LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization

Size: px
Start display at page:

Download "LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization"

Transcription

1 LSTRS 1.2: MATLAB Software for Large-Scale Trust-Regions Subproblems and Regularization Marielba Rojas Informatics and Mathematical Modelling Technical University of Denmark Computational Methods with Applications Harrachov, Czech Republic August 19-25, 2007

2 Joint work with Sandra A. Santos, Campinas, Brazil Danny C. Sorensen, Rice, USA Special thanks to Wake Forest, CERFACS, and T.U. Delft.

3 Outline The Trust-Region Subproblem LSTRS - The basic idea LSTRS - The Algorithm LSTRS - The Software Comparisons Applications

4 Basic Idea

5 Trust-Region Subproblem min s.t. 1 2 xt Hx + g T x x H IR n n,h=h T,nlarge g IR n,g 0 >0

6 Regularization Problem min s.t. 1 Ax b 2 2 x A IR m n,m nlarge, from ill-posed problem b IR m, containing noise, and A T b 0 >0

7 Trust-Region Subproblem Characterization of solutions. Gay 1981, Sorensen x with x is a solution of TRS with Lagrange multiplier λ, if and only if (i) (H λ I)x = g. (ii) H λ I positive semidefinite. (iii) λ 0. (iv) λ ( x )=0.

8 TRS as Parameterized Eigenvalue Problem Consider the bordered matrix B α = α g gt H Then Eigenvalues of H interlace eigenvalues of B α αsuch that TRS equivalent to 1 min 2y T B α y s.t. y T y 1+ 2 e T 1 y=1

9 LSTRS Note α g gt H 1 x = λ 1 x α λ = g T x (H λi)x = g Let H = Qdiag(δ 1,δ 2,...,δ n ) Q T and γ i = Q T g, i =1,2,...,n Suppose x IR n such that (H λi)x = g. Define φ(λ) = g T x= n i=1 γ 2 i δ i λ Then φ (λ) =x T x. Idea: Adjust α such that α ˆλ = φ(ˆλ) withφ (ˆλ)= 2.

10 LSTRS Compute rational interpolant φ and adjust α such that α ˆλ = φ(ˆλ) with φ (ˆλ) = 2. Obtain interpolation points by solving large-scale eigenvalue problems for smallest eigenvalue of B α. Solve eigenvalue problems with efficient method such as ARPACK (matrix-free, fixed storage).

11 LSTRS in pictures - the standard case (H λi)x = g, α λ = φ(λ) g T x, φ (λ)=x T x. 5 4 φ(λ) 3 φ(λ), α λ 2 1 α * λ φ(λ * ) + 2 λ λ * λ

12 LSTRS in pictures - the (near) hard case (H λi)x = g, α λ = φ(λ) g T x, φ (λ)=x T x φ(λ) φ(λ), α λ α k+1 λ φ(λ) λ k λ k λ 1 k λ

13 LSTRS in pictures - hard case in ill-posed problems

14 Algorithm

15 LSTRS - The Algorithm Input: H IR n n, symmetric; g IR n ; >0; tolerances (ε,ε ν,ε HC,ε α,ε Int ). Output: x, solution to TRS and Lagrange multiplier λ. 1. Initialization 1.1 Compute δ U δ 1, initialize α U, initialize α Compute eigenpairs {λ 1 (α 0 ), (ν 1,u T 1 )T }, {λ i (α 0 ),(ν 2,u T 2 )T } of B α0 1.3 Initialize α L, set k =0 2. repeat 2.1 Adjust α k (might need to compute eigenpairs) 2.2 if g ν 1 >ε ν 1 ν12 then set λ k = λ 1 (α k ) and x k = u 1 ν 1, and update α L or α U. else set λ k = λ i (α k ), x k = u 2 ν 2, and α U = α k 2.3 Compute α k+1 by 1-point (k =0) or 2-point interpolation scheme 2.4 Safeguard α k+1 and set k = k Compute eigenpairs {λ 1 (α k ), (ν 1,u T 1 )T }, {λ i (α k ),(ν 2,u T 2 )T } of B αk until convergence

