Kęstutis Pyragas Semiconductor Physics Institute, Vilnius, Lithuania

Size: px
Start display at page:

Download "Kęstutis Pyragas Semiconductor Physics Institute, Vilnius, Lithuania"

Transcription

1 Kęstutis Pragas Semiconductor Phsics Institute, Vilnius, Lithuania Introduction Delaed feedback control (DFC) method Applications and Modifications Limitation of the DFC method Unstable delaed feedback controller Using unstable controller for stabilizing stead states Conclusions

2 Control of Chaos (dnamics of publications) Pioneering paper: E. Ott, C. Grebogi, J.A. Yorke, Phs.Rev. Lett., 64, 1196 (199)

3 Wh chaotic sstems are interesting objects for control theor and applications? Chaotic sstems are extremel sensitive to small perturbations (the butterfl effect) A tpical strange attractor has embedded within it an infinit number of unstable periodic orbits. One can choose an of them b desire and stabilize it with onl tin perturbation.

4 Unstable Periodic Orbits (Lorenz attractor) x& & z& = σ ( z) = rx xz = x bz x

5 Unstable Periodic Orbits (Rössler attractor) x& = z & = x a z& = b z ( x c) x

6 Delaed Feedback Control (DFC) Method K. Pragas, Phs. Lett. A 17, 421 (1992) d d r t d x d t P r = Q r ( x,) = F(t) F(t) = K{(t-τ) -(t)} r ( x,) τ = T - period of unstable periodic orbit F(t) CHAOTIC SISTEM (t) K{(t-τ) -(t)} - (t) (t-τ) τ

7 Demonstration of the DFC method (Rössler sstem) x& = z & = x a z& = b z K{(t-τ) -(t)} ( x c)

8 Explanation of the stabilization F= Simple example: x n1 =4x n (1-x n )- KF n, F n = x n - x n-1 x F= x n1 F n = x n 3/4 x n x F n = Stabilization is achieved through additional degrees of freedom introduced with the feedback perturbation! F n x n Stabilit condition: -1 <K< 1/2

9 Experimental Implementations Electronic chaos oscillators Pragas, Tamaševičius (1993) Gauthier et al. (1994) Kittel et. al. (1994) Celka (1994) Socolar et al. (1994) Mechanic pendulums Hikihara, Kawagoshi (1996) Christini et. al. (1997) Lasers Belawski et al. (1994) Lu, Yu, Harrison (1998) Gas discharge sstems Mausbach et al. (1997) Pierre et al. (1996) Chemical sstems Parmananda et al. (1999) Tsui, Jones (2) Helikopter roter blades Krokiewski, Faragher (2) Ferromagnetic resonance Benner et al. (1997) Tailor-Couette flow chaos Lüthje et al. (21) Cardiac sstems Hall et al. (1997) Rappel et al. (1999) Skučas et al. (21)

10 Controlling Chaos in a fast Diode Resonator D.J. Gauthier et al. (1994)

11 Controlling Magneto-Elastic Beam Sstem T. Hikihara and T. Kawagoshi (1995) V cosωt A M P em shaker LD sensor - τ

12 Control of Chaotic Talor-Couette Flow O.Lüthje, S. Wolf, and G. Pfister (21) Re = 2π f (r o - r i ) r i /ν v z (x,t) - output (axial velocit) f - control parameter

13 Control of Ionization Wave Chaos Th. Mausbach et al. (1997) The wave character of dnamics in some sstems allows us to D 1 λ D 2 simplif the DFC algorithm b replacing the dela line with the spatiall distributed detectors No dela line is needed! Due to dispersion relations the dela in time can be replaced with the spatial displacement, e.g., for i kx ωt the plane wave u x, t = Ae : λ =ωτ/k ( ) ( ) ( x, t τ) = u( x λ t) u, -

14 Control of isolated auricles of a rabbit heart M. Skučas, I. Grigaliūnienė, V. Dzenkauskas, R. Labrencas Cardiac institute, Kaunas, Lithuania V T n T n1 T n1 [sek] T t n 2 T n 3 1 Control algorithm: T T K( T T ) n = n 1 n 1 n K=,5; Stimulo uюvлlinimas= ms D Tn, sa B 3. C Ex A D Periodo Nr

