2. This problem is very easy if you remember the exponential cdf; i.e., 0, y 0 F Y (y) = = ln(0.5) = ln = ln 2 = φ 0.5 = β ln 2.

Size: px
Start display at page:

Download "2. This problem is very easy if you remember the exponential cdf; i.e., 0, y 0 F Y (y) = = ln(0.5) = ln = ln 2 = φ 0.5 = β ln 2."

Transcription

1 FALL 8 FINAL EXAM SOLUTIONS. Use the basic counting rule. There are n = number of was to choose 5 white balls from 7 = n = number of was to choose ellow ball from 5 = ( ) 7 5 ( ) 5. there are n n = ( )( ) = 34 5 = possible was to select 6 numbers in the lotter. There is onl wa to select all numbers correctl. Assuming all possible was are equall likel, the probabilit of winning is This problem is ver eas if ou remember the exponential cdf; i.e., {, e /β, >. To find the median φ.5, we set F Y (φ.5 ) = P (Y φ.5 ) =.5 and solve for φ.5. We have.5 set = F Y (φ.5 ) = e φ.5/β = e φ.5/β =.5 = φ.5 β ( ) = ln(.5) = ln = ln = φ.5 = β ln. Note: If ou did not remember the exponential cdf, then ou can integrate the pdf. We have.5 set = F Y (φ.5 ) = P (Y φ.5 ) = = β φ.5 Then solve for φ.5 in the same wa as above. β e /β d ( βe /β) φ.5 = (e /β) φ.5 = e φ.5/β. 3. Write m Y (t) = t = ( t ). This makes it easier to take derivatives. The first derivative of m Y (t) is d dt m Y (t) = ( )( t ) ( t) = t( t ). E(Y ) = d dt m Y (t) = ()( ) =. t= PAGE

2 FALL 8 FINAL EXAM SOLUTIONS The second derivative of m Y (t) is d dt m Y (t) = d dt [t( t ) ] = ( t ) + (t)( )( t ) 3 ( t). There is no need simplif this, because all we do is evaluate it at t =. We have E(Y ) = d dt m Y (t) = ( ) + ()( )( ) 3 ( )() =. t= The variance of Y is V (Y ) = E(Y ) [E(Y )] = =. 4. The support R = {(, ) : >, >, + < } is shown at the top of the next page (left). The joint pdf f Y,Y (, ) is a three-dimensional function which takes the value 4 over this region and is otherwise equal to zero. Note that the boundar of the support is + = = =, a linear function of with intercept and slope. We can find P (Y <.5) b finding the volume under f Y,Y (, ) over the set B = {(, ) : < <.5, >, + < }, which is shown at the top of the next page (right). The double integral limits come from this picture. We have P (Y <.5) = = =.5 = =.5 =.5 =.5 = 4 [ ( 4 d d ) ] d = ( ) d = ( + 3 ) d ( = ).5 = ( = 8 + ) = Note: You could also do this problem b finding the marginal pdf of Y and then calculating P (Y <.5) as an area under this pdf. For < <, the marginal pdf of Y is [ ( ) ] f Y ( ) = 4 d = 4 = ( ). = = f Y ( ) = { ( ), < <, otherwise. PAGE

3 FALL 8 FINAL EXAM SOLUTIONS.5 You would then calculate P (Y <.5) as just like in the previous solution..5 = ( ) d = Let Y denote the number of people arriving for treatment per hour. In the problem, we assume Y Poisson(λ = 5). (a) The probabilit at most two people arrive for treatment is P (Y ) = P (Y = ) + P (Y = ) + P (Y = ) = 5 e 5! + 5 e 5! + 5 e 5! = e 5 ( ).5. (b) The time until the second person arrives, T, follows a gamma distribution with α = and β = λ = 5. The variance of T is σ = ( ) ( ) = σ = = Let Y denote the number of events that occur (out of n) so that Y b(n, p). We want to calculate P (Y = Y ). Using the definition of conditional probabilit, we have P (Y = Y ) = P (Y = and Y ). P (Y ) PAGE 3

