STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in:

Size: px
Start display at page:

Download "STAT/MA 416 Midterm Exam 3 Monday, November 19, Circle the section you are enrolled in:"

Transcription

1 STAT/MA 46 Midterm Exam 3 Monday, November 9, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA : AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing booklet contains 2 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional TI-3Xa TI-3X IIS (solar) TI-3X IIB (battery) The memory of the calculator should be cleared at the start of the exam, if possible. 3. Mark your answers on the Scantron sheet using a #2 pencil. 4. Make sure to supply answers to all of the questions. There is no penalty for guessing. 5. No partial credit will be given. 6. Show all of your work in the exam booklet. 7. Extra sheets of paper are available from the instructor.

2

3 . Suppose that 3 balls are chosen with replacement from an urn consisting of 6 white and 2 red balls. Let X i equal if the ith ball selected is white, and let X i equal. Give the joint probability mass function p(x, x 2 ) of X, X 2. A.) p(, ) = 35/5; p(, ) = 5/34; p(, ) = 5/34; p(, ) = /5 B.) p(, ) = 22/5; p(, ) = 4/7; p(, ) = 4/7; p(, ) = 5/5 C.) p(, ) = 52/729; p(, ) = 87/5832; p(, ) = 87/5832; p(, ) = 7/972 D.) p(, ) = 4/9; p(, ) = 2/9; p(, ) = 2/9; p(, ) = /9 E.) p(, ) = /6; p(, ) = 3/6; p(, ) = 3/6; p(, ) = 9/6 Answer. We see that p(, ) = (2/8) 2 = 4/9 is the probability of neither of the first two balls being white. Also p(, ) = (2/8)(6/8) = 2/9 is the probability that the second ball is white but the first ball is not white. Similarly, p(, ) = 2/9 is the probability that the first ball is white but the second ball is not white. Finally, p(, ) = (6/8) 2 = /9 is the probability that both of the first two balls are white. So the correct answer is D, namely, p(, ) = 4/9; p(, ) = 2/9; p(, ) = 2/9; p(, ) = /9.

4 2. The joint probability density function of X and Y is given by 2e x y < y < x < f(x, y) = Find the marginal densities of X and Y. 2e x ( e x ) x > e y y > A.) f X (x) = f Y (y) = 2e x ( e x ) x > 2e 2y y > B.) f X (x) = f Y (y) = 2e 2x x > e y y > C.) f X (x) = f Y (y) = 2e x x > 2e y y > D.) f X (x) = f Y (y) = 2e 2x x > 2e 2y y > E.) f X (x) = f Y (y) = Answer. For x, we have f X (x) = since X is never smaller than. Similarly, f Y (y) = for y. Now we compute, for x > and for y >, the marginal densities and f X (x) = f Y (y) = f(x, y) dy = x f(x, y) dx = So the correct answer is B, namely, f X (x) = 2e 2y y > and f Y (y) = 2e x e y dy = 2e x ( e x ) y 2e x e y dx = 2e 2y 2e x ( e x ) x > 2

5 3. The joint probability density function of X and Y is given by 9e 3x 3y x >, y > f(x, y) = Find E[X + Y ]. A.) /9 B.) /6 C.) /3 D.) 2/3 E.) Answer. Perhaps the easiest method is to recognize that X and Y are independent; each are exponential random variables with parameter λ = 3, and thus E[X] = /3 and E[Y ] = /3. So E[X + Y ] = E[X] + E[Y ] = 2/3. Another method is to compute directly E[X + Y ] = (x + y)f(x, y) dx dy = So the correct answer is D, namely, 2/3. (x + y)(9e 3x 3y ) dx dy = 2/3 3