15 Extended Delaed Feedback Controller: EDFC J. Socolar, D. Sukov, and D. Gauthier (1994) () ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] () ( ) ( ) = = = 1 1 2, k k k t R R t t t R t t R t t t F τ τ τ τ τ τ L R<1 - convergence condition CHAOTIC SISTEM (t) F(t) R 1-R K τ -

16 Advantages of the EDFC Illustration for the Rössler sstem: x& = z & = x a z& = b z -KF(t) ( x c) F(t)= (t)-(t-t) R F(t-T) ReΛ.2. R= R=.2 R=.4 R=.6 R= K

17 Adaptive time-delaed feedback A. Kittel, J. Parisi, K. Pragas (1995) τ n-1 τ n τ n1 d dt.2 = 1 ( t τ ) ( t τ ) M. 1 1 M F n (t) (t) x(t-τ) (n) t max 4 2 F n1 =K[(t)-(t-τ n )] x (t) (n) t max n F n =K[(t)-(t-τ n-1 )] x(t) τ n n T F(t) t

18 Limitation of the DFC method Ushio (1996), Just et al. (1997), Nakajima and Ueda (1997, 1998) Characteristics of orbits Floquet exponent Λ =λ iω or e λ T ωτ Floquet multiplier µ = e ΛΤ The method works for ω ω The method fails for ω = ω Λ Λ * Λ The method fails for an periodic orbits with an odd number of real Floquet multipliers >1 λ λ

19 Unstable Delaed Feedback Controller K. Pragas, Phs. Rev. Lett. 86, 2265 (21) The ke idea: Artificiall enlarge a set of real Floquet multipliers greater than unit to an even number b introducing into a feedback loop an unstable degree of freedom ω Additional exponent Λ λ

20 Extended Delaed Feedback Controller for R>1 (Simple Discrete Time Sstem) Unstable sstem: n1 =µ s n -KF n, µ s >1 Wh do not tr R > 1??? Extended controller: F n = n - n-1 R( n-1 - n-2 ) R 2 ( n-2 - n-3 )... Im µ 1-1 µ =1 R µ s Re µ R < 1 convergence condition It works!

21 Extended Delaed Feedback Controller for R>1 (Simple Continuous Time Sstem) Unstable sstem: d/dt =λ s -KF(t), λ s > Extended controller: F(t)= (t)-(t-τ) R F(t-τ) Im λ 1 4π 2π λ s R > π -4π It does not work! -1 lnr 1 Re λ

22 Unstable Extended Delaed Feedback Controller: UEDFC (EDFC supplemented b an unstable degree of freedom) Dnamic sstem: x&r = UEDFC: r f r ( x, p ) p - control parameter r = g - output variable ( x) p= p K F u (t) F u (t) = F(t) w(t) F(t) = (t)-(t-τ) R F(t-τ) - usual EDFC (R<1) w& () ( t λ λ ) = λcw c c F(t) - additional unstable degree of freedom ( > ) λ c

23 Simple Continuous Time Sstem under UEDFC d/dt =λ s -KF u (t), λ s > 4π 2 1 2π Re λ 1 K 1 K 2 Im λ λ c λ s K -2π -1-4π -1 lnr Re λ 1 2 Im N(ω).2-1/K 1-1/K Re N(ω)

24 The Lorenz Sstem under UEDFC ( z) x& = σ & = rx xz z& = x bz -KF u (t) UEDFC: F u (t) = F(t) w(t) F(t)= (t)-(t-τ) R F(t-τ) w& () ( t λ λ ) = λcw c c R < 1, λc > F(t) Re λ K F u K 1 K K t (c) t

25 Block Diagram of the UEDFC p(t) CHAOTIC SISTEM (t) K - 1-R R τ ULPF -R C ULPF

26 Stabilizing and tracking unknown stead states of dnamical sstems K.Pragas, V.Pragas, I.Kiss, J.Hudson, Phs.Rev.Lett., (22) Dnamic sstem: r f r x&r = r f ( x, ) = r ( x, p ) p p - control parameter r = g - output variable ( x) x r is a fixed point for p = p Adaptive controller: p = p K(w-) dw/dt = λ(w-) λ> is a necessar condition to stabilize the stead states with an odd number of real positive eigenvalues!

