Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data

Size: px
Start display at page:

Download "Asymptotic normality of a recursive estimator of a conditional hazard function with functional stationary ergodic data"

Transcription

1 ,, ProbStat Forum, Volume, Aprl 08, Pages 36 5 ISSN ProbStat Forum s a e-joural. For detals please vst Asymptotc ormalty of a recursve estmator of a codtoal hazard fucto wth fuctoal statoary ergodc data Goutal A, Mechab B, Issa M A, Soudd Y Laboratory of Statstc ad Processus Stochastc, Uversty of Djllal Labes, L.P 89, Sd Bel Abbes 000, Algera. Abstract. I ths paper, we vestgate a recursve kerel estmator of the codtoal hazard fucto wheever fuctoal statoary ergodc data are cosdered. Uder the assumpto of ergodcty, the ovelty of our approach s that we do ot requre depedece of the observatos. It s show that, uder some wld codtos, the recursve kerel estmate of the three parameters codtoal desty, codtoal dstrbuto ad codtoal hazard are asymptotcally ormally dstrbuted.. Itroducto Recetly there has bee a creasg terest the study of fuctoal data. For a overvew of the preset state o oparametrc fuctoal data FDA, we refer to the works of 4 ad 3, ad the refereces there. Codtoal hazard estmato wth a fuctoal explaatory varable ad a scalar respose acqured cosderable terest the statstcal lterature. The frst work was proposed by Ferraty et al. 5, where they troduce a kerel estmator ad prove some asymptotc propertes wth rates varous stuatos cludg cesored ad/ or depedet varables. Qutela-del-Río exteded the results of Ferraty et al. 5 by calculatg the bas ad varace of these estmates, ad establshg ther asymptotc ormalty. I the case of completely observed data, aother estmators have bee proposed for the codtoal hazard fucto by dfferet approaches. I 04, Attouch ad Belabed have studed the oparametrc estmator of the codtoal hazard fucto usg the k Nearest Neghbors k-nn estmato method ad they have show ts asymptotc propertes the case of depedet data. Aother approach has bee proposed by Massm ad Mechab based o the local lear method, they have establshed the almost complete covergece of the proposed estmator. I the case of the fuctoal spatal data, the works o the codtoal hazard fucto s lmted ad we ca refer to 9 where they studed the almost complete covergece of the kerel type estmate. These authors studed 0 the mea squared covergece rate ad proved the asymptotc ormalty of the 00 Mathematcs Subject Classfcato. 6G05, 60G4, 6F. Keywords. Asymptotc ormalty, Codtoal hazard fucto, Fuctoal data, Recursve estmate, Statoary ergodc processes. Receved: 8 September 07 ; Revsed: 6 November 07, 04 March 08; Accepted: 6 March 08 mal addresses: amasara90@hotmal.com Goutal A, mechaboub@yahoo.fr Mechab B, bemht3@yahoo.com Issa M A, souddyoucef@yahoo.fr Soudd Y

2 proposed estmator. Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages I recet years, the statstcal modelg for fuctoal ergodc data has bee a creasg terest ad a great mportace varous felds. The geeral framework of ergodc fuctoal data has bee tated by Laïb ad Loua 7,8 who stated cossteces wth rates together wth the asymptotc ormalty of the regresso fucto estmate. I ths topc of ergodc data, several works have bee publshed, for example, Gherballah et al. 6 showed the almost complete covergece wth rate of a famly of robust oparametrc estmators for regresso fucto. More recetly, Ardjou et al. treated the almost complete covergece ad the asymptotc ormalty of the estmator of codtoal mode, Bezad et al. 3 studed the almost complete rate covergece of fuctoal recursve kerel of the codtoal quatles. Ths paper s orgazed as follows: Secto troduces the estmator of the codtoal hazard fucto. I secto 3 we wll defe some otatos ad hypothess. The asymptotc ormalty of the proposed estmator of the codtoal hazard fucto s gve Secto 4. Fally, the proofs of our results are gve the Appedx.. The recursve estmato of the codtoal hazard fucto Let X, Y,..., be a sequece of strctly statoary ergodc processes. Where X are values semmetrc space F, d ad Y are real-valued radom varables. N x wll deote a fxed eghborhood of x. We assume that the regular verso of the codtoal probablty of Y gve X exsts. Moreover, we suppose that, for all x N x the codtoal dstrbuto fucto of Y gve X x, the recursve kerel estmator of the codtoal hazard fucto hy x such that s hy x fy x, for y R ad F y x < F y x ĥy x fy x F, y R. y x We defe the recursve kerel estmator of the codtoal dstrbuto fucto by F y x Ka dx, X Hb y Y Ka dx, X where K s the kerel, H s a strctly creasg dstrbuto fucto ad a, b are a sequeces of postve real umbers such that lm a lm b The recursve kerel estmator f. x of f. x s gve by fy x b Ka dx, X H b y Y Ka dx, X. 3. Notatos ad hypothess The assumptos that we wll eed our study are the followg: The fuctoal ergodc data s carred out by the followg cosderato: for,...,, we put F k s the σ-