6 4. A man and woman are each located uniformly on a straight road of length. Assume that their locations are independent and uniformly distributed along the road. [That is, the distance from one of the fixed ends of the road is uniformly distributed over (, ).] Let X denote the distance from the man to the woman. Find the density of X. < x < A.) f X (x) = x 5 B.) f X (x) = x2 < x < < x < C.) f X (x) = x < x < 5 D.) f X (x) = 5 E.) f X (x) = x < x < 5 Answer. Finding F X (a) in this problem, by the way, is exactly the same as Problem 4 from Chapter 6, which was on the homework. I made the problem even easier by using a concrete number instead of the abstract number L. We see that, of course, f X (x) = for x and for x. For < x <, the cumulative distribution function of X is easily computed by drawing a picture and finding the area of the shaded region divided by the area of the entire sample space. This yields F X (a) = P (X a) = P (X > a) = 2 ( a)2 2 2 ( a)2 = a a Alternatively, we could compute F X (a)=p (X a)= a x+a dydx+ a x+a a x a dydx+ a x a dydx = a 5 a2 Either way, we have F X (x) = x x2. Differentiating with respect to x yields the density, 5 f X (x) = x So the correct answer is E, namely, f X (x) = x < x < 5 4

7 5. The joint probability density function of X and Y is given by 3 xy x 2, y 2, x + y 2 2 f(x, y) = Find E[X]. A.) 2/5 B.) 8/5 C.) 2/3 D.) 4/5 E.) Answer. We compute directly E[X] = xf(x, y) dy dx = An alternate method is to compute directly E[X] = xf(x, y) dx dy = So the correct answer is D, namely, 4/ x 2 2 y (x) ( ) 3 2 xy dy dx = 4/5 ( ) 3 (x) 2 xy dx dy = 4/5 5

8 6. If X is uniformly distributed over (, 3) and Y is exponentially distributed with parameter λ =, find P (X + Y 2). Assume that X and Y are independent. A.) 2 3 B.) 3 e e C.) 3 e D.) 3 e E.) e 2 Answer. The joint density of X and Y is 3 f(x, y) = e y < x < 3, y > We compute directly P (X + Y 2) = 2 2 x An alternate method is to compute directly P (X + Y 2) = 2 2 y So the correct answer is D, namely, 3 e e y dy dx = 3 e e y dx dy = 3 e

9 7. A survey of citizens over age 25 in Lafayette and West Lafayette is taken. It shows that 69.7% of West Lafayette s residents have a college degree. Also, 23.7% of Lafayette s residents have a college degree. Suppose that random samples of 2 West Lafayette residents and 2 Lafayette residents are chosen. Approximate the probability that at least 96 of these 4 people have a college degree. [Hint: use continuity correction.] A.).6 B.).4 C.).46 D.).54 E.).84 Answer. We notice that the number of West Lafayette residents with a college degree, denoted by X, is a Binomial with n = 2 and p = The number of Lafayette residents with a college degree, denoted by Y, is a Binomial with n = 2 and p = So X + Y is a normal random variable with mean 2(.697)+2(.237) = 86.8 and variance 2(.697)(.697) + 2(.237)(.237) = So P (X + Y 96) = P (X + Y 95.5) ( X + Y 86.8 = P = P (Z.9825) = P (Z.9825) = Φ(.98).8365 =.635 ) So the correct answer is A, namely,.6. 7

10 8. The random variables X and Y have constant joint density f(x, y) on the region x and y e x ; in other words e x, y e x f(x, y) = Find the conditional density f Y X (y x) for a fixed X = x. e x y e x A.) f Y X (y x) = e x y e x B.) f Y X (y x) = e y e x C.) f Y X (y x) = e x y e x D.) f Y X (y x) = e y y e x E.) f Y X (y x) = Answer. For x, we see that X has marginal density so the conditional distribution is f X (x) = e x e dy = e x f(x, y) f Y X (y x) = f X (x) = e = ex e x e x y e x So the correct answer is A, namely, f Y X (y x) =. 8

11 9. Three people, Alice, Bob, and Carol, are each waiting for their spouses to arrive. The waiting times (in minutes) are independent exponential random variables, each with parameter λ = 5. Find the probability that no one waits more than minutes. A.) e 5 B.) e 5 C.) e 5 D.) e 5 E.) ( e 5 ) 3 Answer. Let X, Y, Z denote Alice, Bob, and Carol s waiting times, respectively. Then the desired probability is P (X, Y, Z ) = P (X )P (Y )P (Z ) = ( e (5)() ) 3 = ( e 5 ) 3 So the correct answer is E, namely, ( e 5 ) 3. 9

