Large and Moderate Deviation Principles for Kernel Distribution Estimator

Size: px
Start display at page:

Download "Large and Moderate Deviation Principles for Kernel Distribution Estimator"

Transcription

1 Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, HIKARI Ltd, Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté de Poters Laboratore de Mathématques et Applcato Futuroscope Chasseeul, Frace Copyrght c 2014 Yousr Slaou. Ths s a ope access artcle dstrbuted uder the Creatve Commos Attrbuto Lcese, whch permts urestrcted use, dstrbuto, ad reproducto ay medum, provded the orgal work s properly cted. Abstract I ths paper we prove large ad moderate devatos prcples for the kerel estmator of a dstrbuto fucto troduced by Nadaraya Some ew estmates for dstrbuto fuctos. Theory Probab. Appl. 9, We provde results both for the potwse ad the uform devatos. Mathematcs Subject Classfato: 62E20, 60F10 Keywords: Dstrbuto estmato; Large ad Moderate devatos prcples 1 Itroducto Let X 1,...,X be depedet, detcally dstrbuted of radom varables, ad let f ad F deote respectvely the probablty desty of X 1 ad the dstrbuto fucto of X 1. Nadaraya (1964) troduce a kerel K (that s, a fucto satsfyg R K(x)dx = 1), a fucto K (that s, a fucto defed by K (z) = z K (u) du), ad a badwdth (h ) (that s, a sequece of postve real umbers that goes to zero). The estmator proposed by Nadaraya (1964) to estmate the dstrbuto fucto F at the pot x s gve by F (x) = 1 ( ) x Xk K. (1) h

2 872 Yousr Slaou Some theoretcal propertes of the estmator F have bee vestgated (see amog may others, Nadaraya (1964), Ress (1981), ad Hll (1985)). Ress (1981) ad Falk (1983) showed that the kerel dstrbuto estmator (1) have a asymptotcally better performace tha emprcal dstrbuto fucto, whch does ot take to accout the smoothess of F. Recetly, large ad moderate devatos results have bee proved for the wellkow orecursve kerel desty estmator troduced by Roseblatt (1956) (see also Parze, 1962). The large devatos prcple has bee studed by Loua (1998) ad Worms (2001). Gao (2003) ad Mokkadem et al. (2005) exted these results ad provde moderate devatos prcples. The purpose of ths paper s to establsh large ad moderate devatos prcples for the orecursve dstrbuto estmator (1). Let us frst recall that a R m -valued sequece (Z ) 1 satsfes a large devatos prcple (LDP) wth speed (ν ) ad good rate fucto I f : 1. (ν ) s a postve sequece such that lm ν = ; 2. I : R m 0, has compact level sets; 3. for every borel set B R m, f x B I (x) lm f ν 1 log P Z B lm sup ν 1 log P Z B f I (x), x B where B ad B deote the teror ad the closure of B respectvely. Moreover, let (v ) be a oradom sequece that goes to fty; f (v Z ) satsfes a LDP, the (Z ) s sad to satsfy a moderate devatos prcple (MDP). The frst am of ths paper s to establsh potwse LDP for the kerel dstrbuto estmator (1). We show that usg the badwths defed as h = h () for all, where h s a regularly varg fucto wth expoet ( a), a 0, 1. We prove that the sequece (F (x) F (x)) satsfes a LDP wth speed () ad the rate fucto defed as follows: { ( ) f F (x) 0, Ix : t F (x) I 1+ t F (x) (2) f F (x) =0, I x (0) = 0 ad I x (t) =+ for t 0. where I (t) = sup u R {ut ψ (u)} ψ (u) = exp (u) 1.

3 Large ad moderate devato prcples 873 Our secod am s to provde potwse MDP for the dstrbuto estmator defed by (1). For ay postve sequece (v ) satsfyg lm v v 2 = ad lm =0 ad geeral badwdths (h ), we prove that the sequece v (F (x) F (x)) satsfes a LDP of speed (/v 2) ad rate fucto J x (.) defed by { f f (x) 0, J x : t t2 2F (x) f f (x) =0, J x (0) = 0 ad J x (t) =+ for t 0. (3) Fally, we gve a uform verso of the prevous results. More precsely, let U be a subset of R; we establsh large ad moderate devatos prcples for the sequece (sup F (x) F (x) ). 2 Assumptos ad ma results We defe the followg class of regularly varyg sequeces. Defto 1. Let γ R ad (v ) 1 be a oradom postve sequece. We say that (v ) GS(γ) f lm 1 v 1 = γ. (4) + v Codto (4) was troduced by Galambos ad Seeta (1973) to defe regularly varyg sequeces (see also Bojac ad Seeta, 1973). Typcal sequeces GS (γ) are, for b R, γ (log ) b, γ (log log ) b, ad so o. 2.1 Potwse LDP for the Nadaraya s dstrbuto estmator To establsh potwse LDP for F, we eed the followg assumptos. (L1) K : R R s a bouded ad tegrable fucto satsfyg R K (z) dz =1, ad R zk (z) dz =0. (L2) (h ) GS( a) wth a 0, 1.