27 Controlling a chemical reaction p(t) DINAMICAL SISTEM (t) K - LPF R or -R C LPF

28 Conclusions Time-delaed feedback control technique is a convenient and universal tool for various experimental applications. An unstable degree of freedom introduced into a feedback loop can overcome the well known limitation of the delaed feedback schema. The modified controller can stabilize unstable periodic orbits with a finite torsion and can be successfull used for a wider class of chaotic sstems. The idea of using an unstable controller for stabilizing unstable states of dnamical sstems seems to be new in control theor. It is surprising that the idea works since common sense dictates that the instabilit introduced into a feedback loop should increase the instabilit of the closed loop sstem. Nevertheless, two coupled unstable sstems can stabilize each other and operate in a stable regime.

29 Acknowledgments Prof. Alexander Fradkov for inviting me for this talk M daughter Viktorija Pragaitė for preparing the demonstration program of two uncoupled double-pendulums

Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation

Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation PHYSICAL REVIEW E 7, 06215 2006 Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation V. Pyragas and K. Pyragas* Semiconductor Physics Institute, LT-01108

More information

arxiv: v2 [nlin.cd] 8 Sep 2012

arxiv: v2 [nlin.cd] 8 Sep 2012 An analytical limitation for time-delayed feedback control in autonomous systems Edward W. Hooton 1 1, 2, and Andreas Amann 1 School of Mathematical Sciences, University College Cork, Ireland 2 Tyndall

More information

V. Pyragas and K. Pyragas

V. Pyragas and K. Pyragas Lithuanian Journal of Physics, Vol. 48, No. 1, pp. 5 16 (2008) ANALYTICAL TREATMENT OF THE DELAYED FEEDBACK CONTROLLED LORENZ SYSTEM CLOSE TO A SUBCRITICAL HOPF BIFURCATION V. Pyragas and K. Pyragas Semiconductor

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V.

The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V. The pages 1 4 are title pages that will be provided by the publisher. Therefore, the table of contents starts on page V. I II Beyond the odd-number limitation of time-delayed feedback control B. Fiedler,

More information

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998

K. Pyragas* Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania Received 19 March 1998 PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 998 Synchronization of coupled time-delay systems: Analytical estimations K. Pyragas* Semiconductor Physics Institute, LT-26 Vilnius, Lithuania Received

More information

Adaptive control of unknown unstable steady states of dynamical systems

Adaptive control of unknown unstable steady states of dynamical systems PHYSICAL REVIEW E 70, 026215 (2004) Adaptive control of unknown unstable steady states of dynamical systems K. Pyragas, 1,2, * V. Pyragas, 1 I. Z. Kiss, 3 and J. L. Hudson 3 1 Semiconductor Physics Institute,

More information

Chaos Control of the Chaotic Symmetric Gyroscope System

Chaos Control of the Chaotic Symmetric Gyroscope System 48 Chaos Control of the Chaotic Symmetric Gyroscope System * Barış CEVHER, Yılmaz UYAROĞLU and 3 Selçuk EMIROĞLU,,3 Faculty of Engineering, Department of Electrical and Electronics Engineering Sakarya

More information

Targeting Periodic Solutions of Chaotic Systems

Targeting Periodic Solutions of Chaotic Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.26(218) No.1,pp.13-21 Targeting Periodic Solutions of Chaotic Sstems Vaibhav Varshne a, Pooja Rani sharma b, Manish

More information

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT

CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE LORENZ SYSTEM AND CHUA S CIRCUIT Letters International Journal of Bifurcation and Chaos, Vol. 9, No. 7 (1999) 1425 1434 c World Scientific Publishing Company CONTROLLING CHAOTIC DYNAMICS USING BACKSTEPPING DESIGN WITH APPLICATION TO THE