12 . The random variables X and Y are independent and identically distributed random variables, each uniform on (, ). Compute the joint density of U = X and V = X/Y. A.) f(u, v) = v2 B.) f(u, v) = u/v C.) f(u, v) = u D.) f(u, v) = v/u E.) f(u, v) = u u v 2 Answer. We note that u = g (x, y) = x and v = g 2 (x, y) = x/y. Also, we can retrieve that x s and y s from the u s and v s by writing x = h (u, v) = u and y = h 2 (u, v) = u/v. The Jacobian is g g J(x, y) = x g 2 x y g 2 y = x y y 2 = x y 2 and thus J = y2. Also, the joint density of X and Y is simply because X and Y are x independent and are each uniform on (, ). So we conclude that the joint density of U and V is f U,V (u, v) = f X,Y (x, y) J = y2 = (u/v)2 = u. x u v 2 So the correct answer is C, namely, f(u, v) = u. v 2

13 . A total of N people arrive separately to a professional dinner. Upon arrival, each person looks to see if he or she has any friends among those present. That person then either sits at the table of a friend or at an unoccupied table if none of those present is a friend. Assuming that each of the ( ) N 2 pairs of people are, independently, friends with probability /2, find the expected number of occupied tables. [Hint: Let X i equal or depending on whether the ith arrival sits at a previously unoccupied table.] A.) (N)(2 N ) B.) 2 N C.) (N)(2 N ) D.) 2 N E.) 2 2 N Answer. We let X denote the number of occupied tables. As in the hint, we define if the ith arrival sits at a previously unoccupied table X i = and thus X = X + + X N. So E[X] = E[X + + X N ] = E[X ] + + E[X N ]. Since X i only takes on the values and, then E[X i ] = P (X i = ), which is the probability that the ith arrival sits a previously unoccupied table. This happens if and only if the ith arrival is not friends with any of the first i arrivals, so Thus E[X i ] = P (X i = ) = ( ) i = 2 2 i E[X] = = + = 2 N 2 N 2N So the correct answer is E, namely, 2 2 N.

14 2. An urn has m black balls. At each stage a black ball is removed and a new ball, that is black with probability p and white with probability p, is put in its place. Find the expected number of stages needed until there are no more black balls in the urn. A.) m B.) m C.) m( p) D.) mp E.) pm 2 p p Answer. We let X denote the number of stages needed until there are no more black balls in the urn. We define X as the number of stages until the first black ball is replaced with a white ball. We define X 2 as the number of additional stages until the second black ball is replaced with a white ball. We define X 3 as the number of additional stages until the third black ball is replaced with a white ball. We define X 4,..., X m similarly. Thus X = X + + X m. So E[X] = E[X + + X m ] = E[X ] + + E[X m ]. We note that the X i s are each geometric random variables with p as the probability of success, i.e., with probability of p of replacing a black ball by a white ball. So E[X i ] = for each i. p Thus E[X] = p + p + + p = m p So the correct answer is A, namely, m p. 2

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 2 Thursday, October 8, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS STAT/MA 4 Answers Homework November 5, 27 Solutions by Mark Daniel Ward PROBLEMS Chapter Problems 2a. The mass p, corresponds to neither of the first two balls being white, so p, 8 7 4/39. The mass p,

More information

STAT 516 Midterm Exam 3 Friday, April 18, 2008

STAT 516 Midterm Exam 3 Friday, April 18, 2008 STAT 56 Midterm Exam 3 Friday, April 8, 2008 Name Purdue student ID (0 digits). The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Homework 9 (due November 24, 2009)

Homework 9 (due November 24, 2009) Homework 9 (due November 4, 9) Problem. The join probability density function of X and Y is given by: ( f(x, y) = c x + xy ) < x

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

Final Exam. Math Su10. by Prof. Michael Cap Khoury

Final Exam. Math Su10. by Prof. Michael Cap Khoury Final Exam Math 45-0 Su0 by Prof. Michael Cap Khoury Name: Directions: Please print your name legibly in the box above. You have 0 minutes to complete this exam. You may use any type of conventional calculator,

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains red balls, 10 green balls and 1 yellow balls. You randomly select balls, without replacement. (a What ( is( the probability

More information

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018 MATH 8A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM # FALL 8 Name (Last, First): Student ID: TA: SO AS TO NOT DISTURB OTHER STUDENTS, EVERY- ONE MUST STAY UNTIL THE EXAM IS COMPLETE. ANSWERS TO THE