16 LSTRS - The Algorithm Update α k Adjust α k by rational interpolation until eigenvector with desired structure is obtained Safeguard α k using safeguarding interval Tolerances Convergence (Stopping Criteria) H (Hessian Matrix) Eigensolver

17 ε ε HC LSTRS - The Algorithm Tolerances The desired relative accuracy in the norm of the trust-region solution. A boundary solution x satisfies x ε The desired accuracy of a quasi-optimal solution in the hard case. A quasi-optimal solution ˆx satisfies ψ(x ) ψ(ˆx) ε HC ψ(x ), where ψ(x) = 1 2 xt Hx + g T x,andx isthetruesolution. ε α The minimum relative length of the safeguarding interval for α. ε Int ε ν The interval is too small when α U α L ε α max{ α L, α U } Used to declare that the smallest eigenvalue of B α is positive in the test for an interior solution: λ 1 (α) is considered positive if λ 1 (α) > ε Int The minimum relative size of an eigenvector component. The component ν is small when ν ε ν u g

18 LSTRS - The Algorithm Stopping Criteria 1. Boundary Solution - ε 2. Interior Solution - ε Int 3. Quasi-Optimal Solution (Near Hard Case!) -ε HC 4. Safeguarding interval cannot be further decreased - ε α 5. Maximum number of iterations reached

19 Software

20 LSTRS - The Software Version: 1.2 System: MATLAB 6.0 or higher

21 LSTRS - The Software Front-end routine: LSTRS Iteration: Update of α k : Adjustment of α k : Safeguarding of α k : Eigenproblems: Stopping Criteria: Output: lstrs lstrs method upd param0, upd paramk, interpol1, interpol2, inter point adjust alpha safe alpha1, safe alphak, upd alpha safe b epairs, eig gateway, eigs lstrs, eigs lstrs gateway, tcheigs lstrs gateway convergence, boundary sol, interior sol, quasioptimal sol output

22 LSTRS - The Software General Call [x,lambda,info,moreinfo] =... lstrs(h,g,delta,epsilon,eigensolver,lopts,hpar,eigensolverpar) Simplest Call [x,lambda,info,moreinfo] = lstrs(h,g,delta);

23 LSTRS - The Software Input Parameters char: double: struct: function-handle: H, eigensolver H, g,delta epsilon, lopts, Hpar, eigensolverpar H, eigensolver Output Parameters x: solution vector lambda: info: moreinfo: Lagrange multiplier (Tikhonov parameter) exit condition other exit conditions, matrix-vector products, etc.

24 LSTRS Software: Key Features Two options for Hessian Matrix: H (explicitly) Matrix-Vector Multiplication Routine Several options for Eigensolver: eig eigs lstrs (modified version of eigs that returns more information): this is MATLAB s interface to ARPACK (Implicitly Restarted Arnoldi Method) tcheigs lstrs +Tchebyshev Spectral Transformation user-provided Fixed Storage

25 % % File: simple.m % A simple problem where the Hessian is the Identity matrix. % H = eye(50); g = ones(50,1); mu = -3; % chosen arbitrarily xexact = -ones(50,1)/(1-mu); Delta = norm(xexact); % % The simplest possible calls to lstrs. Default values are used. % [x,lambda,info,moreinfo] = lstrs(h,g,delta); [x,lambda,info,moreinfo] = lstrs(@mv,g,delta);

26 % % File: mv.m % A simple matrix-vector multiplication routine % that computes the Identity matrix times a vector v % function [w] = mv(v,varargin) w=v;

27 >> simple < MATLAB> Problem: no name available. Dimension: 50. Delta: e+00 Eigensolver: eigs lstrs gateway LSTRS iteration: 0 x : e-01, lambda: e+00 x -Delta /Delta: e-01 LSTRS iteration: 1 x : e+00, lambda: e+00 x -Delta /Delta: e-15 Number of LSTRS Iterations: 2 Number of calls to eigensolver: 2 Number of MV products: 18 ( x -Delta)/Delta: e-15 lambda: e+00 g + (H-lambda*I)x / g = e-15 The vector x is a Boundary Solution