More information

Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit

Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit 172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 2, FEBRUARY 1998 Stabilizing and Destabilizing Control for a Piecewise-Linear Circuit Tadashi Tsubone

More information

MULTI-SCROLL CHAOTIC AND HYPERCHAOTIC ATTRACTORS GENERATED FROM CHEN SYSTEM

MULTI-SCROLL CHAOTIC AND HYPERCHAOTIC ATTRACTORS GENERATED FROM CHEN SYSTEM International Journal of Bifurcation and Chaos, Vol. 22, No. 2 (212) 133 ( pages) c World Scientific Publishing Compan DOI: 1.1142/S21812741332 MULTI-SCROLL CHAOTIC AND HYPERCHAOTIC ATTRACTORS GENERATED

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the literature and finding recent related results in the existing

More information

INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR

INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR Ismaila Adeniyi Kamil and Samuel Oyelekan Oladipo Department of Electrical & Electronic Engineering,University of Ibadan,

More information

Chaos Suppression in Forced Van Der Pol Oscillator

Chaos Suppression in Forced Van Der Pol Oscillator International Journal of Computer Applications (975 8887) Volume 68 No., April Chaos Suppression in Forced Van Der Pol Oscillator Mchiri Mohamed Syscom laboratory, National School of Engineering of unis

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

A Multiparameter Chaos Control Method Applied to Maps

A Multiparameter Chaos Control Method Applied to Maps 536 Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 A Multiparameter Chaos Control Method Applied to Maps Aline Souza de Paula and Marcelo Amorim Savi Universidade Federal do Rio de Janeiro

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities

150 Zhang Sheng-Hai et al Vol. 12 doped fibre, and the two rings are coupled with each other by a coupler C 0. I pa and I pb are the pump intensities Vol 12 No 2, February 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(02)/0149-05 Chinese Physics and IOP Publishing Ltd Controlling hyperchaos in erbium-doped fibre laser Zhang Sheng-Hai(ΞΛ ) y and Shen

More information

Generating a Complex Form of Chaotic Pan System and its Behavior

Generating a Complex Form of Chaotic Pan System and its Behavior Appl. Math. Inf. Sci. 9, No. 5, 2553-2557 (2015) 2553 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090540 Generating a Complex Form of Chaotic Pan

More information

arxiv:chao-dyn/ v3 30 Jul 2004

arxiv:chao-dyn/ v3 30 Jul 2004 Improved control of delayed measured systems Jens Christian Claussen and Heinz Georg Schuster Institut für Theoretische Physik der Universität Kiel, 24098 Kiel, Germany (Revised: July 29, 2004) In this

More information

Simulation and Experimental Validation of Chaotic Behavior of Airflow in a Ventilated Room

Simulation and Experimental Validation of Chaotic Behavior of Airflow in a Ventilated Room Simulation and Eperimental Validation of Chaotic Behavior of Airflow in a Ventilated Room Jos van Schijndel, Assistant Professor Eindhoven Universit of Technolog, Netherlands KEYWORDS: Airflow, chaos,

More information

arxiv: v1 [nlin.ao] 9 Dec 2009

arxiv: v1 [nlin.ao] 9 Dec 2009 Transient behavior in systems with time-delayed feedback Robert C. Hinz, Philipp Hövel, and Eckehard Schöll Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany (e-mail:

More information

Control and synchronization of Julia sets of the complex dissipative standard system

Control and synchronization of Julia sets of the complex dissipative standard system Nonlinear Analysis: Modelling and Control, Vol. 21, No. 4, 465 476 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.4.3 Control and synchronization of Julia sets of the complex dissipative standard system

More information

Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

More information

Research Article Chaotic Attractor Generation via a Simple Linear Time-Varying System

Research Article Chaotic Attractor Generation via a Simple Linear Time-Varying System Discrete Dnamics in Nature and Societ Volume, Article ID 836, 8 pages doi:.//836 Research Article Chaotic Attractor Generation via a Simple Linear Time-Varing Sstem Baiu Ou and Desheng Liu Department of