More information

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise Name M36K Final. Let X be a random variable with probability density function { /x x < f(x = 0 otherwise Compute the following. You can leave your answers in integral form. (a ( points Find F X (t = P

More information

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander Problem Points Score 1 22 2 18 Last Name: First Name: USC ID: Signature: 3 20 4 21 5 27 6 18 7 25 8 28 Total 175 Points total 179 but 175 is maximum. This

More information

THE UNIVERSITY OF WESTERN ONTARIO

THE UNIVERSITY OF WESTERN ONTARIO Instructor s Name (Print) Student s Name (Print) Student s Signature THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS Calculus 1000A Midterm Examination

More information

Sample Math 115 Midterm Exam Spring, 2014

Sample Math 115 Midterm Exam Spring, 2014 Sample Math 5 Midterm Exam Spring, 04 The midterm examination is on Wednesday, March at 5:45PM 7:45PM The midterm examination will be in Budig 0 Look for your instructor who will direct you where to sit

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED IN THIS EXAMINATION. MATH 110 FINAL EXAM SPRING 2008 FORM A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil on your scantron.

More information

MA FINAL EXAM INSTRUCTIONS VERSION 01 December 13, Section # and recitation time

MA FINAL EXAM INSTRUCTIONS VERSION 01 December 13, Section # and recitation time MA 16500 FINAL EXAM INSTRUCTIONS VERSION 01 December 13, 2017 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check

More information

Solutions to Assignment #8 Math 501 1, Spring 2006 University of Utah

Solutions to Assignment #8 Math 501 1, Spring 2006 University of Utah Solutions to Assignment #8 Math 5, Spring 26 University of Utah Problems:. A man and a woman agree to meet at a certain location at about 2:3 p.m. If the man arrives at a time uniformly distributed between

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

sheng@mail.ncyu.edu.tw Content Joint distribution functions Independent random variables Sums of independent random variables Conditional distributions: discrete case Conditional distributions: continuous

More information

CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables

CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables CS145: Probability & Computing Lecture 11: Derived Distributions, Functions of Random Variables Instructor: Erik Sudderth Brown University Computer Science March 5, 2015 Homework Submissions Electronic

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 EXAM I SPRING 2016 FEBRUARY 25, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER AND RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER AND RECITATION INSTRUCTOR: MA66 EXAM II SPRING 09 MARCH 5, 09 TEST NUMBER INSTRUCTIONS:. Do not open the exam booklet until you are instructed to do so.. Before you open the booklet fill in the information below and use a # pencil

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

December 2010 Mathematics 302 Name Page 2 of 11 pages

December 2010 Mathematics 302 Name Page 2 of 11 pages December 2010 Mathematics 302 Name Page 2 of 11 pages [9] 1. An urn contains 5 red balls, 10 green balls and 15 yellow balls. You randomly select 5 balls, without replacement. What is the probability that

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

Hour Exam #2 Math 3 Oct. 31, 2012

Hour Exam #2 Math 3 Oct. 31, 2012 Hour Exam #2 Math 3 Oct. 31, 2012 Name (Print): Last First On this, the second of the two Math 3 hour-long exams in Fall 2012, and on the final examination I will work individually, neither giving nor

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

MA162 EXAM III SPRING 2017 APRIL 11, 2017 TEST NUMBER 01 INSTRUCTIONS:

MA162 EXAM III SPRING 2017 APRIL 11, 2017 TEST NUMBER 01 INSTRUCTIONS: MA62 EXAM III SPRING 207 APRIL, 207 TEST NUMBER 0 INSTRUCTIONS:. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and use a #

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Homework 10 (due December 2, 2009)

Homework 10 (due December 2, 2009) Homework (due December, 9) Problem. Let X and Y be independent binomial random variables with parameters (n, p) and (n, p) respectively. Prove that X + Y is a binomial random variable with parameters (n

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

PurdueX: 416.2x Probability: Distribution Models & Continuous Random Variables. Problem sets. Unit 7: Continuous Random Variables

PurdueX: 416.2x Probability: Distribution Models & Continuous Random Variables. Problem sets. Unit 7: Continuous Random Variables PurdueX: 416.2x Probability: Distribution Models & Continuous Random Variables Problem sets Unit 7: Continuous Random Variables STAT/MA 41600 Practice Problems: October 15, 2014 1. Consider a random variable

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

MA EXAM 2 Form 01

MA EXAM 2 Form 01 MA 1600 EXAM Form 01 NAME INSTRUCTOR INSTRUCTIONS 1. Fill in your name and your instructor s name above.. You must use a # pencil on the scantron answer sheet. 3. Fill in your name, your four digit section

More information

Math 365 Final Exam Review Sheet. The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110.