4 874 Yousr Slaou The followg Theorem gves the potwse LDP for F ths case. Theorem 1 (Potwse LDP for Nadaraya s dstrbuto estmator). Let Assumptos (L1) ad (L2) hold ad assume that F s cotuous at x. The, the sequece (F (x) F (x)) satsfes a LDP wth speed () ad rate fucto defed by (2). 2.2 Potwse MDP for the Nadaraya s dstrbuto estmator Let (v ) be a postve sequece; we assume that (M1) K : R R s a cotuous, bouded fucto satsfyg R K (z) dz =1, ad, R zk (z) dz = 0 ad R z2 K (z) dz <. (M2) (h ) GS( a) wth a 0, 1. (M3) F s bouded, twce dfferetable, ad F (2) (x) s bouded. v (M4) lm v = ad lm 2 =0. The followg Theorem gves the potwse MDP for F. Theorem 2 (Potwse MDP for the kerel dstrbuto estmator (1)). Let Assumptos (M1) (M4) hold ad assume that F s cotuous at x. The, the sequece (F (x) F (x)) satsfes a MDP wth speed (/v) 2 ad rate fucto J x defed (3). 2.3 Uform LDP ad MDP for the Nadaraya s dstrbuto estmator To establsh uform large devatos prcples for the dstrbuto estmator defed by (1) o a bouded set, we eed the followg assumptos: (U1) ) R zk (z) dz = 0 ad R z2 K (z) dz <. ) K s Hölder cotuous. (U2) F s bouded, twce dfferetable, ad, sup x R F (2) (x) <. v (U3) lm 2 log v =0. Set U R; order to state a compact form the uform large ad moderate devatos prcples for the dstrbuto estmator defed by (1) o U, we set: g U (δ) = { ( ) F U, I 1+ δ F U, whe v 1, (L1) ad (L2) hold δ 2 2 F U, whe v, (M1) (M4) hold g U (δ) = m {g U (δ),g U ( δ)}

5 Large ad moderate devato prcples 875 where F U, = sup F (x). Remark 1. The fuctos g U (.) ad g U (.) are o-egatve, cotuous, creasg o 0, + ad decreasg o, 0, wth a uque global mmum 0 ( g U (0) = g U (0) = 0). They are thus good rate fuctos (ad g U (.) s strctly covex). Theorem 3 below states uform LDP o U the case U s bouded, ad Theorem 4 the case U s ubouded. Theorem 3 (Uform devatos o a bouded set for the kerel dstrbuto estmator (1)). Let (U1) (U3) hold. The for ay bouded subset U of R ad for all δ>0, lm 1 v 2 log P sup v F (x) F (x) δ = g U (δ) (5) To establsh uform large devatos prcples for the dstrbuto estmator (1) o a ubouded set, we eed the followg addtoal assumptos: (U4) ) There exsts β>0 such that R x β f (x) dx <. ) F s uformly cotuous. (U5) There exsts τ>0 such that z z τ K (z) s a bouded fucto. (U6) ) There exsts ζ>0 such that R z ζ K (z) dz < ) There exsts η>0 such that z z η F (z) s a bouded fucto. Theorem 4 (Uform devatos o a ubouded set for the estmator defed by (1)). Let (U1) (U6) hold. The for ay subset U of R ad for all δ>0, g U (δ) lm f lm sup 1 v 2 log P sup v F (x) F (x) δ 1 v sup 2 log P v F (x) F (x) δ β β +1 g U (δ) The followg corollary s a straghtforward cosequece of Theorem 4. Corollary 1. Uder the assumptos of Theorem 4, f R x ξ F (x) dx < for all ξ R, the for ay subset U of R, lm 1 v 2 log P sup v F (x) F (x) δ = g U (δ) (6) Commet. Sce the sequece (sup F (x) F (x) ) s postve ad sce g U s cotuous o 0, +, creasg ad goes to fty as δ, the applcato of Lemma 5 Worms (2001) allows to deduce from (5) or (6) that sup F (x) F (x) satsfes a LDP wth speed () ad good rate fucto g U o R+.