3 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages algebra geerated by X, Y,..., X k, Y k. We pose B k s the σ-algebra geerated by X, Y,..., X k, Y k, X k+. We suppose that the strctly statoary ergodc process X, Y N satsfes H The fucto φx, h : PX Bx, h > 0, h > 0, where Bx, h : {x F/dx, x < h}. For all,..., there exsts a determstc fucto φ x,. such that almost surely 0 < PX Bx, h F φ x, h, h > 0 ad φ x, h 0 as h 0. PX Bx, h F For all sequece h,..., > 0, φx, h H Let S be a compact set of R, the codtoal dstrbuto fucto F. x s such that, y S, β > 0, f y S F y x > β, y,y S S, x,x N x N x wth C > 0, β > 0, β > 0.. F y x F y x C dx, x β + y y β The desty f. x s such that, y S, α > 0 fy x < α, y,y S S, x,x N x N x fy x fy x C dx, x β + y y β wth C > 0, β > 0, β > 0. H3 y, y R H j y H j y C y y, for j 0, t β H tdt < ad H tdt <. H4 K s a fucto wth support 0, such that 0 < C < Kt < C <. H5 The badwdths a, b satsfed : t 0, ad lm + lm + φ x ϕ x where ϕ x φx, a. Commets o hypotheses: φx, ta φx, a β xt a β φx, a + b β φx, a The codto H volves the ergodc ature of the data ad the small ball techques used ths paper. The hypothess H s a drect cosequece of Beck s theorem. The assumpto H presets the Lpschtz s codto to the codtoal dstrbuto fucto ad codtoal desty fucto, t meas that the both fuctos are cotuous wth respect to each varable ad permts us to evaluate the bas term wthout usg the dfferetablty. Hypothess H3 mpose some regularty codtos upo the dstrbuto fucto H used our estmates. The codto H4 s very stadard oparametrc fucto estmato. The assumptos H5 s a techcal codto. 0

4 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Ma result: Asymptotc ormalty Theorem 4.. Uder hypotheses H-H5, we have for all x A / ϕ x D σh ĥy x hy x N 0, as 3 x, y where A {x, σh x, y 0} ad σ h x, y α hy x α F y x wth α K 0 K sβ x sds ad α K 0 K s β x sds. The proof of ths theorem s based o the followg decomposto ad lemmas below: ĥy x hy x F y x fy x fy x + hy x F y x F y x F. 4 y x Lemma 4.. Uder hypothess of the theorem 4., we have / ϕ x σf x, y F y x F y x D N 0, as 5 where σf x, y α F y x F y x. α Lemma 4.3. Uder hypothess of the theorem 4., we have / ϕ x x, y fy x fy x D N 0, as 6 σ f where σf x, y α fy x α. The proof of lemma 4. s based o the followg decomposto where we put, for ay x F, ad,..., ; K Ka dx, X ad H Hb Y y. We start by wrtg F y x F y x B, x, y + R, x, y F D x + Q, x, y F D x 7 where Q, x, y F N y x F N y x F y x F D x F D x, B, x, y F N y x F D x ad R, x, y B, x, y F D x F D x