28 % % File: regularization.m % Computes a regularized solution to problem phillips from % the Regularization Tools Package by P.C. Hansen % [A,b,xexact] = phillips(300); atamvpar.a = A; g=-a *b; Delta = norm(xexact); lopts.name = phillips ; lopts.plot = y ; lopts.message level = 2; lopts.correction = n ; lopts.interior = n ; epar.k = 2; epar.p = 7; % for a total of 7 vectors (default) [x,lambda,info,moreinfo] =... lstrs(@atamv,g,delta,[ ],@tcheigs lstrs gateway,lopts,atamvpar,epar);

29 % % File: atamv.m % A matrix-vector multiplication routine % that computes A *A*v % The matrix A must be a field of the structure atamvpar % function [w] = atamv(v,atamvpar) w = atamvpar.a*v; w = (w *atamvpar.a) ;

30 < M A T L A B > >> regularization Problem: phillips. Dimension: 300. Delta: e+00 Eigensolver: tcheigs lstrs gateway LSTRS iteration: 0 x : e-01, lambda: e+01 x -Delta /Delta: e-01 LSTRS iteration: 1 x : e+00, lambda: e+01 x -Delta /Delta: e-01 LSTRS iteration: 2 x : e+00, lambda: e-01 x -Delta /Delta: e-02 LSTRS iteration: 3 x : e+00, lambda: e-03 x -Delta /Delta: e-04 Number of LSTRS Iterations: 4 Number of calls to eigensolver: 5 Number of MV products: 342 ( x -Delta)/Delta: e-15 lambda: e-03 g + (H-lambda* I)x / g = e-05 The vector x is a Quasi-optimal Solution

31 LSTRS Solution Exact Solution

32 Comparisons

33 Comparisons SSM - Sequential Subspace Method. Hager SDP - Semidefinite Programming approach. Rendl and Wolkowicz 1997, Fortin and Wolkowicz GLTR - Generalized Lanczos Trust Region method. Gould, Lucidi, Roma, and Toint 1999.

34 Average results for the 2-D Laplacian, n = Easy Case. METHOD MVP STORAGE (H λi)x+g g LSTRS SSM SSM d SDP GLTR

35 Average results for the 2-D Laplacian, n = Hard Case. METHOD MVP STORAGE (H λi)x+g g LSTRS SSM SSM d SDP GLTR

36 Inverse Heat Equation, n = Mildly Ill-Posed. METHOD MVP STORAGE (H λi)x+g g x x IP x IP LSTRS SSM SSM d SDP

37 Inverse Heat Equation, n = Severely Ill-Posed. METHOD MVP STORAGE (H λi)x+g g x x IP x IP LSTRS SSM SSM d SDP

38 Applications

39 y x 45 Bathymetry of the Sea of Galilee. Dimension: Vectors: 5. Matvecs: 206.

40 True image Blurred and noisy image Dimension: Cost: 7 Vectors 3 LSTRS iterations 201 Matvecs LSTRS restoration

41 REFERENCES M. Rojas, S. A. Santos and D. C. Sorensen. A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem. SIAM Journal on Optimization, 11(3): , M. Rojas, S. A. Santos and D. C. Sorensen. Algorithm xxx: LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization. ACM Transactions on Mathematical Software, toappear. mr

LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization

LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization Marielba Rojas Sandra A. Santos Danny C. Sorensen August 26, 2003. Revised September 27, 2006. IMM-Technical Report-2006-26

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 10-12 Large-Scale Eigenvalue Problems in Trust-Region Calculations Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug ISSN 1389-6520 Reports of the Department of

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT -09 Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem Marielba Rojas, Bjørn H. Fotland, and Trond Steihaug

More information

Algorithm 873: LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization

Algorithm 873: LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization Algorithm 873: LSTRS: MATLAB Software for Large-Scale Trust-Region Subproblems and Regularization MARIELBA ROJAS Technical University of Denmark SANDRA A. SANTOS State University of Campinas and DANNY