6 876 Yousr Slaou 3 Proofs Throught ths secto we use the followg otato: ( ) x Xk Y k, = K h (7) Notg that, vew of (1), we have F (x) E F (x) = 1 (Y k, E Y k, ) Let (Ψ ) ad (B ) be the sequeces defed as Ψ (x) = 1 (Y k, E Y k, ) B (x) = E F (x) F (x) We have: F (x) F (x) =Ψ (x)+b (x) (8) Theorems 1, 2, 3 ad 4 are cosequeces of (8) ad the followg propostos. Proposto 1 (Potwse LDP ad MDP for (Ψ )). 1. Uder the assumptos (L1) ad (L2), the sequece (F (x) E (F (x))) satsfes a LDP wth speed () ad rate fucto I x. 2. Uder the assumptos (M1) (M4), the sequece (v Ψ (x)) satsfes a LDP wth speed (/v 2 ) ad rate fucto J x. Proposto 2 (Uform LDP ad MDP for (Ψ )). 1. Let (U1) (U3) hold. The for ay bouded subset U of R ad for all δ>0, lm 1 v 2 log P sup v Ψ (x) δ = g U (δ) 2. Let (U1) (U6) hold. The for ay subset U of R ad for all δ>0, g U (δ) lm f 1 v 2 log P sup v Ψ (x) δ lm sup 1 v sup 2 log P v Ψ (x) δ ξ ξ + d g U (δ)

7 Large ad moderate devato prcples 877 Proposto 3 (Potwse ad uform covergece rate of (B )). Let Assumptos (M1) (M3) hold. 1. If f s cotuous at x. We have If a 1/3, the If a>1/3, the B (x) =O ( h 2 ). ( ) B (x) =o 1 h. 2. If (U2) holds, the: If a 1/3, the sup B (x) = O ( h) 2. x R If a>1/3, the ( ) sup B (x) = o 1 h. x R Set x R; sce the assumptos of Theorems 1 guaratee that lm B (x) = 0, Theorem 1 s a straghtforward cosequece of the applcato of Part 1 (respectvely of Part 2) of Proposto 1. Moreover, uder the assumptos of Theorem 2, we have by applcato of Proposto 3, lm v B (x) = 0; Theorem 2 thus straghtfully follows from the applcato of Part 3 of Proposto 1. Faly, Theorem 3 ad 4 follows from Proposto 2 ad the secod part of Proposto 3. We ow state a prelmary lemma, whch wll be used the proof of Proposto 1. For ay u R, Set ( Λ,x (u) = 1 v exp 2 log E u ) Ψ (x) v Λ L x (u) = F (x)(ψ (u) u), Λ M u2 x (u) = 2 F (x) Lemma 1. Covergece of Λ,x 1. (Potwse covergece) If F s cotuous at x, the for all u R where Λ x (u) = lm Λ,x (u) =Λ x (u) (9) { Λ L x (u) whe v 1 Λ M x (u) whe v

8 878 Yousr Slaou 2. (Uform covergece) If F s uformly cotuous, the the covergece (9) holds uformly x U. Our proofs are ow orgazed as follows: Lemma 1 s proved Secto 3.1, Proposto 1 Secto 3.4 ad Proposto 2 Secto Proof of Lemma 1. Set u R, u = u/v ad a =. We have: Λ,x (u) = v2 log E exp (u a Ψ (x)) a ( ) = v2 log E exp u (Y k, E Y k, ) a = v2 a log E exp (u Y k, ) uv E Y 1, By Taylor expaso, there exsts c k, betwee 1 ad E exp (u Y k, ) such that log E exp (u Y k, ) = E exp (u Y k, ) 1 1 (E exp (u 2c 2 Y k, ) 1) 2 k, ad Λ,x ca be rewrte as Λ,x (u) = v2 a E exp (u Y k, ) 1 v2 2a 1 c 2 k, (E exp (u Y k, ) 1) 2 uv E Y 1, (10) Frst case: v. A Taylor s expaso mples the exstece of c k, betwee 0 ad u Y k, such that E exp (u Y k, ) 1 = u E Y k, u2 E Yk, u3 E Yk, 3 ec k, Therefore, Λ,x (u) = 1 2 u2 a v2 2a E Yk, 2 1 u + 6 u2 a 1 c 2 k, (E exp (u Y k, ) 1) 2 E Yk, 3 ec k, = 1 2 u2 F (x)+r,x (1) (u)+r(2),x (u) (11)