4 FALL 8 FINAL EXAM SOLUTIONS The denominator is P (Y ) = P (Y = ) = ( ) n p ( p) n = ( p) n. When =, the numerator is because {Y = and Y } =, the null set. When =,,..., n, then {Y = } {Y }, so {Y = and Y } = {Y = }. the numerator is ( ) n P (Y = and Y ) = P (Y = ) = p ( p) n. P (Y = Y ) = ( n, = ) p ( p) n ( p) n, =,,..., n. 7. The cdf P (Y ) is defined for all R. we consider three cases: Case : When, Case : When < <, f Y (t)dt = dt =. Case 3: When, f Y (t)dt = dt + = (t + t 3 )dt 6 = ( ) t 6 + t4 4 t 6 ( + t )dt = 6 ( ) = 4 ( + ). f Y (t)dt = dt + t 6 ( + t )dt }{{} =, 4 ( + ), < <,. + dt =. 8. The marginal pmfs are 3 p Y ( ) and PAGE 4

5 FALL 8 FINAL EXAM SOLUTIONS 3 p Y ( ) The marginal means are E(Y ) = (.5) + (.45) + 3(.3) =.5 and We now calculate E(Y ) = (.3) + (.4) + 3(.3) =. E(Y Y ) = ()(.) + ()(.5) + 3()(.5) + ()(.) + ()(.) + 3()(.) + (3)(.5) + (3)(.) + 3(3)(.5) = 4.5. Using the covariance computing formula, we have Cov(Y, Y ) = E(Y Y ) E(Y )E(Y ) = 4.5.5() = Note that ( ay ) = a Y Y + a a. Now take the expectation of this: [ ( Q(a) = E ay ) ] = a E(Y ) E(Y ) + a a. To minimize Q(a), we take its derivative, set it equal to zero, and solve for a. We have d da Q(a) = d [a E(Y ) E(Y ) + a ] da = ae(y ) a 3. Setting this equal to zero, we have ae(y ) a 3 set = = ae(y ) = [ ] a 3 = a 4 E(Y /4 ) = = a = E(Y. ) From the variance computing formula, we have E(Y ) = V (Y ) + [E(Y )] = σ + µ. ( ) /4 a = σ + µ. To verif this solution minimizes Q(a), note that d da Q(a) = E(Y ) + 6 a 4 >. the solution a = (σ + µ ) /4 is a minimizer b the second derivative test. PAGE 5

6 FALL 8 FINAL EXAM SOLUTIONS. Treating each candidate as a distinct object, there are N = 9! = 3688 possible permutations. We can think of one outcome (i.e., ordering of the candidates) in the underling sample space S as having the following structure: Define the event ( ). A = {candidates within each part grouped together}. The number of outcomes in A can be found using the basic counting rule with n = number of was to permute R, D, and I ordering = 3! n = number of was to permute R candidates = 4! n 3 = number of was to permute D candidates = 3! n 4 = number of was to permute I candidates =! The number of outcomes in A is n a = 3! 4! 3!! = 78. P (A) = n a N = Note: You could also treat candidates within each part as indistinguishable; e.g., ou cannot tell one R candidate from another, etc. Then there would be ( ) 9 N = = outcomes in S. The number of outcomes in A is n a = n = number of was to permute R, D, and I ordering = 3! = 6. The steps to calculate n, n 3, and n 4 in the other solution are now vacuous because ou cannot tell candidates in the same part from each other.. For 3, the pdf of Y is f Y () = d d d d P (A) = n a N = [ e ( 3)/5] = ( ) e ( 3)/5 = 5 5 e ( 3)/5. f Y () = 5 e ( 3)/5, 3, otherwise. PAGE 6

7 FALL 8 FINAL EXAM SOLUTIONS The mean of Y is In the last integral, let E(Y ) = R f Y ()d = 3 u = 3 = du = d. 5 e ( 3)/5 d. Note that with this substitution, the limits change as well; i.e., E(Y ) = 3 : 3 = u :. 5 e ( 3)/5 d = (u + 3) 5 e u/5 du. Note that 5 e u/5 is the exponential pdf with mean β = 5 and we are integrating over (, ). the last integral equals E(U + 3), where U exponential(5). We have E(U + 3) = E(U) + 3 = = 35 minutes.. The support R = {(, ) : >, < < } is shown below. The joint pdf f Y,Y (, ) is a three-dimensional function which takes the value 6 / 3 over this region and is otherwise equal to zero. The support is rectangular and does not involve a constraint between and. Note that we can write f Y,Y (, ) = 6 3 = 6 3 = g( )h( ), where g( ) = 6 3 and h( ) = are both are nonnegative functions. Because f Y,Y (, ) can be written in this wa, we know Y and Y must be independent. PAGE 7