More information

Adaptive feedback synchronization of a unified chaotic system

Adaptive feedback synchronization of a unified chaotic system Physics Letters A 39 (4) 37 333 www.elsevier.com/locate/pla Adaptive feedback synchronization of a unified chaotic system Junan Lu a, Xiaoqun Wu a, Xiuping Han a, Jinhu Lü b, a School of Mathematics and

More information

Periodic Skeletons of Nonlinear Dynamical Systems in the Problems of Global Bifurcation Analysis

Periodic Skeletons of Nonlinear Dynamical Systems in the Problems of Global Bifurcation Analysis Periodic Skeletons of Nonlinear Dynamical Systems in the Problems of Global Bifurcation Analysis M Zakrzhevsky, I Schukin, A Klokov and E Shilvan PERIODIC SKELETONS OF NONLINEAR DYNAMICAL SYSTEMS IN THE

More information

Multistability in the Lorenz System: A Broken Butterfly

Multistability in the Lorenz System: A Broken Butterfly International Journal of Bifurcation and Chaos, Vol. 24, No. 10 (2014) 1450131 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414501314 Multistability in the Lorenz System: A Broken

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81 92 IJMC Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model HOSSEIN KHEIRI 1 AND BASHIR NADERI 2 1 Faculty

More information

Dynamical behaviour of a controlled vibro-impact system

Dynamical behaviour of a controlled vibro-impact system Vol 17 No 7, July 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(07)/2446-05 Chinese Physics B and IOP Publishing Ltd Dynamical behaviour of a controlled vibro-impact system Wang Liang( ), Xu Wei( ), and

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC NEWTON-LEIPNIK SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

The Attractors of the Rayleigh-Bénard Flowof ararefied Gas

The Attractors of the Rayleigh-Bénard Flowof ararefied Gas The Attractors of the Raleigh-Bénard Flowof ararefied Gas S.Stefanov, V. Roussinov and C. Cercignani Inst. of Mech., Bulg. Acad. of Sciences, Sofia, Bulgaria Dipart. di Matematica, Polit. di Milano, Ital

More information

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011.

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011. Lecture 7 3 Ordinary differential equations (ODEs) (continued) 6 Linear equations of second order 7 Systems of differential equations Please note Please note that there is no lecture on Tuesday, 15 November

More information

arxiv:nlin/ v2 [nlin.cd] 10 Apr 2007

arxiv:nlin/ v2 [nlin.cd] 10 Apr 2007 near a global bifurcation J. Hizanidis, R. Aust, and E. Schöll Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-623 Berlin, Germany arxiv:nlin/722v2 [nlin.cd] Apr

More information

Electron cloud and ion effects

Electron cloud and ion effects USPAS Januar 2007, Houston, Texas Damping Ring Design and Phsics Issues Lecture 9 Electron Cloud and Ion Effects And Wolski Universit of Liverpool and the Cockcroft Institute Electron cloud and ion effects

More information

Scenarios for the transition to chaos

Scenarios for the transition to chaos Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

More information

Second Order Systems

Second Order Systems Second Order Systems independent energy storage elements => Resonance: inertance & capacitance trade energy, kinetic to potential Example: Automobile Suspension x z vertical motions suspension spring shock

More information

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS

ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS ADAPTIVE CHAOS SYNCHRONIZATION OF UNCERTAIN HYPERCHAOTIC LORENZ AND HYPERCHAOTIC LÜ SYSTEMS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

A Novel Hyperchaotic System and Its Control

A Novel Hyperchaotic System and Its Control 1371371371371378 Journal of Uncertain Systems Vol.3, No., pp.137-144, 009 Online at: www.jus.org.uk A Novel Hyperchaotic System and Its Control Jiang Xu, Gouliang Cai, Song Zheng School of Mathematics

More information

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM

ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM ADAPTIVE DESIGN OF CONTROLLER AND SYNCHRONIZER FOR LU-XIAO CHAOTIC SYSTEM WITH UNKNOWN PARAMETERS Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University