9 Large ad moderate devato prcples 879 wth R (1),x (u) = u2 R (2) R u 3,x (u) = v K (z) K ( z)f (x + zh ) F (x) dz a E Yk 3 e c k, v2 2a 1 c 2 k, (E exp (u Y k, ) 1) 2 Sce F s cotuous, we have lm F (x + zh ) F (x) = 0, ad thus, by the domated covergece theorem, (M1) mples that lm K (z) K ( z) F (x + zh ) F (x) dz =0, R R (1) t follows that lm,x (u) =0. Moreover, vew of (7), we have Y k, K, the c k, u Y k, u K (12) Notg that E Y k, 3 3 F R K (z) K2 (z) dz. Hece, t follows from (12), there exsts a postve costat c 1 such that, for large eough, u 3 1 v a E Yk 3 e c k, c 1 e u K u3 F v K (z) K 2 (z) dz (13) R whch goes to 0 as sce v. I the same way, there exsts a postve costat c 2 such that, for large eough, v 2 1 (E exp (u Y k, ) 1) 2 2a c 2 k, v2 2a (E exp (u Y k, ) 1) 2 ( u 2 c 2 2 h f 2 exp ( u K ) R (2) The combato of (13) ad (14) esures that lm obta from (11), lm Λ,x (u) =Λ M x (u). 2 K ( z) dz) (14) R,x (u) = 0. The, we

10 880 Yousr Slaou Secod case: (v ) 1. It follows from (10), that Λ,x (u) = 1 a ue Y 1, E exp (uy k, ) 1 1 2a 1 c 2 k, (E exp (uy k, ) 1) 2 Moreover, usg tegrato by parts, we get Λ,x (u) = uf (x) K (z) (exp (uk ( z)) 1) dz R,x (3) (u)+r,x (4) (u) (15) R wth R,x (3) (u) = 1 2a R,x (4) (u) = u R 1 c 2 k, (E exp (uy k, ) 1) 2 K (z) (exp (uk ( z)) 1) F (x + zh ) F (x) dz. R (3) It follows from (14), that lm,x (u) =0. Sce e t 1 t e t, we have R (4),x (u) u 2 e u K K (z) K( z) F (x + zh ) F (x) dz. R The, the domated covergece theorem esures that lm R,x (4) (u) =0. I the case F s uformly cotuous, set ε>0 ad let M>0such that 2 F K (z) K( z) dz ε/2. We eed to prove that for suffcetly z M large sup K (z) K( z) F (x + zh ) F (x) dz ε/2 x R z M whch s a straghtforward cosequece of the uform cotuty of F. The, t follows from (15), that lm Λ,x (u) = uf (x) K (z) (exp (uk ( z)) 1) dz R = F (x) (exp (u) 1 u) = Λ L x (u) ad thus Lemma 1 s proved.

11 Large ad moderate devato prcples Proof of Proposto 1 To prove Proposto 1, we apply Lemma 1 ad the followg result (see Puhalsk, 1994). Lemma 2. Let (Z ) be a sequece of real radom varables, (ν ) a postve sequece satsfyg lm ν =+, ad suppose that there exsts some covex o-egatve fucto Γ defed o R such that 1 u R, lm log E exp (uν Z ) = Γ (u). ν If the Legedre fucto Γ of Γ s a strctly covex fucto, the the sequece (Z ) satsfes a LDP of speed (ν ) ad good rate focto Γ. I our framework, whe v 1, we take Z = F (x) E (F (x)), ν = ad Γ = Λ L x. I ( ths case, ) the Legedre trasform of Γ = ΛL x s the rate fucto I x : t F (x) I 1+ t, sce ψ s strctly covex, the ts Cramer trasform F (x) I s a good rate fucto o R (see Dembo ad Zetou, 1998). Otherwse, whe, v, we take Z = v (F (x) E (F (x))), ν = /v 2 ad Γ = ΛM x ;Γ s the the quadratc rate fucto J x defed (3) ad thus Proposto 1 follows. 3.3 Proof of Proposto 2 I order to prove Proposto 2, we frst establsh some lemmas. Lemma 3. Let φ : R + R be the fucto defed for δ>0as { ( ) (ψ ) 1 1+ δ F φ (δ) = U, whe v 1, (L1) ad (L2) hold δ F U, whe v, (M1) (M4) hold 1. sup u R {uδ sup Λ x (u)} equals g U (δ) ad s acheved for u = φ (δ) > sup u R { uδ sup Λ x (u)} equals g U (δ) ad s acheved for u = φ ( δ) < 0. Proof of Lemma 3 oe beg smlar.. We just prove the frst part, the proof of the secod part Frst case v 1. Sce e t 1+t, for all t, we have ψ (u) u ad therefore, uδ sup Λ x (u) = uδ F U, (ψ (u) u) = ( ) δ F U, u 1+ F U, ψ (u)