Math 365 Final Exam Review Sheet. The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110. Math 365 Final Exam Review Sheet The final exam is Wednesday March 18 from 10am - 12 noon in MNB 110. The final is comprehensive and will cover Chapters 1, 2, 3, 4.1, 4.2, 5.2, and 5.3. You may use your

More information

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability and Statistics FS 2017 Session Exam 22.08.2017 Time Limit: 180 Minutes Name: Student ID: This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

Homework 5 Solutions

Homework 5 Solutions 126/DCP126 Probability, Fall 214 Instructor: Prof. Wen-Guey Tzeng Homework 5 Solutions 5-Jan-215 1. Let the joint probability mass function of discrete random variables X and Y be given by { c(x + y) ifx

More information

MA EXAM 1 INSTRUCTIONS VERSION 01 September 13, Section # and recitation time

MA EXAM 1 INSTRUCTIONS VERSION 01 September 13, Section # and recitation time MA 16200 EXAM 1 INSTRUCTIONS VERSION 01 September 13, 2018 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check

More information

STOR Lecture 16. Properties of Expectation - I

STOR Lecture 16. Properties of Expectation - I STOR 435.001 Lecture 16 Properties of Expectation - I Jan Hannig UNC Chapel Hill 1 / 22 Motivation Recall we found joint distributions to be pretty complicated objects. Need various tools from combinatorics

More information

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014 Time: 3 hours, 8:3-11:3 Instructions: MATH 151, FINAL EXAM Winter Quarter, 21 March, 214 (1) Write your name in blue-book provided and sign that you agree to abide by the honor code. (2) The exam consists

More information

MthSc 107 Test 1 Spring 2013 Version A Student s Printed Name: CUID:

MthSc 107 Test 1 Spring 2013 Version A Student s Printed Name: CUID: Student s Printed Name: CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or

More information

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A

AMCS243/CS243/EE243 Probability and Statistics. Fall Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A AMCS243/CS243/EE243 Probability and Statistics Fall 2013 Final Exam: Sunday Dec. 8, 3:00pm- 5:50pm VERSION A *********************************************************** ID: ***********************************************************

More information

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1

Stat 366 A1 (Fall 2006) Midterm Solutions (October 23) page 1 Stat 366 A1 Fall 6) Midterm Solutions October 3) page 1 1. The opening prices per share Y 1 and Y measured in dollars) of two similar stocks are independent random variables, each with a density function

More information

Math Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them

Math Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them Math 302.102 Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them solely for their final exam preparations. The final exam

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018 Midterm 1 Last Name First Name SID You have 10 minutes to read the exam and

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

THE UNIVERSITY OF WESTERN ONTARIO

THE UNIVERSITY OF WESTERN ONTARIO Instructor s Name (Print) Student s Name (Print) Student s Signature THE UNIVERSITY OF WESTERN ONTARIO LONDON CANADA DEPARTMENTS OF APPLIED MATHEMATICS AND MATHEMATICS Calculus 1A Final Examination Code

More information

Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov

Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov Exercises in Probability Theory Paul Jung MA 485/585-1C Fall 2015 based on material of Nikolai Chernov Many of the exercises are taken from two books: R. Durrett, The Essentials of Probability, Duxbury

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

MAC 1140 FINAL EXAM FORM # 1

MAC 1140 FINAL EXAM FORM # 1 MAC 1140 FINAL EXAM FORM # 1 Directions: Turn off and put away all cell phones and other electronic devices. CALCULATORS are NOT allowed. Use only a # pencil for scantron form. Fill in the circles completely.