More information

Downloaded 03/11/16 to Redistribution subject to SIAM license or copyright; see

Downloaded 03/11/16 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 33, No. 1, pp. 175 194 c 2011 Society for Industrial and Applied Mathematics ACCELERATING THE LSTRS ALGORITHM J. LAMPE, M. ROJAS, D. C. SORENSEN, AND H. VOSS Abstract. The LSTRS

More information

Downloaded 04/11/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 04/11/14 to Redistribution subject to SIAM license or copyright; see SIAM J. OPTIM. Vol. 11, No. 3, pp. 611 646 c 2000 Society for Industrial and Applied Mathematics A NEW MATRIX-FREE ALGORITHM FOR THE LARGE-SCALE TRUST-REGION SUBPROBLEM MARIELBA ROJAS, SANDRA A. SANTOS,

More information

An Interior-Point Trust-Region-Based Method for Large-Scale Nonnegative Regularization

An Interior-Point Trust-Region-Based Method for Large-Scale Nonnegative Regularization An Interior-Point Trust-Region-Based Method for Large-Scale Nonnegative Regularization Marielba Rojas Trond Steihaug July 6, 2001 (Revised December 19, 2001) CERFACS Technical Report TR/PA/01/11 Abstract

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-01 Computational and Sensitivity Aspects of Eigenvalue-Based Methods for the Large-Scale Trust-Region Subproblem extended version Marielba Rojas, Bjørn H. Fotland,

More information

A matrix-free method for regularisation with unrestricted variables

A matrix-free method for regularisation with unrestricted variables A matrix-free method for regularisation with unrestricted variables Bjørn Harald Fotland June 2008 Thesis for the degree of Master of Science Department of Informatics University of Bergen Norway Notation

More information

A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint

A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint Noname manuscript No. (will be inserted by the editor) A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint A. Taati, M. Salahi the date of receipt

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

Derivative-Free Trust-Region methods

Derivative-Free Trust-Region methods Derivative-Free Trust-Region methods MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v4) MTH6418: DFTR 1/32 Plan Quadratic models Model Quality Derivative-Free Trust-Region Framework

More information

Globally Solving the Trust Region Subproblem Using Simple First-Order Methods

Globally Solving the Trust Region Subproblem Using Simple First-Order Methods Globally Solving the Trust Region Subproblem Using Simple First-Order Methods Amir Beck and Yakov Vaisbourd October 2, 2017 Abstract We consider the trust region subproblem which is given by a minimization

More information

Solving Regularized Total Least Squares Problems

Solving Regularized Total Least Squares Problems Solving Regularized Total Least Squares Problems Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Numerical Simulation Joint work with Jörg Lampe TUHH Heinrich Voss Total

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

SOLVING REGULARIZED TOTAL LEAST SQUARES PROBLEMS BASED ON EIGENPROBLEMS

SOLVING REGULARIZED TOTAL LEAST SQUARES PROBLEMS BASED ON EIGENPROBLEMS SOLVING REGULARIZED TOTAL LEAST SQUARES PROBLEMS BASED ON EIGENPROBLEMS JÖRG LAMPE AND HEINRICH VOSS Key words. total least squares, regularization, ill-posedness, nonlinear Arnoldi method AMS subject

More information

ARPACK. Dick Kachuma & Alex Prideaux. November 3, Oxford University Computing Laboratory

ARPACK. Dick Kachuma & Alex Prideaux. November 3, Oxford University Computing Laboratory ARPACK Dick Kachuma & Alex Prideaux Oxford University Computing Laboratory November 3, 2006 What is ARPACK? ARnoldi PACKage Collection of routines to solve large scale eigenvalue problems Developed at

More information

Algorithms for Trust-Region Subproblems with Linear Inequality Constraints

Algorithms for Trust-Region Subproblems with Linear Inequality Constraints Algorithms for Trust-Region Subproblems with Linear Inequality Constraints Melanie L. Bain Gratton A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial

More information

ITERATIVE METHODS FOR FINDING A TRUST-REGION STEP

ITERATIVE METHODS FOR FINDING A TRUST-REGION STEP ITERATIVE METHODS FOR FINDING A TRUST-REGION STEP Jennifer B. ERWAY Philip E. GILL Joshua D. GRIFFIN UCSD Department of Mathematics Technical Report NA-07-02 November 2007 Abstract We consider the problem