More information

Controlling the Period-Doubling Bifurcation of Logistic Model

Controlling the Period-Doubling Bifurcation of Logistic Model ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.20(2015) No.3,pp.174-178 Controlling the Period-Doubling Bifurcation of Logistic Model Zhiqian Wang 1, Jiashi Tang

More information

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL

GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL GLOBAL CHAOS SYNCHRONIZATION OF UNCERTAIN SPROTT J AND K SYSTEMS BY ADAPTIVE CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi,

More information

* τσ σκ. Supporting Text. A. Stability Analysis of System 2

* τσ σκ. Supporting Text. A. Stability Analysis of System 2 Supporting Tet A. Stabilit Analsis of Sstem In this Appendi, we stud the stabilit of the equilibria of sstem. If we redefine the sstem as, T when -, then there are at most three equilibria: E,, E κ -,,

More information

Damped harmonic motion

Damped harmonic motion Damped harmonic motion March 3, 016 Harmonic motion is studied in the presence of a damping force proportional to the velocity. The complex method is introduced, and the different cases of under-damping,

More information

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator

Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator Using controlling chaos technique to suppress self-modulation in a delayed feedback traveling wave tube oscillator N.M. Ryskin, O.S. Khavroshin and V.V. Emelyanov Dept. of Nonlinear Physics Saratov State

More information

Physics Department Drexel University Philadelphia, PA 19104

Physics Department Drexel University Philadelphia, PA 19104 Overview- Overview- Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu Physics & Topology Workshop Drexel University, Philadelphia, PA 19104 Sept. 9, 2008 Table of Contents

More information

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL

HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL HYBRID CHAOS SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC CHEN SYSTEMS BY ACTIVE NONLINEAR CONTROL Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical

More information

Delayed feedback control of chaos: Bifurcation analysis

Delayed feedback control of chaos: Bifurcation analysis Loughborough University Institutional Repository Delayed feedback control of chaos: Bifurcation analysis This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

3 First order nonlinear equations

3 First order nonlinear equations Separable equations 3 First order nonlinear equations d f dx = where f(x,) is not (in general) a linear function of. ( x, ) The equation is autonomous if there is no explicit dependence on the independent

More information

Analysis of Dynamical Systems

Analysis of Dynamical Systems 2 YFX1520 Nonlinear phase portrait Mathematical Modelling and Nonlinear Dynamics Coursework Assignments 1 ϕ (t) 0-1 -2-6 -4-2 0 2 4 6 ϕ(t) Dmitri Kartofelev, PhD 2018 Variant 1 Part 1: Liénard type equation

More information

Development of an Extended Operational States Observer of a Power Assist Wheelchair

Development of an Extended Operational States Observer of a Power Assist Wheelchair Development of an Extended Operational States Observer of a Power Assist Wheelchair Sehoon Oh Institute of Industrial Science Universit of Toko 4-6-, Komaba, Meguro, Toko, 53-855 Japan sehoon@horilab.iis.u-toko.ac.jp

More information

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology

Edward Lorenz. Professor of Meteorology at the Massachusetts Institute of Technology The Lorenz system Edward Lorenz Professor of Meteorology at the Massachusetts Institute of Technology In 1963 derived a three dimensional system in efforts to model long range predictions for the weather

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Proportional feedback control of chaos in a simple electronic oscillator

Proportional feedback control of chaos in a simple electronic oscillator Proportional feedback control of chaos in a simple electronic oscillator Richard J. Wiener, a Kristine E. Callan, and Stephen C. Hall Department of Physics, Pacific University, Forest Grove, Oregon 97116

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Physics Department Drexel University Philadelphia, PA

Physics Department Drexel University Philadelphia, PA Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu Colloquium, Physics Department University of Florida, Gainesville, FL October 6, 2008 Physics Department Drexel University

More information

Research Article Chaos and Control of Game Model Based on Heterogeneous Expectations in Electric Power Triopoly

Research Article Chaos and Control of Game Model Based on Heterogeneous Expectations in Electric Power Triopoly Discrete Dnamics in Nature and Societ Volume 29, Article ID 469564, 8 pages doi:.55/29/469564 Research Article Chaos and Control of Game Model Based on Heterogeneous Epectations in Electric Power Triopol

