0 the nominal values terms and v := [v d v q] T the new control vector, then [ σω (3) σ id (2) ] = [ ] [ χ1 Γ + 11 Γ 12 χ 2 Γ 21 0 ] [ vd vq ] (33) with v d, v q the new inputs defined later. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 36 / 52

74 High Order Sliding Mode Control (HOSMC) 3.b IPMSM case HOSM controller design (3) Switching vector Then, following [Plestan et al.2008], the switching vector S = [S Ω S id ] T is written as S Ω = σ (2) Ω F (2) 1 + λ 11 [ σ Ω F 1 ] + λ 12 [σ Ω F 1 ] S id = σ (1) F i 2 + λ 21 [σ id F 2 ] d (34) with F 1 (t) = K 1 F 1 e F 1t T 1 σ Ω (0) et F 2 (t) = K 2 e F 2t T 2 σ id (0). and λ 11 = 2ζ Ω ω nω, λ 12 = 2ω 2 nω, λ 21 = ω nd with F i being a 2r 2r-dimensional stable matrix, and T i being a 2r 1-dimensional vector. = Finite time convergence (t F ) to σ = 0, σ = 0,..., σ (r) = 0. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 37 / 52

75 High Order Sliding Mode Control (HOSMC) 3.b IPMSM case HOSM controller design (3) Discontinuous input From these switching surfaces (9), the discontinuous control input acting the new inputs is defined by: [ ] [ ] vd α1.sign(s = Ω ). (35) vq α 2.sign(S id ) where with Θ i such that ([Plestan et al, 2008], [Traore et al, 2008]): α i C 0i + Θ i + η i K mij (36) Θ > K ctf r e Ft σ (r j) c (0) λ r 2 [σ (r 1) c K ctf r 1 e Ft σ (r j) c (0)] λ 0 [ σ c(x, t) K ctfe Ft σ (r j) c (0)], (37) with η 1 := η Ω, η 2 := η d. For the IPMS motor, as the uncertainties are bounded, then there exist gains α Ω and α d such that Ṡ Ω S Ω η Ω S Ω and Ṡi d S id η d S id. Then, the finite time convergence of tracking errors is ensured. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 38 / 52

76 Outline High Order Sliding Mode Control (HOSMC) 3.c IM case 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 39 / 52

77 Principle and objectives High Order Sliding Mode Control (HOSMC) 3.c IM case Fied Oriented Control strategy: FOC [Blaschke, 72] Make electromagnetic torque proportional to the stator current use the IM such as a Direct Motor. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 40 / 52

78 Principle and objectives High Order Sliding Mode Control (HOSMC) 3.c IM case Fied Oriented Control strategy: FOC [Blaschke, 72] Make electromagnetic torque proportional to the stator current use the IM such as a Direct Motor. Control law () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 40 / 52

79 Principle and objectives High Order Sliding Mode Control (HOSMC) 3.c IM case Fied Oriented Control strategy: FOC [Blaschke, 72] Make electromagnetic torque proportional to the stator current use the IM such as a Direct Motor. Control law High Order Sliding Mode controller to achieve speed tracking in finite time () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 40 / 52

80 High Order Sliding Mode Control (HOSMC) 3.c IM case Principle and objectives Fied Oriented Control strategy: FOC [Blaschke, 72] Make electromagnetic torque proportional to the stator current use the IM such as a Direct Motor. Control law High Order Sliding Mode controller to achieve speed tracking in finite time High Order Sliding Mode controller to achieve flux tracking in finite time () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 40 / 52

81 Design (1) High Order Sliding Mode Control (HOSMC) 3.c IM case Stator pulsation ω s For FOC, one needs ω s = pω + a Msr φ rd i sq. One defines ω s = p ˆΩ + a Msr ˆφ rd i sq with ω s an estimated stator frequency, β 1 = (isq îsq) k ωs β 1 ˆφrd Msr σl sl r and k ωs > 0. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 41 / 52