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

Key words. first order methods, trust region subproblem, optimality conditions, global optimum

Key words. first order methods, trust region subproblem, optimality conditions, global optimum GLOBALLY SOLVING THE TRUST REGION SUBPROBLEM USING SIMPLE FIRST-ORDER METHODS AMIR BECK AND YAKOV VAISBOURD Abstract. We consider the trust region subproblem which is given by a minimization of a quadratic,

More information

On the Ritz values of normal matrices

On the Ritz values of normal matrices On the Ritz values of normal matrices Zvonimir Bujanović Faculty of Science Department of Mathematics University of Zagreb June 13, 2011 ApplMath11 7th Conference on Applied Mathematics and Scientific

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Solving the Trust Region Subproblem by a Generalized Eigenvalue Problem

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Solving the Trust Region Subproblem by a Generalized Eigenvalue Problem MATHEMATICAL ENGINEERING TECHNICAL REPORTS Solving the Trust Region Subproblem by a Generalized Eigenvalue Problem Satoru ADACHI, Satoru IWATA, Yuji NAKATSUKASA and Akiko TAKEDA METR 2015 14 April 2015

More information

An Asynchronous Algorithm on NetSolve Global Computing System

An Asynchronous Algorithm on NetSolve Global Computing System An Asynchronous Algorithm on NetSolve Global Computing System Nahid Emad S. A. Shahzadeh Fazeli Jack Dongarra March 30, 2004 Abstract The Explicitly Restarted Arnoldi Method (ERAM) allows to find a few

More information

Krylov Subspaces. Lab 1. The Arnoldi Iteration

Krylov Subspaces. Lab 1. The Arnoldi Iteration Lab 1 Krylov Subspaces Lab Objective: Discuss simple Krylov Subspace Methods for finding eigenvalues and show some interesting applications. One of the biggest difficulties in computational linear algebra

More information

Second Order Optimization Algorithms I

Second Order Optimization Algorithms I Second Order Optimization Algorithms I Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Chapters 7, 8, 9 and 10 1 The

More information

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems

An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems An Arnoldi Method for Nonlinear Symmetric Eigenvalue Problems H. Voss 1 Introduction In this paper we consider the nonlinear eigenvalue problem T (λ)x = 0 (1) where T (λ) R n n is a family of symmetric

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos

State-of-the-art numerical solution of large Hermitian eigenvalue problems. Andreas Stathopoulos State-of-the-art numerical solution of large Hermitian eigenvalue problems Andreas Stathopoulos Computer Science Department and Computational Sciences Cluster College of William and Mary Acknowledgment:

More information

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St Structured Lower Rank Approximation by Moody T. Chu (NCSU) joint with Robert E. Funderlic (NCSU) and Robert J. Plemmons (Wake Forest) March 5, 1998 Outline Introduction: Problem Description Diculties Algebraic

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods

Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Solving Ill-Posed Cauchy Problems in Three Space Dimensions using Krylov Methods Lars Eldén Department of Mathematics Linköping University, Sweden Joint work with Valeria Simoncini February 21 Lars Eldén

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

An interior-point method for large constrained discrete ill-posed problems

An interior-point method for large constrained discrete ill-posed problems An interior-point method for large constrained discrete ill-posed problems S. Morigi a, L. Reichel b,,1, F. Sgallari c,2 a Dipartimento di Matematica, Università degli Studi di Bologna, Piazza Porta S.

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota

The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota The EVSL package for symmetric eigenvalue problems Yousef Saad Department of Computer Science and Engineering University of Minnesota 15th Copper Mountain Conference Mar. 28, 218 First: Joint work with

More information

A trust-region derivative-free algorithm for constrained optimization

A trust-region derivative-free algorithm for constrained optimization A trust-region derivative-free algorithm for constrained optimization P.D. Conejo and E.W. Karas and L.G. Pedroso February 26, 204 Abstract We propose a trust-region algorithm for constrained optimization

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Krylov Subspaces. The order-n Krylov subspace of A generated by x is