More information

A State-Space Model for a Nonlinear Time-Delayed Feedback Loop

A State-Space Model for a Nonlinear Time-Delayed Feedback Loop A for a Nonlinear Time-Delayed Feedback Loop Karl Schmitt Advisors: Jim Yorke, Rajarshi Roy, Tom Murphy AMSC 663 October 14, 2008 1 / 21 Goal To implement an alternative, discrete time model for coupled

More information

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos Introduction Knot Theory Nonlinear Dynamics Open Questions Summary A tangled tale about knot, link, template, and strange attractor Centre for Chaos & Complex Networks City University of Hong Kong Email:

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J

550 XU Hai-Bo, WANG Guang-Rui, and CHEN Shi-Gang Vol. 37 the denition of the domain. The map is a generalization of the standard map for which (J) = J Commun. Theor. Phys. (Beijing, China) 37 (2002) pp 549{556 c International Academic Publishers Vol. 37, No. 5, May 15, 2002 Controlling Strong Chaos by an Aperiodic Perturbation in Area Preserving Maps

More information

Lotka Volterra Model with Time Delay

Lotka Volterra Model with Time Delay International Journal of Mathematics Research. ISSN 976-584 Volume 6, Number (4), pp. 5- International Research Publication House http://www.irphouse.com Lotka Volterra Model with Time Dela Tapas Kumar

More information

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters

Computers and Mathematics with Applications. Adaptive anti-synchronization of chaotic systems with fully unknown parameters Computers and Mathematics with Applications 59 (21) 3234 3244 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Adaptive

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method

Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Adv. Studies Theor. Phys., Vol. 3, 29, no. 11, 429-437 Phase Synchronization of Van der Pol-Duffing Oscillators Using Decomposition Method Gh. Asadi Cordshooli Department of Physics, Shahr-e-Rey Branch,

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System

Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System Sensors & Transducers 04 b IFSA Publishing S. L. http://www.sensorsportal.com Stud on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling Sstem Yuegang LUO Songhe ZHANG Bin WU Wanlei WANG

More information

4452 Mathematical Modeling Lecture 13: Chaos and Fractals

4452 Mathematical Modeling Lecture 13: Chaos and Fractals Math Modeling Lecture 13: Chaos and Fractals Page 1 442 Mathematical Modeling Lecture 13: Chaos and Fractals Introduction In our tetbook, the discussion on chaos and fractals covers less than 2 pages.

More information

Controlling Chaos in a State-Dependent Nonlinear System

Controlling Chaos in a State-Dependent Nonlinear System Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 12, No. 5, 2002, 1111-1119, DOI: 10.1142/S0218127402004942 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc

More information

Numerical Simulation Bidirectional Chaotic Synchronization of Spiegel-Moore Circuit and Its Application for Secure Communication

Numerical Simulation Bidirectional Chaotic Synchronization of Spiegel-Moore Circuit and Its Application for Secure Communication IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical Simulation Bidirectional Chaotic Snchronization of Spiegel-Moore Circuit and Its Application for Secure Communication

More information

On Riddled Sets and Bifurcations of Chaotic Attractors

On Riddled Sets and Bifurcations of Chaotic Attractors Applied Mathematical Sciences, Vol. 1, 2007, no. 13, 603-614 On Riddled Sets and Bifurcations of Chaotic Attractors I. Djellit Department of Mathematics University of Annaba B.P. 12, 23000 Annaba, Algeria

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

EE16B Designing Information Devices and Systems II

EE16B Designing Information Devices and Systems II EE6B M. Lustig, EECS UC Berkeley EE6B Designing Information Devices and Systems II Lecture 6B Cont. stability of Linear State Models Controllability Today Last time: Derived stability conditions for disc.