82 High Order Sliding Mode Control (HOSMC) 3.c IM case HOSM controller design (6) Sliding vector s = [ ] [ σ1 ˆφ = rd φ ] σ 2 ˆΩ Ω (38) Relative degree of σ 1 and σ 2 =2 In order to limit chattering effect, design of a 3 rd order sliding mode controller The control input u is composed by a linearizing-decoupling term (in nominal case) and a term v defined such that [ ] [ ] v1 αφ sign(s v = = φ ) v2 α Ω sign(s Ω ) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 42 / 52

83 High Order Sliding Mode Control (HOSMC) 3.c IM case HOSM controller design (7) The switching vector reads as () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 43 / 52

84 High Order Sliding Mode Control (HOSMC) 3.c IM case HOSM controller design (7) The switching vector reads as For t t F. S φ = σ 1 χ φ, S Ω = σ 2 χ Ω where { χφ = K φ F 2 e Ft T σ 1 (0) 2ζ φ ω nφ ( σ 1 K φ Fe Ft T σ 1 (0)) ω 2 nφ (σ 1 K φ e Ft T σ 1 (0)) χ Ω = K Ω F 2 e Ft T σ 2 (0) 2ζ Ω ω nω ( σ 2 K Ω Fe Ft T σ 2 (0)) ω 2 nω (σ 2 K Ω e Ft T σ 2 (0)) () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 43 / 52

85 High Order Sliding Mode Control (HOSMC) 3.c IM case HOSM controller design (7) The switching vector reads as For t t F. S φ = σ 1 χ φ, S Ω = σ 2 χ Ω where { χφ = K φ F 2 e Ft T σ 1 (0) 2ζ φ ω nφ ( σ 1 K φ Fe Ft T σ 1 (0)) ω 2 nφ (σ 1 K φ e Ft T σ 1 (0)) χ Ω = K Ω F 2 e Ft T σ 2 (0) 2ζ Ω ω nω ( σ 2 K Ω Fe Ft T σ 2 (0)) ω 2 nω (σ 2 K Ω e Ft T σ 2 (0)) For t > t F. S φ = σ 1 + 2ζ φ ω nφ σ 1 + ω 2 nφ σ 1 S Ω = σ 2 + 2ζ Ω ω nω σ 2 + ω 2 nω σ 2 () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 43 / 52

86 High Order Sliding Mode Control (HOSMC) 3.c IM case HOSM controller design (7) The switching vector reads as For t t F. S φ = σ 1 χ φ, S Ω = σ 2 χ Ω where { χφ = K φ F 2 e Ft T σ 1 (0) 2ζ φ ω nφ ( σ 1 K φ Fe Ft T σ 1 (0)) ω 2 nφ (σ 1 K φ e Ft T σ 1 (0)) χ Ω = K Ω F 2 e Ft T σ 2 (0) 2ζ Ω ω nω ( σ 2 K Ω Fe Ft T σ 2 (0)) ω 2 nω (σ 2 K Ω e Ft T σ 2 (0)) For t > t F. S φ = σ 1 + 2ζ φ ω nφ σ 1 + ω 2 nφ σ 1 S Ω = σ 2 + 2ζ Ω ω nω σ 2 + ω 2 nω σ 2 Stability of Controller-Observer scheme Stability proof formally established in the paper. () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 43 / 52

87 Outline Sensorless control results 4.a IPMSM case 1 Introduction 2 Observer without mechanical sensor 2.a Observer design for non linear systems 2.b Interior Permanent Magnet Synchronous Motor synchronous motor case (IPMSM) Model in (d-q) axes Observer stability analysis 2.c Induction Motor case (IM) Induction motor model in a dq rotating frame Adaptive Interconnected observer design Stability analysis of observer 3 High Order Sliding Control (HOSMC) 3.a HOSMC design 3.b IPMSM case 3.c IM case 4 Sensorless control results 4.a IPMSM case Benchmark trajectories Simulation results 4.b IM case Benchmark trajectories 5 Conclusions () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 44 / 52