8 FALL 8 FINAL EXAM SOLUTIONS Note: You could also derive the marginal pdfs f Y ( ) and f Y ( ) and show that For >, the marginal pdf of Y is f Y ( ) = f Y,Y (, ) = f Y ( )f Y ( ). = 6 3 For < <, the marginal pdf of Y is f Y ( ) = = 6 3 f Y ( ) = d = 6 3 [ ( ) ] = 8 = 3. [ ( d = 6 ) ] ( = 6 + ) =. = 8 8, > 3, otherwise and {, < <, otherwise. Note that 6 3 = f Y,Y (, ) = f Y ( )f Y ( ) = Define the two events A = {resident smoked} D = {lung cancer death}. The first bullet sas P (A) =.. The second bullet sas P (D) =.6. The third bullet sas P (D A) = P (D A). We want P (A D). Use Baes Rule: P (A D) = We get P (D A) b using LOTP; i.e., P (D A)P (A) P (D) = P (D A)(.)..6.6 = P (D) = P (D A)P (A) + P (D A)P (A) = P (D A)(.) +.P (D A)(.) = P (D A)[. +.(.8)] = P (D A) =.6.8. P (A D) = = We have the hierarchical model: Y Y = exponential( ) Y U(, 5). PAGE 8

9 FALL 8 FINAL EXAM SOLUTIONS To find V (Y ), we will use Adam s Rule; i.e., V (Y ) = E[V (Y Y )] + V [E(Y Y )]. The conditional distribution of Y Y = exponential( ). remembering what we know about the mean and variance of the exponential distribution, and E(Y Y = ) = = E(Y Y ) = Y V (Y Y = ) = ( ) = 4 = V (Y Y ) = 4Y. V (Y ) = E(4Y ) + V (Y ) = 4E(Y ) + 4V (Y ), where Y U(, 5). The mean of Y U(, 5) is E(Y ) = 5, the midpoint of and 5. The second moment of Y is Finall, 5 E(Y ) = 5 d = 5 ( ) 3 5 = V (Y ) = E(Y ) [E(Y )] = 5 ( ) 5 3 = 5. V (Y ) = 4E(Y ) + 4V (Y ) = 4 ( ) ( ) 5 = The first moment is the mean E(Y ). Using the definition of mathematical expectation, we have ( ) E(Y ) = p Y () = = ( ). ln ln = = = }{{} =, see below We recognize = ( ) as an infinite geometric sum with common ratio r = /. ( ) ( ) ( ) = = = =. = = E(Y ) = ln. PAGE 9

You may use a calculator. Translation: Show all of your work; use a calculator only to do final calculations and/or to check your work.

You may use a calculator. Translation: Show all of your work; use a calculator only to do final calculations and/or to check your work. GROUND RULES: Print your name at the top of this page. This is a closed-book and closed-notes exam. You may use a calculator. Translation: Show all of your work; use a calculator only to do final calculations

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner.

This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. GROUND RULES: This exam contains 6 questions. The questions are of equal weight. Print your name at the top of this page in the upper right hand corner. This exam is closed book and closed notes. Show

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U).

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U). 1. Suppose Y U(0, 2) so that the probability density function (pdf) of Y is 1 2, 0 < y < 2 (a) Find the pdf of U = Y 4 + 1. Make sure to note the support. (c) Suppose Y 1, Y 2,..., Y n is an iid sample

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Chapter 5: Joint Probability Distributions

Chapter 5: Joint Probability Distributions Chapter 5: Joint Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 19 Joint pmf Definition: The joint probability mass

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 4 EXAINATIONS SOLUTIONS GRADUATE DIPLOA PAPER I STATISTICAL THEORY & ETHODS The Societ provides these solutions to assist candidates preparing for the examinations in future

More information

Expected value of r.v. s

Expected value of r.v. s 10 Epected value of r.v. s CDF or PDF are complete (probabilistic) descriptions of the behavior of a random variable. Sometimes we are interested in less information; in a partial characterization. 8 i

More information

This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter.