More information

STAT 515 MIDTERM 2 EXAM November 14, 2018

STAT 515 MIDTERM 2 EXAM November 14, 2018 STAT 55 MIDTERM 2 EXAM November 4, 28 NAME: Section Number: Instructor: In problems that require reasoning, algebraic calculation, or the use of your graphing calculator, it is not sufficient just to write

More information

MA EXAM 3 INSTRUCTIONS VERSION 01 April 14, Section # and recitation time

MA EXAM 3 INSTRUCTIONS VERSION 01 April 14, Section # and recitation time MA 16600 EXAM 3 INSTRUCTIONS VERSION 01 April 14, 2015 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check that

More information

MA 262, Spring 2018, Midterm 1 Version 01 (Green)

MA 262, Spring 2018, Midterm 1 Version 01 (Green) MA 262, Spring 2018, Midterm 1 Version 01 (Green) INSTRUCTIONS 1. Switch off your phone upon entering the exam room. 2. Do not open the exam booklet until you are instructed to do so. 3. Before you open

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 On my honor, as a student, I have neither given nor received unauthorized aid on this academic work. Initials: Do not write in this area Your Initials Only: Math 6 Second Midterm November 3, 7 Your U-M

More information

MA FINAL EXAM Green May 5, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA FINAL EXAM Green May 5, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 600 FINAL EXAM Green May 5, 06 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME. You must use a # pencil on the mark sense sheet (answer sheet).. Be sure the paper you are looking at right now is GREEN!

More information

MA EXAM 2 INSTRUCTIONS VERSION 01 March 9, Section # and recitation time

MA EXAM 2 INSTRUCTIONS VERSION 01 March 9, Section # and recitation time MA 16600 EXAM INSTRUCTIONS VERSION 01 March 9, 016 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a # pencil on the scantron sheet (answer sheet).. Check that the cover

More information

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm)

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm) Math 407: Probability Theory 5/10/2013 - Final exam (11am - 1pm) Name: USC ID: Signature: 1. Write your name and ID number in the spaces above. 2. Show all your work and circle your final answer. Simplify

More information

Check Your Understanding of the Lecture Material Finger Exercises with Solutions

Check Your Understanding of the Lecture Material Finger Exercises with Solutions Check Your Understanding of the Lecture Material Finger Exercises with Solutions Instructor: David Dobor March 6, 2017 While the solutions to these questions are available, you are strongly encouraged

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

MA EXAM 3 Form A

MA EXAM 3 Form A MA 400 EXAM 3 Form A NAME INSTRUCTOR 1. You must use a # pencil on the scantron answer sheet.. Fill in your name, your four digit section number, and your student identification number. If you do not know

More information

MA EXAM 3 Form A November 12, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 3 Form A November 12, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6200 EXAM 3 Form A November 2, 205 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. If the cover of your question booklet is GREEN,

More information

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You: CS70 Discrete Mathematics and Probability Theory, Fall 2018 Midterm 2 8:00-10:00pm, 31 October Your First Name: SIGN Your Name: Your Last Name: Your SID Number: Your Exam Room: Name of Person Sitting on

More information

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 2008) Midterm Instructor: Prof. Yun S. Song October 7, 2008 Your Name : Student ID# : Read these instructions carefully:. This is a closed-book

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

MA Exam 1 Fall 2015 VERSION 01

MA Exam 1 Fall 2015 VERSION 01 VERSION 01 Your name Student ID # Section # and recitation time 1. You must use a # pencil on the scantron sheet (answer sheet).. Check that the cover of your Question Booklet is GREEN and that it has

More information

MATH FINAL EXAM December 14, This is a Multiple choice, closed book, no calculator exam. You may use a 5 8 card. Show all your work.

MATH FINAL EXAM December 14, This is a Multiple choice, closed book, no calculator exam. You may use a 5 8 card. Show all your work. MATH 115 - FINAL EXAM December 14, 2011 Name Student no. (from ID) Rec. Day & time This is a Multiple choice, closed book, no calculator exam. You may use a 5 8 card. Show all your work. PUT YOUR ANSWERS

More information

EXAM # 3 PLEASE SHOW ALL WORK!