88 Sensorless control results 4.a IPMSM case Motor parameters Table : Motor parameters (nominal values) Current 6A Torque 5.3Nm Speed 3000 rpm ψ f Wb R s 3.25 Ω p 3 L d 18 mh L q 34 mh J kg.m 2 f v kg.m 2 s 1 () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 45 / 52

89 Sensorless control results 4.a IPMSM case Benchmark (defined within the framework of the CNRS french workgroup CSE) 350 a 6 b Speed (rad/s) Load torque (N.m) Time (s) Time (s) Figure : 3. Sensorless industriel benchmark. a. Speed reference, b. Load torque Electric System Control group SEEDS/MACS () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 46 / 52

90 Sensorless control results 4.a IPMSM case 350 a 10 b Speed (rad/s) Speed error (rad/s) Ω real Ω obs Time (s) Time (s) Figure : 4. a. Nominal case Observed speed, Measured speed b. Observation error () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 46 / 52

91 Sensorless control results 4.a IPMSM case a R s R s est b Resistance (ohm) Resistance error (ohm) Time (s) Time (s) Figure : 5. a. Nominal case Estimated resistance, Resistance b. Estimation error () Observation, Estimation et Commande robuste non linéaires d actionneurs électriques sans capteur mécaniqu 46 / 52

A higher order sliding mode controller for a class of MIMO nonlinear systems: application to PM synchronous motor control

A higher order sliding mode controller for a class of MIMO nonlinear systems: application to PM synchronous motor control A higher order sliding mode controller for a class of MIMO nonlinear systems: application to PM synchronous motor control S Laghrouche, F Plestan and A Glumineau Abstract A new robust higher order sliding

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control

Robust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015-Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller

More information

Backstepping Control with Integral Action of PMSM Integrated According to the MRAS Observer

Backstepping Control with Integral Action of PMSM Integrated According to the MRAS Observer IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 232-3331, Volume 9, Issue 4 Ver. I (Jul Aug. 214), PP 59-68 Backstepping Control with Integral Action of PMSM

More information

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR

DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Journal of ELECTRICAL ENGINEERING, VOL 58, NO 6, 2007, 326 333 DESIGN OF ROBUST CONTROL SYSTEM FOR THE PMS MOTOR Ahmed Azaiz Youcef Ramdani Abdelkader Meroufel The field orientation control (FOC) consists

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

POWERFUL NONLINEAR OBSERVER ASSOCIATED WITH FIELD-ORIENTED CONTROL OF AN INDUCTION MOTOR

POWERFUL NONLINEAR OBSERVER ASSOCIATED WITH FIELD-ORIENTED CONTROL OF AN INDUCTION MOTOR Int J Appl Math Comput Sci 2004 Vol 14 No 2 209 220 POWERFUL NONLINEAR OBSERVER ASSOCIATED WITH FIELD-ORIENTED CONTROL OF AN INDUCTION MOTOR ABDELLAH MANSOURI MOHAMMED CHENAFA ABDERRAHMANE BOUHENNA ERIC

More information

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller Journal of Engineering Science and Technology Review 3 (1) (2010) 168-175 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Robust Non-Linear Direct Torque and Flux Control

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics.