12 882 Yousr Slaou The fucto u uδ sup Λ x (u) has secod dervatve F U, ψ (u) < 0 ad thus t has a uque maxmum acheved for ) u 0 =(ψ ) (1+ 1 δ F U, Now, sce ψ s creasg ad sce ψ (0) = 1, we deduce that u 0 > 0. Secod case v. I ths case, we have uδ sup Λ x (u) = uδ u2 2 F U,. The fucto u uδ sup Λ x (u) has secod dervatve F U, < 0 ad thus t has a uque maxmum acheved for δ u 0 = > 0 F U, Lemma 4. I the case whe (v ) 1, let (L1) ad (L2) hold; I the case whe v, let (M1) (M4) hold. The for ay δ>0, v 2 lm log sup P v Ψ (x) δ = g U (δ) v 2 lm log sup P v Ψ (x) δ = g U ( δ) v 2 lm log sup P v Ψ (x) δ = g U ( δ) Proof of Lemma 4. The proof of Lemma 4 s smlar to the proof of Lemma 4 Mokkadem et al. (2006). Lemma 5. Let Assumptos (U1) (U3) hold ad assume that ether (v ) 1or (U4) holds. 1. If U s a bouded set, the for ay δ>0, we have v 2 lm log P sup v Ψ (x) g U (δ) 2. If U s a ubouded set, the, for ay b>0 ad δ>0, v 2 lm sup log P sup v Ψ (x) b g U (δ), x w where w = exp ( b v 2 ).

13 Large ad moderate devato prcples 883 Proof of Lemma 5. Set ρ 0,δ, let β deote ( the ) Hölder order of K, ad K H ts correspodg Hölder orm. Set w = exp b ad v 2 ( R = ρ 2 K H v h β We beg wth the proof of the secod part of Lemma 5. There exst N () pots of R, y () 1,y () 2,...,y () N () such that the ball {x R; x w } ca covered by the { } ( N () balls B () = x R; x y () R ad such that N 2w () 2 R ). Cosderg oly the N () balls that tersect {x U; x w }, we ca wrte For each {1,...,N()}, set x () P sup v Ψ (x) δ, x w ) 1 β {x U; x w } N() =1 B(). B () N() =1 U. We the have: P sup v Ψ (x) δ x B () N () max 1 N() P Now, for ay {1,...,N()} ad ay x B (), ( ) Ψ v Ψ (x) v x () + v ( ) ( x K Xk x () K h + v ( ) x E K Xk K h ( ( ) Ψ v x () v +2 K H ( ) v x () +2v K H h β R β ( ) Ψ v x () + ρ sup v Ψ (x) δ x B () ) X k ) X k h ( x () h x x () h ) β. Hece, we deduce that P sup v Ψ (x) δ, x w ( N () max P Ψ v 1 N() ( Ψ v N () sup P x () x () ) δ ρ ) δ ρ

14 884 Yousr Slaou Further, by defto of N () ad w, we have ad log N () log N () b v log 2 log R v 2 log R = 1 v 2 β log ρ log (2 K H) log v + β log h. The, vew of (U3), we have lm sup v 2 log N () b (16) The applcato of Lemma 4 the yelds v 2 lm sup log P sup v Ψ (x) δ, x w lm sup b g U (δ ρ). v 2 log N () g U (δ ρ) Sce the equalty holds for ay ρ 0,δ, part 2 of Lemma 5 thus follows from the cotuty of g U. Let us ow cosder part 1 of Lemma 5. Ths part s proved by followg the same steps as for part 2, except that the umber N () of balls coverg U s at most the teger part of (Δ/R ), where Δ deotes the dameter of U. Relato (16) the becomes lm sup v 2 log R 0 ad Lemma 5 s proved. Lemma 6. Let (U1) ), (M2) ad (U6) ) hold. Assume that ether (v ) 1or(U3) ad (U6) ) ( hold. ) Moreover assume that F s cotuous. For ay b>0 f we set w = exp b the, for ay ρ>0, we have, for large eough, v 2 sup, x w v h ( ) x K E Xk ρ Proof of Lemma 6. We have v ( ) x Xk E K = v K (z) F (x + zh ) dz. (17) R h

15 Large ad moderate devato prcples 885 Set ρ>0. I the case (v ) 1, we set M such that F K (z) dz ρ/2; z >M t follows that v ( ) x K E Xk h ρ 2 + F (x) K (z) dz + K (z) F (x + zh ) F (x) dz. z M z >M Lemma 6 the follows from the fact that F fulflls (U6) ). As matter of fact, ths codtos mples that lm x, F (x) = 0 ad that the thrd term the rght-had-sde of the prevous equalty goes to 0 as (by the domated covergece). Let us ow assume that lm v = ; relato (17) ca be rewrtte as v E K ( ) x Xk h = v K (z) F (x + zh ) dz z w /2 +v K (z) F (x + zh ) dz. z w /2 Frst, sce x w ad z w /2, we have x + zh w (1 h /2) w /2 for large eough. Moreover, vew of assumptos (U3), for all ξ>0, lm v w ξ { = lm exp bξ ( 1 1 v 2 bξ v 2 log v )} =0. (18) Set M f = sup x R x η F (x). Assumpto (U6) ) ad equato (18) mple that, for suffcetly large, sup v K (z) F (x + zh ) dz x w z w /2 M f sup v K (z) x + zh η dz x w z w /2 2 η v M f w η K (z) dz R ρ 2.