More information

COMPLEX DYNAMICS IN HYSTERETIC NONLINEAR OSCILLATOR CIRCUIT

COMPLEX DYNAMICS IN HYSTERETIC NONLINEAR OSCILLATOR CIRCUIT THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEM, Series A, OF THE ROMANIAN ACADEM Volume 8, Number 4/7, pp. 7 77 COMPLEX DNAMICS IN HSTERETIC NONLINEAR OSCILLATOR CIRCUIT Carmen GRIGORAS,, Victor

More information

Physics Department Drexel University Philadelphia, PA

Physics Department Drexel University Philadelphia, PA Overview- Overview- Physics Department Drexel University Philadelphia, PA 19104 robert.gilmore@drexel.edu Colloquium, Department of Applied Mathematics New Jersey Institute of Technology Newark, New Jersey

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions. February 18, 2015 1 2 3 Instantons in Path Integral Formulation of mechanics is based around the propagator: x f e iht / x i In path integral formulation of quantum mechanics we relate the propagator to

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Response of A Hard Duffing Oscillator to Harmonic Excitation An Overview

Response of A Hard Duffing Oscillator to Harmonic Excitation An Overview INDIN INSTITUTE OF TECHNOLOGY, KHRGPUR 710, DECEMBER 8-0, 00 1 Response of Hard Duffing Oscillator to Harmonic Excitation n Overview.K. Mallik Department of Mechanical Engineering Indian Institute of Technology

More information

ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM

ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM ADAPTIVE STABILIZATION AND SYNCHRONIZATION OF HYPERCHAOTIC QI SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR Dr. SR Technical University Avadi, Chennai-600 062,

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Abstract and Applied Analysis Volume, Article ID 3487, 6 pages doi:.55//3487 Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Ranchao Wu and Xiang Li

More information

Strange dynamics of bilinear oscillator close to grazing

Strange dynamics of bilinear oscillator close to grazing Strange dynamics of bilinear oscillator close to grazing Ekaterina Pavlovskaia, James Ing, Soumitro Banerjee and Marian Wiercigroch Centre for Applied Dynamics Research, School of Engineering, King s College,

More information

Dynamic interpretation of eigenvectors

Dynamic interpretation of eigenvectors EE263 Autumn 2015 S. Boyd and S. Lall Dynamic interpretation of eigenvectors invariant sets complex eigenvectors & invariant planes left eigenvectors modal form discrete-time stability 1 Dynamic interpretation

More information

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM

ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM ADAPTIVE CONTROL AND SYNCHRONIZATION OF A GENERALIZED LOTKA-VOLTERRA SYSTEM Sundarapandian Vaidyanathan 1 1 Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-600

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM

ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM International Journal o Computer Science, Engineering and Inormation Technology (IJCSEIT), Vol.1, No., June 011 ADAPTIVE CHAOS CONTROL AND SYNCHRONIZATION OF HYPERCHAOTIC LIU SYSTEM Sundarapandian Vaidyanathan

More information

Amplitude-phase control of a novel chaotic attractor

Amplitude-phase control of a novel chaotic attractor Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (216) 24: 1 11 c TÜBİTAK doi:1.396/elk-131-55 Amplitude-phase

More information

agree w/input bond => + sign disagree w/input bond => - sign

agree w/input bond => + sign disagree w/input bond => - sign 1 ME 344 REVIEW FOR FINAL EXAM LOCATION: CPE 2.204 M. D. BRYANT DATE: Wednesday, May 7, 2008 9-noon Finals week office hours: May 6, 4-7 pm Permitted at final exam: 1 sheet of formulas & calculator I.

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

One-Dimensional Dynamics

One-Dimensional Dynamics One-Dimensional Dnamics We aim to characterize the dnamics completel describe the phase portrait) of the one-dimensional autonomous differential equation Before proceeding we worr about 1.1) having a solution.

More information

GALLOPING OF SMALL ASPECT RATIO SQUARE CYLINDER

GALLOPING OF SMALL ASPECT RATIO SQUARE CYLINDER OL. NO. JANUARY 5 ISSN 89-668 6-5 Asian Research Publishing Network (ARPN). All rights reserved. GALLOPING OF SMALL ASPET RATIO SQUARE YLINDER A. N. Rabinin and. D. Lusin Facult of Mathematics and Mechanics

More information