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics. 2016 Kappa Electronics Motor Control Training Series 2016 Kappa Electronics C V th CoOwner Kappa Electronics www.kappaiq.com Benefits of Field Oriented Control NewtonMeters Maximum Torque Per Amp (MTPA)

More information

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control

Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Interconnection and Damping Assignment Approach for Reliable PM Synchronous Motor Control Ahmad Akrad, Mickaël Hilairet, Romeo Ortega, Demba Diallo LGEP/SPEE Labs ; CNRS UMR857 ; Supelec ; Univ Pierre

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle High-Gain Observers in Nonlinear Feedback Control Lecture # 2 Separation Principle High-Gain ObserversinNonlinear Feedback ControlLecture # 2Separation Principle p. 1/4 The Class of Systems ẋ = Ax + Bφ(x,

More information

Sensorless Sliding Mode Control of Induction Motor Drives

Sensorless Sliding Mode Control of Induction Motor Drives Sensorless Sliding Mode Control of Induction Motor Drives Kanungo Barada Mohanty Electrical Engineering Department, National Institute of Technology, Rourkela-7698, India E-mail: kbmohanty@nitrkl.ac.in

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

Robust MRAS Speed Observer and an Improved Zero-speed Position Estimation Design for Surface Permanent Magnet Synchronous Motor

Robust MRAS Speed Observer and an Improved Zero-speed Position Estimation Design for Surface Permanent Magnet Synchronous Motor Robust MRAS Speed Observer and an Improved Zero-speed Position Estimation Design for Surface Permanent Magnet Synchronous Motor D. Zaltni and M. N. Abdelkrim National Engineering School of Gabes Research

More information

CONTROL OF AN INDUCTION MOTOR USING SLIDING MODE LINEARIZATION

CONTROL OF AN INDUCTION MOTOR USING SLIDING MODE LINEARIZATION Int. J. Appl. Math. Comput. Sci., 22, Vol.12, No.4, 523 531 CONTROL OF AN INDUCTION MOTOR USING SLIDING MODE LINEARIZATION ERIK ETIEN, SÉBASTIEN CAUET LAURENT RAMBAULT, GÉRARD CHAMPENOIS Laboratoire d

More information

Sensorless Output Tracking Control for Permanent Magnet Synchronous Machine based on T-S Fuzzy Approach

Sensorless Output Tracking Control for Permanent Magnet Synchronous Machine based on T-S Fuzzy Approach International Journal of Electrical Engineering. ISSN 974-2158 Volume 4, Number 8 (211), pp. 899-911 International Research Publication House http://www.irphouse.com Sensorless Output Tracking Control

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2

Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 Linearizing control input-output of a wind turbine permanent magnet synchronous Riad AISSOU #1, Toufik REKIOUA #2 1,2 Laboratory of Industrial Technology and the Information «LT2I», Faculty of Technology,

More information

A sliding mode control for a wound rotor synchronous generator with an isolated RL load

A sliding mode control for a wound rotor synchronous generator with an isolated RL load 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 ThA5.6 A sliding mode control for a wound rotor synchronous generator with an isolated RL load R.S. Muñoz-Aguilar,

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

Anti-Windup Design for Synchronous Machines. Journée GT CSE (MACS/SEEDS) Paris, May 17th, 2018

Anti-Windup Design for Synchronous Machines. Journée GT CSE (MACS/SEEDS) Paris, May 17th, 2018 1 / 39 Anti-Windup Design for Synchronous Machines Andreea Beciu Giorgio Valmorbida Journée GT CSE (MACS/SEEDS) Paris, May 17th, 218 2 / 39 Outline 1 Motivation: Use of electric machines, PI control 2

More information

Integrated Design of Speed Sensorless Control Algorithms for Induction Motors

Integrated Design of Speed Sensorless Control Algorithms for Induction Motors MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Integrated Design of Speed Sensorless Control Algorithms for Induction Motors Zhang, J.; Wang, Y.; Bortoff, S.A.; Satake, A.; Furutani, S.;

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 5. Input-Output Stability DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Input-Output Stability y = Hu H denotes

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Speed Control of Non-collocated Stator-Rotor Synchronous Motor with Application in Robotic Surgery

Speed Control of Non-collocated Stator-Rotor Synchronous Motor with Application in Robotic Surgery Speed Control of Non-collocated Stator-Rotor Synchronous Motor with Application in Robotic Surgery Alireza Mohammadi, Danielius Samsonas, Christian Di Natali, Pietro Valdastri, Ying Tan, Denny Oetomo Melbourne