5 wth F N y x F N y x F D x F D x Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages ϕ ϕ ϕ ϕ Ka dx, X Hb Y y, Ka dx, X Hb Y y F, Ka dx, X, Ka dx, X F. The proof of the lemma 4. s a cosequece of the followg lemmas, whose proofs are gve the Appedx Lemma 4.4. Uder the hypothess of theorem 4. ϕ x Lemma 4.5. Uder the hypothess H ad H5, we have σ F / Q,x, y D N 0, as. F D y x o p. Lemma 4.6. Uder the hypothess H, H ad H3 we have / ϕ x B,x, y o p as. σ F Lemma 4.7. Uder the hypothess H, H ad H5 we have / ϕ x R,x, y o p as. σ F The proof s based o the followg decomposto ad lemmas below. fy x fy x B, x, y + R, x, y F D x + Q, x, y F D x 8 where wth Q, x, y f N y x f N y x fy x F D x F D x, B, x, y f Ny x F D x fy x ad R, x, y B, x, y fn y x f N y x f N y x f N y x ϕ ϕ b Ka dx, X H b Y y Ka dx, X, b Ka dx, X H b Y y F Ka dx, X.

6 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Lemma 4.8. Uder the hypothess of theorem 4. / ϕ x Q,x, σf y D N 0, as. Lemma 4.9. Uder the hypothess H, H ad H3 we have / ϕ x B,x, σf y o p as. Lemma 4.0. Uder the hypothess H, H ad H5 we have / ϕ x R,x, σf y o p as. 5. Cofdece bads A usual applcato of asymptotc ormalty s to establsh cofdece bads for the estmates. Our goal ths secto s the applcato of our asymptotc ormalty result Theorem 4. to buld the cofdece tervals for the true value of hy x for a gve curve X x. I oparametrc estmato, the asymptotc varace depeds o certa ukow fuctos. I our case, we have σ hx, y α α hy x F y x where hy x, F y x, α ad α are ukow a pror ad have to be estmated practce. The oe ca obta a cofdece bads eve f σh x, y, s fuctoally specfed. Now a plug- estmate for the asymptotc stadard devato σh x, y, ca be easly obtaed usg the estmators ĥy x, F y x, α ad α of hy x, F y x, α ad α respectvely, that s σ hx, y α ĥy x α F y x. We estmate emprcally the costats α ad α, as follows: α φx, a Ka dx, X, α φx, a K a dx, X. Remark that the specal case whe K I 0,, t becomes mmedately that α α. Now the asymptotc cofdece bad at asymptotc level ζ for hy x s gve by ĥy x u ζ σ / h x, y, ĥy x + u ϕ x ζ where u ζ deotes the ζ quatle of the stadard ormal dstrbuto. 6. Cocludg remarks σ / h x, y ϕ x Ths artcle provdes a theoretcal framework about recursve codtoal hazard fucto estmator wth fuctoal statoary ergodc data. The resultg recursve codtoal hazard fucto estmator has

7 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages bee show to be cosstet ad asymptotcally ormally dstrbuted uder approprate codtos. To prove the results, the methodology s based upo the martgale approxmato used 7. The ergodc hypothess used the paper avods complcated probablstc calculatos of the mxg codto. The hypothess H plays a mportat role, whch volve the recursve estmate, the ergodc ature of the data ad the small ball techques. It s clear that ths hypothess s qute mlder tha Lab ad Loua. Ideed, ulke Lab ad Loua 7, t s ot ecessary to wrte approxmately the cocetrato fucto PX Bx, h ad the codtoal cocetrato fucto PX Bx, h F a product of two depedet oegatve fuctos of the ceter ad of the radus. The recursve estmate s very fast practce because the smoothg parameter s lked to the observato X, Y, whch permts to update our estmator for each addtoal observato. It should be oted that our work s a geeralzato of the results obtaed by other authors two dfferet drectos the estmato method ad the data correlato. Ideed, the classcal kerel method used by Ferraty et al. 5 ad Qutela-del-Río ca be cosdered as a specal case of ths study by cosdered that a h K ad b h H. O the other had, the depedet case, codto H s automatcally verfed ad for all,..., take φ x,. φx,. ad we obta the same result gve by Qutela-del-Río whe X, Y are depedet. 7. Appedx Proof of Lemma 4.4. We use the same deas Lab ad Loua 0. For all,...,, we defe ad, we defe ξ η η F. It s easly see that ϕ x η H y F y x K x ϕ x σ F ϕ x σ F Q, x, y ξ as ξ s a tragular array of martgale dffereces accordg the σ-algebra F, we are posto to apply the cetral lmt theorem based o ucodtoal ldeberg codto to establsh the asymptotc ormalty of Q, x, y. Ths ca be doe f we establsh the followg statemets: a b ξ F probablty, ξi ξ >ɛ 0 holds for ay ɛ > 0 Ldeberg codto. Proof of part a ξ F η η F η F η F. The statemet a follows the f we show that:

8 lm Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages η F 0 probablty, lm η F probablty. To prove, we put A η F η F ϕx σ F, we have A ϕ x H y F y x K x F A H y B F y x K x F ϕ x A ϕ x uder H ad H4, we have Cφ x, a K x F C φ x, a H y X F y xk x F Next, a tegrato by parts ad a chage of varable allow to get H y X H tf y b t X dt. Thus, we have H y X F y x C a β combg ths results, we have R η F AC φ x, a ϕ x, a aβ η F a β σ F a β φ x, a ϕ x, a Now, we have to prove, to do ths, we observe that η F A ϕ x, a A ϕ x, a 0 Uder H3. H y F y x K x F K xh y F F y x K xh y F + F y x K x F.

9 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages We put I I I 3 We wrte K xh y F, K xh y F, K x F. I F y x F y x F y x K x F + K xh y F F y x K x F K x F + H y X K x F K x F H y X K x F F y x K x F. Usg the same argumet as those used proof of the part, we obta For I 3, we get so uder H we have ϕ x, a ϕ x, a I o. K x F K φ x, a K x F By combg ths results, we deduce that ϕ x, a K ϕ x, a K u o. lm Proof of part b The Ldeberg codto whch mples that K u φ x, a du φ x, a K φ x, ua du K u φ x, a du ϕ x, a η F, whch complete the proof of part a. ξ I ξ>ɛ 4 η I η>ɛ/. Let a > ad b > such that a + b makg use the Holder s ad Markov s equaltes oe ca wrte

10 for all ɛ > 0 ηi η>ɛ/ Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages η a ɛ/ a/b. Takg C 0 R + ad a + δ, from some δ > 0, such that H y +δ < ad H y F y x +δ X u W +δ u s a cotuous fucto, we obta 4 ηi η>ɛ +δ ϕ x, a C 0 σf ϕ x, a +δ +δ ϕ x, a C 0 σf C 0 ϕ x, a σ F H y F y x +δ K +δ H y F y x +δ K +δ x X ϕ x, a +δ +δ K +δ xw +δ x ϕ x, a +δ x +δ ϕ x, a K +δ x W +δ x W +δ x + W +δ x K +δ x C 0 σf ϕ x +δ +δ C 0 σf K +δ x W +δ x + o. Cosequetly ξi ξ>ɛ 0 as whch completes the proof of lemma. Proof of Lemma 4.5 Observe that F D x ϕ x, a K x K x F + K x F K x K x F + K x F. ϕ x, a ϕ x, a }{{}}{{} T T The proof of the lemma follows the f show that T o as ad T 0 probablty as. For T, Uder H3 ad H we prove that ϕ x, a K x F o as. So, t s easly see that T 0 probablty as. For T, observe that T x L x, where {L x} s a tragular array of martgale dffereces wth respect to the σ-algebra F. Combg the Burkholder equalty see P.H. All ad C.Heyde p3, 980 ad Jese s equalty see

11 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Lab ad Laou p365,0, we obta for ay ɛ > 0, there exsts a costat C 0 > 0 such that P T x > ɛ K C x 0 ɛ ϕ x o ɛ ϕ x, a + o sce ϕ x as, we coclude the that T o probablty as. Whch completes the proof of lemma 4.5. Proof of Lemma 4.6 We have B, x, y F N y x F D x. We wrte B, x, y K x F K x H y B F F y x K x F K x F K x H y X F F y x K x F K x F K x H y X F y x F. Next, a tegrato by parts ad chage of varable allow to get H y X H tf y b t X dt thus, we have H y X F y x R uder H, we obta that I Bx,aX H y X F y x C ad uder H4 we prove that We acheve the proof of lemma 4.6. Proof of Lemma 4.7 We wrte R H t F y b t X F y x dt 9 R H ta β K x F o. R, x, y B, x, y F y x FN x, y F N x, y F N x, y F y xf D x, y FN x, y F N x, y. F D x, y + t β b β dt 0