EXAM # 3 PLEASE SHOW ALL WORK! Stat 311, Summer 2018 Name EXAM # 3 PLEASE SHOW ALL WORK! Problem Points Grade 1 30 2 20 3 20 4 30 Total 100 1. A socioeconomic study analyzes two discrete random variables in a certain population of households

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 6 Probability and Random Processes University of California, Berkeley: Spring 08 Kannan Ramchandran February 4, 08 Midterm Last Name First Name SID You have 0 minutes to read the exam and 90 minutes

More information

Name: Student ID: Instructions:

Name: Student ID: Instructions: Instructions: Name: CSE 322 Autumn 2001: Midterm Exam (closed book, closed notes except for 1-page summary) Total: 100 points, 5 questions, 20 points each. Time: 50 minutes 1. Write your name and student

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

MthSc 107 Test 1 Spring 2013 Version A Student s Printed Name: CUID:

MthSc 107 Test 1 Spring 2013 Version A Student s Printed Name: CUID: Student s Printed Name: CUID: Instructor: Section # : You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or

More information

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/

STA2603/205/1/2014 /2014. ry II. Tutorial letter 205/1/ STA263/25//24 Tutorial letter 25// /24 Distribution Theor ry II STA263 Semester Department of Statistics CONTENTS: Examination preparation tutorial letterr Solutions to Assignment 6 2 Dear Student, This

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

INSTRUCTIONS USEFUL FORMULAS

INSTRUCTIONS USEFUL FORMULAS MATH 1100 College Algebra Spring 18 Exam 1 February 15, 2018 Name Student ID Instructor Class time INSTRUCTIONS 1. Do not open until you are told to do so. 2. Do not ask questions during the exam. 3. CAREFULLY

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Math 116 Second Midterm November 14, 2012

Math 116 Second Midterm November 14, 2012 Math 6 Second Midterm November 4, Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so.. This exam has pages including this cover. There are 8 problems. Note that

More information

MA FINAL EXAM Form 01 MAY 3, 2018

MA FINAL EXAM Form 01 MAY 3, 2018 MA 16 FINAL EXAM Form 1 MAY, 18 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the scantron. a. Write 1 in the TEST/QUIZ NUMBER boxes and darken the appropriate bubbles

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 13: Expectation and Variance and joint distributions Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

CH5 CH6(Sections 1 through 5) Homework Problems

CH5 CH6(Sections 1 through 5) Homework Problems 550.40 CH5 CH6(Sections 1 through 5) Homework Problems 1. Part of HW #6: CH 5 P1. Let X be a random variable with probability density function f(x) = c(1 x ) 1 < x < 1 (a) What is the value of c? (b) What

More information

Mathematics 426 Robert Gross Homework 9 Answers

Mathematics 426 Robert Gross Homework 9 Answers Mathematics 4 Robert Gross Homework 9 Answers. Suppose that X is a normal random variable with mean µ and standard deviation σ. Suppose that PX > 9 PX

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #1 STA 5326 September 25, 2014 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access

More information

ECE 302: Probabilistic Methods in Engineering

ECE 302: Probabilistic Methods in Engineering Purdue University School of Electrical and Computer Engineering ECE 32: Probabilistic Methods in Engineering Fall 28 - Final Exam SOLUTION Monday, December 5, 28 Prof. Sanghavi s Section Score: Name: No

More information

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding.

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. NAME: ECE 302 Division MWF 0:30-:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. If you are not in Prof. Pollak s section, you may not take this

More information

MA EXAM 3 INSTRUCTIONS VERSION 01 April 17, Section # and recitation time

MA EXAM 3 INSTRUCTIONS VERSION 01 April 17, Section # and recitation time MA 16600 EXAM 3 INSTRUCTIONS VERSION 01 April 17, 2014 Your name Student ID # Your TA s name Section # and recitation time 1. You must use a #2 pencil on the scantron sheet (answer sheet). 2. Check that

More information

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 20 4 30 5 20 6 20 7 20 8 20 9 25 10 25 11 20 Total: 200 Page 1 of 11 Name: Section:

More information

Test 2 Version B. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test.

Test 2 Version B. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test. Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

Student s Printed Name:

Student s Printed Name: Student s Printed Name: Instructor: CUID: Section # : You are not permitted to use a calculator on any part of this test. You are not allowed to use any textbook, notes, cell phone, laptop, PDA, smart

More information