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation High-Gain Observers in Nonlinear Feedback Control Lecture # 3 Regulation High-Gain ObserversinNonlinear Feedback ControlLecture # 3Regulation p. 1/5 Internal Model Principle d r Servo- Stabilizing u y

More information

II. Mathematical Modeling of

II. Mathematical Modeling of SICE Annual Conference in Fukui, August 4-62003 Fukui University, Japan MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Young Sam Kim, Sang Kyoon Kim and Young Ahn Kwon Department of

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer

Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer International Journal of Automation and Computing 1(), April 015, 149-155 DOI: 10.1007/s11633-015-0881- Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model

More information

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR

FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE CONTROL OF INDUCTION MOTOR Journal of Engineering Science and Technology Vol., No. (26) 46-59 School of Engineering, Taylor s University FUZZY LOGIC BASED ADAPTATION MECHANISM FOR ADAPTIVE LUENBERGER OBSERVER SENSORLESS DIRECT TORQUE

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines Nicolas Patin Member IEEE University of Technology of Compiègne Laboratoire d Electromécanique de Compiègne Rue Personne

More information

Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter

Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter Output high order sliding mode control of unity-power-factor in three-phase AC/DC Boost Converter JianXing Liu, Salah Laghrouche, Maxim Wack Laboratoire Systèmes Et Transports (SET) Laboratoire SeT Contents

More information

Higher order sliding mode control based on adaptive first order sliding mode controller

Higher order sliding mode control based on adaptive first order sliding mode controller Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 4-9, 14 Higher order sliding mode control based on adaptive first order sliding mode

More information

Sliding mode observers for sensorless control of current-fed induction motors

Sliding mode observers for sensorless control of current-fed induction motors 2 American Control Conference on O'Farrell Street, San Francisco, CA, USA une 29 - uly, 2 Sliding mode oservers for sensorless control of current-fed induction motors Daniele Bullo, Antonella Ferrara and

More information

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation

Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 11, July-December 007 p. 19-36 Parametric Variations Sensitivity Analysis on IM Discrete Speed Estimation Mohamed BEN MESSAOUD

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

Adaptive Tracking and Estimation for Nonlinear Control Systems

Adaptive Tracking and Estimation for Nonlinear Control Systems Adaptive Tracking and Estimation for Nonlinear Control Systems Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio de Queiroz Sponsored by NSF/DMS Grant 0708084 AMS-SIAM

More information

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Roberto Leidhold Peter Mutschler Department of Power Electronics and Control of Drives Darmsta University

More information

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification

Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio

More information

Real Time Implementation of Adaptive Sliding Mode Observer Based Speed Sensorless Vector Control of Induction Motor

Real Time Implementation of Adaptive Sliding Mode Observer Based Speed Sensorless Vector Control of Induction Motor SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 7, No. 2, November 2, 67-84 UDK: 62.33.333:68.586.7 Real Time Implementation of Adaptive Sliding Mode Observer Based Speed Sensorless Vector Control of Induction

More information

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive by Considering Magnetic Saturation Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronou Motor Drive by Conidering Magnetic Saturation Behrooz Majidi * Jafar Milimonfared * Kaveh Malekian * *Amirkabir

More information

1 Introduction. Nomenclature

1 Introduction. Nomenclature Comparative Study between Different Speed Controller Techniques Applied to the Indirect Field-Oriented Control of an Induction Machine-Performances and Limits CHAYMAE LAOUFI, AHMED ABBOU and MOHAMMED AKHERRAZ

More information

arxiv: v2 [math.ds] 23 Feb 2016

arxiv: v2 [math.ds] 23 Feb 2016 Observability of Sensorless Electric Drives arxiv:162.4468v2 [math.ds] 23 Feb 216 Mohamad Koteich 1,2, Gilles Duc 2, Abdelmalek Maloum 1, Guillaume Sandou 2 1 Renault S.A.S., Technocentre, 7828, Guyancourt,