Krylov Subspaces. The order-n Krylov subspace of A generated by x is Lab 1 Krylov Subspaces Lab Objective: matrices. Use Krylov subspaces to find eigenvalues of extremely large One of the biggest difficulties in computational linear algebra is the amount of memory needed

More information

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES

Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Eigenvalue Problems CHAPTER 1 : PRELIMINARIES Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Preliminaries Eigenvalue problems 2012 1 / 14

More information

Tikhonov Regularization of Large Symmetric Problems

Tikhonov Regularization of Large Symmetric Problems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 11 [Version: 2000/03/22 v1.0] Tihonov Regularization of Large Symmetric Problems D. Calvetti 1, L. Reichel 2 and A. Shuibi

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS

ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS ALGORITHM XXX: SC-SR1: MATLAB SOFTWARE FOR SOLVING SHAPE-CHANGING L-SR1 TRUST-REGION SUBPROBLEMS JOHANNES BRUST, OLEG BURDAKOV, JENNIFER B. ERWAY, ROUMMEL F. MARCIA, AND YA-XIANG YUAN Abstract. We present

More information

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems

A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems A Model-Trust-Region Framework for Symmetric Generalized Eigenvalue Problems C. G. Baker P.-A. Absil K. A. Gallivan Technical Report FSU-SCS-2005-096 Submitted June 7, 2005 Abstract A general inner-outer

More information

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring

A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring A fast nonstationary preconditioning strategy for ill-posed problems, with application to image deblurring Marco Donatelli Dept. of Science and High Tecnology U. Insubria (Italy) Joint work with M. Hanke

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

ILAS 2017 July 25, 2017

ILAS 2017 July 25, 2017 Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad Department of Computer Science and Engineering University of Minnesota ILAS 217 July 25, 217 Large eigenvalue

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Iterative methods for symmetric eigenvalue problems

Iterative methods for symmetric eigenvalue problems s Iterative s for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 11, 2008 s 1 The power and its variants Inverse power Rayleigh quotient

More information

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices

A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices A refined Lanczos method for computing eigenvalues and eigenvectors of unsymmetric matrices Jean Christophe Tremblay and Tucker Carrington Chemistry Department Queen s University 23 août 2007 We want to

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations Methods for Systems of Methods for Systems of Outline Scientific Computing: An Introductory Survey Chapter 5 1 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

Iterative Methods for Ill-Posed Problems

Iterative Methods for Ill-Posed Problems Iterative Methods for Ill-Posed Problems Based on joint work with: Serena Morigi Fiorella Sgallari Andriy Shyshkov Salt Lake City, May, 2007 Outline: Inverse and ill-posed problems Tikhonov regularization

More information

Solving large Semidefinite Programs - Part 1 and 2

Solving large Semidefinite Programs - Part 1 and 2 Solving large Semidefinite Programs - Part 1 and 2 Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Singapore workshop 2006 p.1/34 Overview Limits of Interior

More information

Eigenvalue problems III: Advanced Numerical Methods

Eigenvalue problems III: Advanced Numerical Methods Eigenvalue problems III: Advanced Numerical Methods Sam Sinayoko Computational Methods 10 Contents 1 Learning Outcomes 2 2 Introduction 2 3 Inverse Power method: finding the smallest eigenvalue of a symmetric

More information

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

A recursive model-based trust-region method for derivative-free bound-constrained optimization.

A recursive model-based trust-region method for derivative-free bound-constrained optimization. A recursive model-based trust-region method for derivative-free bound-constrained optimization. ANKE TRÖLTZSCH [CERFACS, TOULOUSE, FRANCE] JOINT WORK WITH: SERGE GRATTON [ENSEEIHT, TOULOUSE, FRANCE] PHILIPPE

More information

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Key words. conjugate gradients, normwise backward error, incremental norm estimation. Proceedings of ALGORITMY 2016 pp. 323 332 ON ERROR ESTIMATION IN THE CONJUGATE GRADIENT METHOD: NORMWISE BACKWARD ERROR PETR TICHÝ Abstract. Using an idea of Duff and Vömel [BIT, 42 (2002), pp. 300 322

More information

Is there life after the Lanczos method? What is LOBPCG?