16 886 Yousr Slaou Moreover, vew of (U3), (U6) ) ad (18), for suffcetly large, sup v K (z) F (x + zh ) dz x w z >w /2 2 ζ v M f z ζ K (z) dz w ζ z >w /2 ρ 2. Ths cocludes the proof of Lemma 6. Sce K s a bouded fucto that vashes at fty, we have lm x Ψ (x) = 0 for every 1. Moreover, sce K s assumed to be cotuous, Ψ s cotuous, ad ths esures the exstece of a radom varable s such that Ψ (s ) = sup Ψ (x). Lemma 7. Let Assumptos (U1) (U3), (U4) ) ( ad (U5) ) hold. Suppose ether (v ) 1or (H6) hold. For ay b>0, set w = exp b ; for ay δ>0, we have v 2 lm sup v 2 log P s w ad Ψ (s ) δ bβ (19) Proof of Lemma 7. We frst ote that s U ad therefore s w ad v Ψ (s ) δ s w ad v ( ) s X k K h + v E ( ) s X k K h δ s w ad v ( ) K s X k δ h v ( ) sup E K s X k x w, Set ρ 0,δ; the applcato of Lemma 6 esures that, for large eough, h s w ad v Ψ (s ) δ s w ad v ( ) s X k K δ ρ. h

17 Large ad moderate devato prcples 887 Set κ = sup x R x γ K (x) (see Assumpto (U5)). We obta, for suffcetly large, s w ad v Ψ (s ) δ ( ) s X k s w ad k {1,...,} such that v K δ ρ s w ad k {1,...,} such that κh γ v 1 s X k γ (δ ρ) κv h γ 1 γ s w ad k {1,...,} such that s X k δ ρ κv h γ 1 γ s w ad k {1,...,} such that X k s δ ρ s w ad k {1,...,} such that X k w (1 u,k ) wth ( ) u,k = w 1 v 1 1 γ κ γ h. δ ρ Moreover, we ca wrte u,k as ( u,k = exp b 1 v2 log v v 2 1 bγ v2 log (h ) h ) ( 1 κ ) 1 γ b δ ρ ad assumpto (U3) esure that lm u,k = 0, t the follows that 1 u,k > 0 for suffcetly large; therefore we ca deduce that (see Assumpto (U4) )): P s w ad v Ψ (s ) δ Cosequetly, =1 =1 P X k β w β (1 u,k) β E ( X k β) w β E ( X 1 β) w β (1 u,k) β max (1 u,k) β. 1 k v 2 log P s w ad v Ψ (s ) δ v2 log + log E ( X 1 β) bβv 2 β log max (1 u,k) 1 k ad, thaks to assumptos (U3), t follows that lm sup v 2 log P s w ad v Ψ (s ) δ bβ, whch cocludes the proof of Lemma 7.,

18 888 Yousr Slaou 3.4 Proof of Proposto 2 Let us at frst ote that the lower boud v 2 lm f log P sup v Ψ (x) δ g U (δ) (20) follows from the applcato of Proposto 1 at a pot x 0 U such that F (x 0 )= F U,. I the case U s bouded, Proposto 2 s thus a straghtforward cosequece of (20) ad the frst part of Lemma 5. Let us ow cosder the case U s ubouded. Set δ>0 ad, for ay b>0 set w = exp P sup P v Ψ (x) δ sup v Ψ (x) δ, x w t follows from Lemmas 5 ad 7 that v 2 lm sup log P sup v Ψ (x) δ ad cosequetly lm sup v 2 log P sup v Ψ (x) δ ( b v 2 ). Sce, by defto of s, + P s w ad v Ψ (x) δ, max { bβ; b g U (δ)} f max { bβ; b g U (δ)}. b>0 Sce the fmum the rght-had-sde of the prevous boud s acheved for b = g U (δ) / (β + 1) ad equals β g U (δ) / (β + 1), we obta the upper boud v 2 lm sup log P sup v Ψ (x) δ β β +1 g U (δ) whch cocludes the proof of Proposto Proof of Proposto 3 It follows from (1), that E F (x) = ( ) x y K f (y) dy R h = K (z) F (x + zh ) dz = R F (x)+ 1 2 h2 F (2) (x) z 2 K (z) dz + η (x) (21) R