More information

MODEL REFERENCE ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

MODEL REFERENCE ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 2, 7 25 MODEL REFERENCE ADAPTIVE CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Marián Tárník Ján Murgaš In this paper the classical theory of the direct

More information

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed

Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed Speed Sensor less DTC of VSI fed Induction Motor with Simple Flux Regulation for Improving State Estimation at Low Speed K. Farzand Ali 1, S.Sridhar 2 1 PG Scholar, Dept. Of Electrical & Electronics Engineering,

More information

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective

Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Autonomous Helicopter Landing A Nonlinear Output Regulation Perspective Andrea Serrani Department of Electrical and Computer Engineering Collaborative Center for Control Sciences The Ohio State University

More information

SENSORLESS SPEED AND REACTIVE POWER CONTROL OF A DFIG-WIND TURBINE

SENSORLESS SPEED AND REACTIVE POWER CONTROL OF A DFIG-WIND TURBINE SENSORLESS SPEED AND REACTIVE POWER CONTROL OF A DFIG-WIND TURBINE 1 ADIL BARRA, 2 HAMID OUADI 1,2 PMMAT Lab, University Hassan II, Faculty of Science, Casablanca, Morocco E-mail: 1 barra.adil@gmail.com,

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Improved efficiency of a fan drive system without using an encoder or current sensors

Improved efficiency of a fan drive system without using an encoder or current sensors Improved efficiency of a fan drive system without using an encoder or current sensors Tian-Hua Liu, Jyun-Jie Huang Department of Electrical Engineering, National Taiwan University of Science Technology,

More information

Speed Sensorless Vector Control of Induction Motors Based on Robust Adaptive Variable Structure Control Law

Speed Sensorless Vector Control of Induction Motors Based on Robust Adaptive Variable Structure Control Law Speed Sensorless Vector Control of Induction Motors Based on Robust Adaptive Variable Structure Control Law O. Barambones, A.J. Garrido, F.J. Maseda and P. Alkorta Dpto. Ingeniería de Sistemas y Automática,

More information

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

IDENTIFICATION OF TIME-VARYING ROTOR AND STATOR RESISTANCES OF INDUCTION MOTORS

IDENTIFICATION OF TIME-VARYING ROTOR AND STATOR RESISTANCES OF INDUCTION MOTORS IDENTIFICATION OF TIME-VARYING ROTOR AND STATOR RESISTANCES OF INDUCTION MOTORS G. Kenné T. Ahmed-Ali H. Nkwawo and F. Lamnabhi-Lagarrigue L2S C.N.R.S SUPELEC Université Paris XI 3 Rue Joliot Curie 99

More information

A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation

A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation A Robust Nonlinear Luenberger Observer for the Sensorless Control of SM-PMSM: Rotor Position and Magnets Flux Estimation Nicolas Henwood 1, 2, Jeremy Malaize 1, and Laurent Praly 2 1 Control, Signal and

More information

Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form

Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form Robust Semiglobal Nonlinear Output Regulation The case of systems in triangular form Andrea Serrani Department of Electrical and Computer Engineering Collaborative Center for Control Sciences The Ohio

More information

Adaptive Nonlinear Control of an Electric Motor

Adaptive Nonlinear Control of an Electric Motor Applied Mathematical Sciences, Vol. 2, 2008, no. 52, 2557-2568 Adaptive Nonlinear Control of an Electric Motor A. Kaddouri, O. Akhrif 2, M. Ghribi and H. Le-Huy 3 Department of electrical engineering,

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model

State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model State Estimation of DFIG using an Extended Kalman Filter with an Augmented State Model Mridul Kanti Malaar Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati,

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster. Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