Is there life after the Lanczos method? What is LOBPCG? 1 Is there life after the Lanczos method? What is LOBPCG? Andrew V. Knyazev Department of Mathematics and Center for Computational Mathematics University of Colorado at Denver SIAM ALA Meeting, July 17,

More information

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems

ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems. Part I: Review of basic theory of eigenvalue problems ECS231 Handout Subspace projection methods for Solving Large-Scale Eigenvalue Problems Part I: Review of basic theory of eigenvalue problems 1. Let A C n n. (a) A scalar λ is an eigenvalue of an n n A

More information

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM. Geunseop Lee

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM. Geunseop Lee J. Korean Math. Soc. 0 (0), No. 0, pp. 1 0 https://doi.org/10.4134/jkms.j160152 pissn: 0304-9914 / eissn: 2234-3008 DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

More information

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS

A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS A MODIFIED TSVD METHOD FOR DISCRETE ILL-POSED PROBLEMS SILVIA NOSCHESE AND LOTHAR REICHEL Abstract. Truncated singular value decomposition (TSVD) is a popular method for solving linear discrete ill-posed

More information

Introduction. Chapter One

Introduction. Chapter One Chapter One Introduction The aim of this book is to describe and explain the beautiful mathematical relationships between matrices, moments, orthogonal polynomials, quadrature rules and the Lanczos and

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. OPTIM. Vol. 20, No. 2, pp. 1110 1131 c 2009 Society for Industrial and Applied Mathematics ITERATIVE METHODS FOR FINDING A TRUST-REGION STEP JENNIFER B. ERWAY, PHILIP E. GILL, AND JOSHUA D. GRIFFIN

More information

Discrete ill posed problems

Discrete ill posed problems Discrete ill posed problems Gérard MEURANT October, 2008 1 Introduction to ill posed problems 2 Tikhonov regularization 3 The L curve criterion 4 Generalized cross validation 5 Comparisons of methods Introduction

More information

ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM. Dedicated to Ken Hayami on the occasion of his 60th birthday.

ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM. Dedicated to Ken Hayami on the occasion of his 60th birthday. ON THE COMPUTATION OF A TRUNCATED SVD OF A LARGE LINEAR DISCRETE ILL-POSED PROBLEM ENYINDA ONUNWOR AND LOTHAR REICHEL Dedicated to Ken Hayami on the occasion of his 60th birthday. Abstract. The singular

More information

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps.

Conjugate Gradient algorithm. Storage: fixed, independent of number of steps. Conjugate Gradient algorithm Need: A symmetric positive definite; Cost: 1 matrix-vector product per step; Storage: fixed, independent of number of steps. The CG method minimizes the A norm of the error,

More information

Inexact inverse iteration with preconditioning

Inexact inverse iteration with preconditioning Department of Mathematical Sciences Computational Methods with Applications Harrachov, Czech Republic 24th August 2007 (joint work with M. Robbé and M. Sadkane (Brest)) 1 Introduction 2 Preconditioned

More information

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods Department of Statistical Sciences and Operations Research Virginia Commonwealth University Sept 25, 2013 (Lecture 9) Nonlinear Optimization

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem To appear in Optimization Methods & Software Vol. 00, No. 00, Month 20XX, 1 27 trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem F. Lenders a and

More information

4 damped (modified) Newton methods

4 damped (modified) Newton methods 4 damped (modified) Newton methods 4.1 damped Newton method Exercise 4.1 Determine with the damped Newton method the unique real zero x of the real valued function of one variable f(x) = x 3 +x 2 using

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

ARPACK. A c++ implementation of ARPACK eigenvalue package.