19 Large ad moderate devato prcples 889 wth η (x) = R F (x + zh ) F (x) zh F (x) 1 2 z2 h 2 F (2) (x) K (z) dz Sce F s cotuous, we have lm F (x + zh ) F (x) zh F (x) 1 2 z2 h 2 F (2) (x) = 0, ad thus by the domated covergece theorem, we have lm η (x) = 0, ad thus Part 1 of Proposto 3 s completed. Sce sup x R F (2) (x) < +, Part 2 follows. Refereces A. Azzal, A ote o the estmato of a dstrbuto fucto ad quatles by a kerel method, Bometrka, 68 (1981), R. Bojac ad E. Seeta, A ufed theory of regularly varyg sequeces, Math. Z, 134 (1973), A. Dembo ad O. Zetou, Large devatos techques ad applcatos. Sprger, Applcato of mathematcs, New-York, 1998 M. Falk, Relatve effcecy ad defcecy of kerel type estmator of smooth dstrbuto fuctos, Stat. Neerl, 37 (1983), J. Galambos ad E. Seeta, Regularly varyg sequeces, Amer. Math. Soc, 41 (1973), F. Gao, Moderate devatos ad large devatos for kerel desty estmators, J. Theoret. Probab, 16 (2003), P.D. Hll, Kerel estmato of a dstrbuto fucto, Commu. Stat-Theor. M, 14 (1985), D. Loua, Large devatos lmt theorems for the kerel desty estmator, Scad. J. Statst, 25 (1998), A. Mokkadem & M. Pelleter ad J. Worms, Large ad moderate devatos prcples for kerel estmato of a multvarate desty ad ts partal dervatves, Austral. J. Statst, 4 (2005), A. Mokkadem, M. Pelleter ad B. Tham, Large ad moderate devatos prcples for recursve kerel estmato of a multvarate desty ad ts partal dervatves, Serdca Math. J, 32 (2006), E.A. Nadaraya, Some ew estmates for dstrbuto fuctos. Theory Prob. Appl, 9 (1964),

20 890 Yousr Slaou E. Parze, O estmate of a probablty desty ad mode, A. Math. Statst, 33 (1962), A.A. Puhalsk, The method of stochastc expoetals for large devatos, Stochastc Process. Appl, 54 (1994), R.D. Ress, Noparametrc estmato of smooth dstrbuto fucto, Scad. J. Statst, 8 (1981), M. Roseblatt, Remarks o some oparametrc estmate of a desty fucto, A. Math. Statst, 27 (1956), J. Worms, Moderate ad large devatos of some depedet varables, Part II: Some kerel estmators, Math. Methods Statst, 10 (2001), Receved: May 1, 2014

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables Iteratoal Joural of Cotemporary Mathematcal Sceces Vol. 07 o. 8 9-05 HIKARI Ltd www.m-hkar.com https://do.org/0.988/jcms.07.799 A ew Famly of Dstrbutos Usg the pdf of the rth Order Statstc from Idepedet

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables Aas da Academa Braslera de Cêcas 2006 784: 65-62 Aals of the Brazla Academy of Sceces ISSN 000-3765 www.scelo.br/aabc Marckewcz strog laws for lear statstcs of ρ -mxg sequeces of radom varables GUANG-HUI

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Application of Generating Functions to the Theory of Success Runs

Application of Generating Functions to the Theory of Success Runs Aled Mathematcal Sceces, Vol. 10, 2016, o. 50, 2491-2495 HIKARI Ltd, www.m-hkar.com htt://dx.do.org/10.12988/ams.2016.66197 Alcato of Geeratg Fuctos to the Theory of Success Rus B.M. Bekker, O.A. Ivaov

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system

Uniform asymptotical stability of almost periodic solution of a discrete multispecies Lotka-Volterra competition system Iteratoal Joural of Egeerg ad Advaced Research Techology (IJEART) ISSN: 2454-9290, Volume-2, Issue-1, Jauary 2016 Uform asymptotcal stablty of almost perodc soluto of a dscrete multspeces Lotka-Volterra

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Research Article Gauss-Lobatto Formulae and Extremal Problems

Research Article Gauss-Lobatto Formulae and Extremal Problems Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2008 Artcle ID 624989 0 pages do:055/2008/624989 Research Artcle Gauss-Lobatto Formulae ad Extremal Problems wth Polyomals Aa Mara Acu ad

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

On the Interval Zoro Symmetric Single Step. Procedure IZSS1-5D for the Simultaneous. Bounding of Real Polynomial Zeros

On the Interval Zoro Symmetric Single Step. Procedure IZSS1-5D for the Simultaneous. Bounding of Real Polynomial Zeros It. Joural of Math. Aalyss, Vol. 7, 2013, o. 59, 2947-2951 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/ma.2013.310259 O the Iterval Zoro Symmetrc Sgle Step Procedure IZSS1-5D for the Smultaeous