More information

REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters

REGULAR PAPER. The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters FAOUZI BEN AMMAR SAMI GUIZANI REGULAR PAPER The Improvement Avalability of a Double Star Asynchronous Machine Supplied redondant voltage source inverters This paper proposes the availability analysis of

More information

Synergetic Control for Electromechanical Systems

Synergetic Control for Electromechanical Systems Synergetic Control for Electromechanical Systems Anatoly A. Kolesnikov, Roger Dougal, Guennady E. Veselov, Andrey N. Popov, Alexander A. Kolesnikov Taganrog State University of Radio-Engineering Automatic

More information

Simultaneous IDA-Passivity-based control of a Wound Rotor Synchronous Motor

Simultaneous IDA-Passivity-based control of a Wound Rotor Synchronous Motor Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Simultaneous IDA-Passivity-based control of a Wound Rotor Synchronous Motor Carles Batlle, Arnau Dòria-Cerezo

More information

Observability of Speed in an Induction Motor from Stator Currents and Voltages

Observability of Speed in an Induction Motor from Stator Currents and Voltages Proceedings of the 44th IEEE Conference on Decision Control, the European Control Conference 005 Seville, Spain, December 1-15, 005 TuIB1.1 Observability of Speed in an Induction Motor from Stator Currents

More information

Input to state Stability

Input to state Stability Input to state Stability Mini course, Universität Stuttgart, November 2004 Lars Grüne, Mathematisches Institut, Universität Bayreuth Part IV: Applications ISS Consider with solutions ϕ(t, x, w) ẋ(t) =

More information

Input-Output Linearization of an Induction Motor Using MRAS Observer

Input-Output Linearization of an Induction Motor Using MRAS Observer Vol.68 (214), pp.4956 http://dx.doi.org/1.14257/ijast.214.68.5 InputOutput Linearization of an Induction Motor Using MRAS Observer S. Zaidi, F. Naceri and R. Abdssamed Department of Electrical Engineering,

More information

H 2 Adaptive Control. Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan. WeA03.4

H 2 Adaptive Control. Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan. WeA03.4 1 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, 1 WeA3. H Adaptive Control Tansel Yucelen, Anthony J. Calise, and Rajeev Chandramohan Abstract Model reference adaptive

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

Computing Optimized Nonlinear Sliding Surfaces

Computing Optimized Nonlinear Sliding Surfaces Computing Optimized Nonlinear Sliding Surfaces Azad Ghaffari and Mohammad Javad Yazdanpanah Abstract In this paper, we have concentrated on real systems consisting of structural uncertainties and affected

More information

Fuzzy optimum opertaing of a wind power pumping system

Fuzzy optimum opertaing of a wind power pumping system Fuzzy optimum opertaing of a wind power pumping system Olfa Gam, Riadh Abdelati, Mohamed Faouzi Mimouni Research Unit of Industrial Systems and Renewable Energy (ESIER), National Engineering School of

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation

Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation Speed Sensorless Control of Induction Motor based on Indirect Field-Orientation Marcello Montanari a, Sergei Peresada b, Andrea Tilli a, Alberto Tonielli a a Dept. of Electronics, Computer and System Sciences

More information

A new FOC technique based on predictive current control for PMSM drive

A new FOC technique based on predictive current control for PMSM drive ISSN 1 746-7, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 4, pp. 87-94 A new FOC technique based on predictive current control for PMSM drive F. Heydari, A. Sheikholeslami, K.