ARPACK. A c++ implementation of ARPACK eigenvalue package. !"#!%$& '()%*,+-. (/10)24365 78$9;:!?A@ B2CED8F?GIHKJ1GML NPORQ&L8S TEJUD8F"VXWYD8FFZ\[]O ^ L8CETIFJ1T_F ; Y`baU c?d%de%c +-)?+-=fc%cgd hjikmlnio

More information

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation

The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation The Chi-squared Distribution of the Regularized Least Squares Functional for Regularization Parameter Estimation Rosemary Renaut Collaborators: Jodi Mead and Iveta Hnetynkova DEPARTMENT OF MATHEMATICS

More information

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP p.1/39 PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University

More information

On prescribing Ritz values and GMRES residual norms generated by Arnoldi processes

On prescribing Ritz values and GMRES residual norms generated by Arnoldi processes On prescribing Ritz values and GMRES residual norms generated by Arnoldi processes Jurjen Duintjer Tebbens Institute of Computer Science Academy of Sciences of the Czech Republic joint work with Gérard

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

Golub-Kahan iterative bidiagonalization and determining the noise level in the data

Golub-Kahan iterative bidiagonalization and determining the noise level in the data Golub-Kahan iterative bidiagonalization and determining the noise level in the data Iveta Hnětynková,, Martin Plešinger,, Zdeněk Strakoš, * Charles University, Prague ** Academy of Sciences of the Czech

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

The Trust Region Subproblem with Non-Intersecting Linear Constraints

The Trust Region Subproblem with Non-Intersecting Linear Constraints The Trust Region Subproblem with Non-Intersecting Linear Constraints Samuel Burer Boshi Yang February 21, 2013 Abstract This paper studies an extended trust region subproblem (etrs in which the trust region

More information

Implementation of a preconditioned eigensolver using Hypre

Implementation of a preconditioned eigensolver using Hypre Implementation of a preconditioned eigensolver using Hypre Andrew V. Knyazev 1, and Merico E. Argentati 1 1 Department of Mathematics, University of Colorado at Denver, USA SUMMARY This paper describes

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD

EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD EVALUATION OF ACCELERATION TECHNIQUES FOR THE RESTARTED ARNOLDI METHOD AKIRA NISHIDA AND YOSHIO OYANAGI Abstract. We present an approach for the acceleration of the restarted Arnoldi iteration for the

More information

MULTIGRID ARNOLDI FOR EIGENVALUES

MULTIGRID ARNOLDI FOR EIGENVALUES 1 MULTIGRID ARNOLDI FOR EIGENVALUES RONALD B. MORGAN AND ZHAO YANG Abstract. A new approach is given for computing eigenvalues and eigenvectors of large matrices. Multigrid is combined with the Arnoldi

More information

A Trust-region-based Sequential Quadratic Programming Algorithm

A Trust-region-based Sequential Quadratic Programming Algorithm Downloaded from orbit.dtu.dk on: Oct 19, 2018 A Trust-region-based Sequential Quadratic Programming Algorithm Henriksen, Lars Christian; Poulsen, Niels Kjølstad Publication date: 2010 Document Version

More information

Eigenvalue Problems Computation and Applications

Eigenvalue Problems Computation and Applications Eigenvalue ProblemsComputation and Applications p. 1/36 Eigenvalue Problems Computation and Applications Che-Rung Lee cherung@gmail.com National Tsing Hua University Eigenvalue ProblemsComputation and

More information

Arc Search Algorithms

Arc Search Algorithms Arc Search Algorithms Nick Henderson and Walter Murray Stanford University Institute for Computational and Mathematical Engineering November 10, 2011 Unconstrained Optimization minimize x D F (x) where

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

A comparison of solvers for quadratic eigenvalue problems from combustion

A comparison of solvers for quadratic eigenvalue problems from combustion INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS [Version: 2002/09/18 v1.01] A comparison of solvers for quadratic eigenvalue problems from combustion C. Sensiau 1, F. Nicoud 2,, M. van Gijzen 3,

More information

SMOOTH OPTIMIZATION WITH APPROXIMATE GRADIENT. 1. Introduction. In [13] it was shown that smooth convex minimization problems of the form:

SMOOTH OPTIMIZATION WITH APPROXIMATE GRADIENT. 1. Introduction. In [13] it was shown that smooth convex minimization problems of the form: SMOOTH OPTIMIZATION WITH APPROXIMATE GRADIENT ALEXANDRE D ASPREMONT Abstract. We show that the optimal complexity of Nesterov s smooth first-order optimization algorithm is preserved when the gradient

More information