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

ON THE LOGARITHMIC INTEGRAL

ON THE LOGARITHMIC INTEGRAL Hacettepe Joural of Mathematcs ad Statstcs Volume 39(3) (21), 393 41 ON THE LOGARITHMIC INTEGRAL Bra Fsher ad Bljaa Jolevska-Tueska Receved 29:9 :29 : Accepted 2 :3 :21 Abstract The logarthmc tegral l(x)

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

On the convergence of derivatives of Bernstein approximation

On the convergence of derivatives of Bernstein approximation O the covergece of dervatves of Berste approxmato Mchael S. Floater Abstract: By dfferetatg a remader formula of Stacu, we derve both a error boud ad a asymptotc formula for the dervatves of Berste approxmato.

More information

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions. It. Joural of Math. Aalyss, Vol. 8, 204, o. 4, 87-93 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/jma.204.30252 Mult Objectve Fuzzy Ivetory Model wth Demad Depedet Ut Cost ad Lead Tme Costrats A

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data

Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data ,, ProbStat Forum, Volume, Aprl 08, Pages 36 5 ISSN 0974-335 ProbStat Forum s a e-joural. For detals please vst www.probstat.org. Asymptotc ormalty of a recursve estmator of a codtoal hazard fucto wth

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Online Appendix to: Decoupling Noise and Features via Weighted l 1 -Analysis Compressed Sensing

Online Appendix to: Decoupling Noise and Features via Weighted l 1 -Analysis Compressed Sensing Ole Appedx to: Decouplg Nose ad Features va Weghted l -Aalyss Compressed Sesg RUIMIN WANG, ZHOUWANG YANG, LIGANG LIU, JIANSONG DENG, ad FALAI CHEN Uversty of Scece ad Techology of Cha I ths appedx, we

More information

J P S S. A comprehensive journal of probability and statistics for theorists, methodologists, practitioners, teachers, and others

J P S S. A comprehensive journal of probability and statistics for theorists, methodologists, practitioners, teachers, and others ISSN 76-338 J P S S A comprehesve joural of probablty ad statstcs for theorsts methodologsts practtoers teachers ad others JOURNAL OF PROBABILITY AND STATISTICAL SCIENCE Volume 8 Number August 00 Joural

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

Chain Rules for Entropy

Chain Rules for Entropy Cha Rules for Etroy The etroy of a collecto of radom varables s the sum of codtoal etroes. Theorem: Let be radom varables havg the mass robablty x x.x. The...... The roof s obtaed by reeatg the alcato

More information

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods Malaysa Umodalty Joural Tests of Mathematcal for Global Optmzato Sceces (): of 05 Sgle - 5 Varable (007) Fuctos Usg Statstcal Methods Umodalty Tests for Global Optmzato of Sgle Varable Fuctos Usg Statstcal

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler Mathematcal ad Computatoal Applcatos, Vol. 8, No. 3, pp. 293-300, 203 BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Aysegul Ayuz Dascoglu ad Nese Isler Departmet of Mathematcs,

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

arxiv:math/ v2 [math.gr] 26 Feb 2001

arxiv:math/ v2 [math.gr] 26 Feb 2001 arxv:math/0101070v2 [math.gr] 26 Feb 2001 O drft ad etropy growth for radom walks o groups Aa Erschler (Dyuba) e-mal: aad@math.tau.ac.l, erschler@pdm.ras.ru 1 Itroducto prelmary verso We cosder symmetrc

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Effect of Mean on Variance Function Estimation in Nonparametric Regression

Effect of Mean on Variance Function Estimation in Nonparametric Regression Effect of Mea o Varace Fucto Estmato Noparametrc Regresso Le Wag, Lawrece D. Brow, T. Toy Ca ad Mchael Leve Abstract Varace fucto estmato oparametrc regresso s cosdered ad the mmax rate of covergece s

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

On Modified Interval Symmetric Single-Step Procedure ISS2-5D for the Simultaneous Inclusion of Polynomial Zeros

On Modified Interval Symmetric Single-Step Procedure ISS2-5D for the Simultaneous Inclusion of Polynomial Zeros It. Joural of Math. Aalyss, Vol. 7, 2013, o. 20, 983-988 HIKARI Ltd, www.m-hkar.com O Modfed Iterval Symmetrc Sgle-Step Procedure ISS2-5D for the Smultaeous Icluso of Polyomal Zeros 1 Nora Jamalud, 1 Masor

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE Joural of Pure ad Appled Mathematcs: Advaces ad Applcatos Volume 4 Number 205 Pages 77-87 Avalable at http://scetfcadvaces.co. DOI: http://.do.org/0.8642/jpamaa_7002534 ONE GENERALIZED INEQUALITY FOR CONVEX

More information