This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter. This midterm covers Chapters 6 and 7 in WMS (and the notes). The following problems are stratified by chapter. Chapter 6 Problems 1. Suppose that Y U(0, 2) so that the probability density function (pdf)

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc.

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc. ECE32 Exam 2 Version A April 21, 214 1 Name: Solution Score: /1 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers

More information

Chapter 5 Class Notes

Chapter 5 Class Notes Chapter 5 Class Notes Sections 5.1 and 5.2 It is quite common to measure several variables (some of which may be correlated) and to examine the corresponding joint probability distribution One example

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 13: Normal Distribution Exponential Distribution Recall that the Normal Distribution is given by an explicit

More information

CSE 312 Foundations, II Final Exam

CSE 312 Foundations, II Final Exam CSE 312 Foundations, II Final Exam 1 Anna Karlin June 11, 2014 DIRECTIONS: Closed book, closed notes except for one 8.5 11 sheet. Time limit 110 minutes. Calculators allowed. Grading will emphasize problem

More information

Chapter 3. Expectations

Chapter 3. Expectations pectations - Chapter. pectations.. Introduction In this chapter we define five mathematical epectations the mean variance standard deviation covariance and correlation coefficient. We appl these general

More information

Chapter 6: Functions of Random Variables

Chapter 6: Functions of Random Variables Chapter 6: Functions of Random Variables We are often interested in a function of one or several random variables, U(Y 1,..., Y n ). We will study three methods for determining the distribution of a function

More information

1 Expectation of a continuously distributed random variable

1 Expectation of a continuously distributed random variable OCTOBER 3, 204 LECTURE 9 EXPECTATION OF A CONTINUOUSLY DISTRIBUTED RANDOM VARIABLE, DISTRIBUTION FUNCTION AND CHANGE-OF-VARIABLE TECHNIQUES Expectation of a continuously distributed random variable Recall

More information

STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 3 Monday, November 9, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 71E Probability and Statistics Spring 013 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 1.30, Wednesday EEB 5303 10.00 1.00, Wednesday

More information

1, 0 r 1 f R (r) = 0, otherwise. 1 E(R 2 ) = r 2 f R (r)dr = r 2 3

1, 0 r 1 f R (r) = 0, otherwise. 1 E(R 2 ) = r 2 f R (r)dr = r 2 3 STAT 5 4.43. We are given that a circle s radius R U(, ). the pdf of R is {, r f R (r), otherwise. The area of the circle is A πr. The mean of A is E(A) E(πR ) πe(r ). The second moment of R is ( ) r E(R

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

Mathematical Statistics. Gregg Waterman Oregon Institute of Technology

Mathematical Statistics. Gregg Waterman Oregon Institute of Technology Mathematical Statistics Gregg Waterman Oregon Institute of Technolog c Gregg Waterman This work is licensed under the Creative Commons Attribution. International license. The essence of the license is

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

3.6. Let s write out the sample space for this random experiment:

3.6. Let s write out the sample space for this random experiment: STAT 5 3 Let s write out the sample space for this ranom experiment: S = {(, 2), (, 3), (, 4), (, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} This sample space assumes the orering of the balls

More information

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3

Math 151. Rumbos Spring Solutions to Review Problems for Exam 3 Math 151. Rumbos Spring 2014 1 Solutions to Review Problems for Exam 3 1. Suppose that a book with n pages contains on average λ misprints per page. What is the probability that there will be at least

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3.

t x 1 e t dt, and simplify the answer when possible (for example, when r is a positive even number). In particular, confirm that EX 4 = 3. Mathematical Statistics: Homewor problems General guideline. While woring outside the classroom, use any help you want, including people, computer algebra systems, Internet, and solution manuals, but mae

More information

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2},

Problem Y is an exponential random variable with parameter λ = 0.2. Given the event A = {Y < 2}, ECE32 Spring 25 HW Solutions April 6, 25 Solutions to HW Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

Biostatistics in Research Practice - Regression I

Biostatistics in Research Practice - Regression I Biostatistics in Research Practice - Regression I Simon Crouch 30th Januar 2007 In scientific studies, we often wish to model the relationships between observed variables over a sample of different subjects.