More information

High order integral sliding mode control with gain adaptation

High order integral sliding mode control with gain adaptation 3 European Control Conference (ECC) July 7-9, 3, Zürich, Switzerland. High order integral sliding mode control with gain adaptation M. Taleb, F. Plestan, and B. Bououlid Abstract In this paper, an adaptive

More information

SYNCHRONIZATION CRITERION OF CHAOTIC PERMANENT MAGNET SYNCHRONOUS MOTOR VIA OUTPUT FEEDBACK AND ITS SIMULATION

SYNCHRONIZATION CRITERION OF CHAOTIC PERMANENT MAGNET SYNCHRONOUS MOTOR VIA OUTPUT FEEDBACK AND ITS SIMULATION SYNCHRONIZAION CRIERION OF CHAOIC PERMANEN MAGNE SYNCHRONOUS MOOR VIA OUPU FEEDBACK AND IS SIMULAION KALIN SU *, CHUNLAI LI College of Physics and Electronics, Hunan Institute of Science and echnology,

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change

Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden Load Change International Journal of Engineering Inventions e-issn: 2278-7461, p-isbn: 2319-6491 Volume 2, Issue 3 (February 2013) PP: 77-86 Speed Sensor less Control and Estimation Based on Mars for Pmsm under Sudden

More information

Synergetic and sliding mode controls of a PMSM: A comparative study

Synergetic and sliding mode controls of a PMSM: A comparative study Journal of Electrical and Electronic Engineering 1; 3(1-1): -6 Published online February 3, 1 (http://www.sciencepublishinggroup.com/j/jeee) doi: 1.1168/j.jeee.s.1311.13 ISSN: 39-1613 (Print); ISSN: 39-16

More information

Small-Signal Analysis of a Saturated Induction Motor

Small-Signal Analysis of a Saturated Induction Motor 1 Small-Signal Analysis of a Saturated Induction Motor Mikaela Ranta, Marko Hinkkanen, Anna-Kaisa Repo, and Jorma Luomi Helsinki University of Technology Department of Electrical Engineering P.O. Box 3,

More information

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive International Journal of Electrical Engineering. ISSN 974-58 Volume 5, Number 4 (), pp. 47-46 International Research Publication House http://www.irphouse.com An based Rotor Flux Estimator for Vector Controlled

More information

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection 8 Journal of Power Electronics, Vol. 9, No. 4, July 9 JPE 9-4-8 Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

More information

Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous Motor Drives

Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous Motor Drives SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 11, No., June 014, 57-68 UDC: 61.311-5:61.313.33]:60.9 DOI: 10.98/SJEE131701G Towards an Improved Energy Efficiency of the Interior Permanent Magnet Synchronous

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

Lecture 7: Synchronous Motor Drives

Lecture 7: Synchronous Motor Drives 1 / 46 Lecture 7: Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 46 Learning Outcomes After this lecture and exercises you

More information

Lecture 8. Applications

Lecture 8. Applications Lecture 8. Applications Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 8, 205 / 3 Logistics hw7 due this Wed, May 20 do an easy problem or CYOA hw8 (design problem) will

More information

ATTITUDE OBSERVER-BASED ROBUST CONTROL FOR A TWIN ROTOR SYSTEM

ATTITUDE OBSERVER-BASED ROBUST CONTROL FOR A TWIN ROTOR SYSTEM K Y B E R N E T I K A V O L U M E 4 9 ( 2 1 3, N U M B E R 5, P A G E S 8 9 8 2 8 ATTITUDE OBSERVER-BASED ROBUST CONTROL FOR A TWIN ROTOR SYSTEM Oscar Salas, Herman Castañeda and Jesus De Leon-Morales

More information

Passivity-based Control of Euler-Lagrange Systems

Passivity-based Control of Euler-Lagrange Systems Romeo Ortega, Antonio Loria, Per Johan Nicklasson and Hebertt Sira-Ramfrez Passivity-based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications Springer Contents

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Shuhui Li 1, Tim Haskew 1, R. Challoo 1 Department of Electrical and Computer Engineering The University

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

Zero speed sensorless drive capability of fractional slot inset PM machine

Zero speed sensorless drive capability of fractional slot inset PM machine Zero speed sensorless drive capability of fractional slot inset PM Adriano Faggion Nicola Bianchi Silverio Bolognani Emanuele Fornasiero Electric Drives Laboratory Department of Industrial Engineering

More information