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) =

Math 151. Rumbos Fall Solutions to Review Problems for Exam 2. Pr(X = 1) = ) = Pr(X = 2) = Pr(X = 3) = p X. (k) = Math 5. Rumbos Fall 07 Solutions to Review Problems for Exam. A bowl contains 5 chips of the same size and shape. Two chips are red and the other three are blue. Draw three chips from the bowl at random,

More information

Jointly Distributed Random Variables

Jointly Distributed Random Variables Jointly Distributed Random Variables CE 311S What if there is more than one random variable we are interested in? How should you invest the extra money from your summer internship? To simplify matters,

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations

Chapter 5. Statistical Models in Simulations 5.1. Prof. Dr. Mesut Güneş Ch. 5 Statistical Models in Simulations Chapter 5 Statistical Models in Simulations 5.1 Contents Basic Probability Theory Concepts Discrete Distributions Continuous Distributions Poisson Process Empirical Distributions Useful Statistical Models

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. There are situations where one might be interested

More information

review math0410 (1-174) and math 0320 ( ) aafinm mg

review math0410 (1-174) and math 0320 ( ) aafinm mg Eam Name review math04 (1-174) and math 0320 (17-243) 03201700aafinm0424300 mg MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplif. 1) 7 2-3 A)

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012 3/7/ Recall Discrete Distribution 5. Continuous Random Variable For a discrete distribution, for eample Binomial distribution with n=5, and p=.4, the probabilit distribution is f().7776.59.3456.34.768.4.3

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

review for math TSI 182 practice aafm m

review for math TSI 182 practice aafm m Eam TSI 182 Name review for math TSI 182 practice 01704041700aafm042430m www.alvarezmathhelp.com MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplif.

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Problems and results for the ninth week Mathematics A3 for Civil Engineering students

Problems and results for the ninth week Mathematics A3 for Civil Engineering students Problems and results for the ninth week Mathematics A3 for Civil Engineering students. Production line I of a factor works 0% of time, while production line II works 70% of time, independentl of each other.

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus 6. Worksheet Da All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. Indefinite Integrals: Remember the first step to evaluating an integral is to

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

STAT 509 Section 3.4: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT 509 Section 3.4: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 509 Section 3.4: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. A continuous random variable is one for which the outcome

More information

This does not cover everything on the final. Look at the posted practice problems for other topics.

This does not cover everything on the final. Look at the posted practice problems for other topics. Class 7: Review Problems for Final Exam 8.5 Spring 7 This does not cover everything on the final. Look at the posted practice problems for other topics. To save time in class: set up, but do not carry

More information

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon. 604/643 Fall 200 Final Exam Solutions Wednesday, December 5, 9:00AM - 2:00noon Problem (32 points) Consider a Markov chain {X n ; n 0,, }, specified by the following transition diagram 06 05 09 04 03 2

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

ECON Fundamentals of Probability

ECON Fundamentals of Probability ECON 351 - Fundamentals of Probability Maggie Jones 1 / 32 Random Variables A random variable is one that takes on numerical values, i.e. numerical summary of a random outcome e.g., prices, total GDP,

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

4.3 Worksheet - Derivatives of Inverse Functions

4.3 Worksheet - Derivatives of Inverse Functions AP Calculus 3.8 Worksheet 4.3 Worksheet - Derivatives of Inverse Functions All work must be shown in this course for full credit. Unsupported answers ma receive NO credit.. What are the following derivatives

More information

Posted June 26, 2013 In the solution of Problem 4 in Practice Examination 8, the fourth item in the list of six events was mistyped as { X 1

Posted June 26, 2013 In the solution of Problem 4 in Practice Examination 8, the fourth item in the list of six events was mistyped as { X 1 ASM Stud Manual for Exam P, Sixth Edition B Dr. Krzsztof M. Ostaszewski, FSA, CFA, MAAA Web site: http://www.krzsio.net E-mail: krzsio@krzsio.net Errata Effective Jul 5, 3, onl the latest edition of this

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be

Chapter 6 Expectation and Conditional Expectation. Lectures Definition 6.1. Two random variables defined on a probability space are said to be Chapter 6 Expectation and Conditional Expectation Lectures 24-30 In this chapter, we introduce expected value or the mean of a random variable. First we define expectation for discrete random variables

More information

0.24 adults 2. (c) Prove that, regardless of the possible values of and, the covariance between X and Y is equal to zero. Show all work.

0.24 adults 2. (c) Prove that, regardless of the possible values of and, the covariance between X and Y is equal to zero. Show all work. 1 A socioeconomic stud analzes two discrete random variables in a certain population of households = number of adult residents and = number of child residents It is found that their joint probabilit mass

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Bivariate Distributions

Bivariate Distributions STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 17 Néhémy Lim Bivariate Distributions 1 Distributions of Two Random Variables Definition 1.1. Let X and Y be two rrvs on probability space (Ω, A, P).

More information

6. This sum can be rewritten as 4( ). We then recall the formula n =

6. This sum can be rewritten as 4( ). We then recall the formula n = . c = 9b = 3 b = 3 a 3 = a = = 6.. (3,, ) = 3 + + 3 = 9 + + 3 = 6 6. 3. We see that this is equal to. 3 = ( +.) 3. Using the fact that (x + ) 3 = x 3 + 3x + 3x + and replacing x with., we find that. 3

More information

MATH : EXAM 2 INFO/LOGISTICS/ADVICE

MATH : EXAM 2 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 2 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (03/11) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Definition: n-dimensional random vector, joint pmf (pdf), marginal pmf (pdf) Theorem: How to calculate marginal pmf (pdf) given joint pmf (pdf) Example: How to calculate

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Multivariate distributions

Multivariate distributions CHAPTER Multivariate distributions.. Introduction We want to discuss collections of random variables (X, X,..., X n ), which are known as random vectors. In the discrete case, we can define the density

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Covariance and Correlation

Covariance and Correlation Covariance and Correlation ST 370 The probability distribution of a random variable gives complete information about its behavior, but its mean and variance are useful summaries. Similarly, the joint probability

More information

CHAPTER 5. Jointly Probability Mass Function for Two Discrete Distributed Random Variables:

CHAPTER 5. Jointly Probability Mass Function for Two Discrete Distributed Random Variables: CHAPTER 5 Jointl Distributed Random Variable There are some situations that experiment contains more than one variable and researcher interested in to stud joint behavior of several variables at the same

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016

Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 8. For any two events E and F, P (E) = P (E F ) + P (E F c ). Summary of basic probability theory Math 218, Mathematical Statistics D Joyce, Spring 2016 Sample space. A sample space consists of a underlying

More information

Basics of Stochastic Modeling: Part II

Basics of Stochastic Modeling: Part II Basics of Stochastic Modeling: Part II Continuous Random Variables 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR August 10, 2016 1 Reference

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Chapter 3: Random Variables 1

Chapter 3: Random Variables 1 Chapter 3: Random Variables 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1.

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1. Thursda, November 5 Green s Theorem Green s Theorem is a 2-dimensional version of the Fundamental Theorem of alculus: it relates the (integral of) a vector field F on the boundar of a region to the integral

More information

APPM/MATH 4/5520 Solutions to Problem Set Two. = 2 y = y 2. e 1 2 x2 1 = 1. (g 1

APPM/MATH 4/5520 Solutions to Problem Set Two. = 2 y = y 2. e 1 2 x2 1 = 1. (g 1 APPM/MATH 4/552 Solutions to Problem Set Two. Let Y X /X 2 and let Y 2 X 2. (We can select Y 2 to be anything but when dealing with a fraction for Y, it is usually convenient to set Y 2 to be the denominator.)

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Exercise 4.1 Let X be a random variable with p(x)

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Review for Exam Spring 2018

Review for Exam Spring 2018 Review for Exam 1 18.05 Spring 2018 Extra office hours Tuesday: David 3 5 in 2-355 Watch web site for more Friday, Saturday, Sunday March 9 11: no office hours March 2, 2018 2 / 23 Exam 1 Designed to be

More information

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix)

EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) 1 EC212: Introduction to Econometrics Review Materials (Wooldridge, Appendix) Taisuke Otsu London School of Economics Summer 2018 A.1. Summation operator (Wooldridge, App. A.1) 2 3 Summation operator For

More information