12 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Clearly, t s suffces to show that a F N x,y F y xf D x,y o, F D x,y b FN x, y F N x, y o. The proof of the frst had uses argumets smlar to those used the proof of lemma 4.6 of the secod part, wll be establshed FN x, y F N x, y 0, V ar FN x, y F N x, y 0 as. For all,...,, we put δ x, y ϕ x, a K xh y K xh y F where δ x, y s a tragular array of martgale dffereces accordg to the σ algebra F ext by H ad H4 we obta F N x, y F N x, y δ x, y δ x, y 0 by defto of δ x, y, we wrte δ x, y δ x, y. Furthermore, by Jese s equalty we have δ x, y ϕ x, a K xh y F ϕ x, a K x F ϕ x, a P X x, a F ϕ x, a φ x, a. So, we obta δ x, y φ x, a ϕ x, a. We deduce uder H that var FN x, y F N x, y 0 as. Proof of lemma 4.8 We use the deas Lab ad Loua For all,...,, we defe η ad, we defe ξ η η F. It s easly see that ϕ x σf ϕ x b σf H y fy x K x ϕ x Q, x, y ξ.

13 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages We follow the same dea the proof of lemma 4. to prove ths, we establsh the followg statemets: ξ F probablty, a b ξ I ξ >ɛ 0 holds for ay ɛ > 0 Ldeberg codto. Proof of part a ξ F η η F η F η F. The statemet a follows the f we show that lm η F 0 probablty, lm To prove, we put A η F probablty. ϕx σ f, we have η F η F A ϕ x b H y f y x K x F A b H ϕ x y B fy x K x F A ϕ x b H y X fy xk x F uder H ad H4, we have Cφ x, a K x F C φ x, a. Next, a tegrato by parts ad a chage of varable allow to get H y X b H tfy b t X dt. Thus, we have H y X b fy x C a B combg ths results, we have R η F A ϕ x, a C φ x, a a β / η F ϕ x φ x, a σ f ϕ x, a a β η F aβ a β φ x, a 0 Uder H3. ϕ x, a σ f

14 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Now, we have to prove, to do ths, we observe that We put I I I 3 We wrte η F A ϕ x, a A ϕ x, a b K xh y F, b K xh y F, K x F. I fy x fy x fy x fy x b H y fy x K x F b K xh y F fy x b K xh y F + fy x K x F. K x F + b K xh y F K x F K x F + b K x F b H y X K x F fy x H y X K x F K x F usg the same argumet as those used proof of the part, we have ϕ x, a I o. For I 3, t s the same I 3 proved proof of lemma 4. ad by the combg ths results, we deduce that lm η F whch complete the proof of part a. Proof of part b The Ldeberg codto whch mples that ξ I ξ >ɛ 4 η I η >ɛ/. Let a > ad b > such that a + b makg use the Holder s ad Markov s equaltes oe ca wrte

15 for all ɛ > 0 η I η >ɛ/ Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages η a ɛ/ a/b. Takg C 0 R + ad a +δ, from some δ > 0, such that W +δ u s a cotuous fucto, we obta 4 η I η >ɛ C 0 C 0 C 0 +δ ϕ x, a σf +δ ϕ x, a σf ϕ x, a σ f Y y +δ < ad b +δ b ϕ x, a +δ H y fy x +δ K +δ b H y fy x +δ K +δ x X +δ K +δ xw +δ x ϕ x, a +δ ϕ x, a +δ H y F y x +δ X u x +δ ϕ x, a K +δ x W +δ x W +δ x + W +δ x K +δ x C 0 σf ϕ x +δ +δ C 0 K +δ x W +δ x + o. Cosequetly σ f Proof of Lemma 4.9 We have We wrte B, x, y ξ I ξ >ɛ 0 as whch completes the proof of lemma. K x F B, x, y f N y x F D x. fy x K x F K x F fy x K x F K x F K x b H x B F K x b H x X F K x b H x X b fy x F.

16 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Next, a tegrato by parts ad chage of varable allow to get H y X b H tfy b t X dt thus, we have b H y X fy x Uder H, we obta that I Bx,aX H y X b fy x Cb ad uder H4 we prove that R R H t F y b t X fy x dt. R H ta β K x F o. We acheve the proof of lemma. Proof of Lemma 4.0 We wrte R, x, y B, x, y fn x, y f N x, y f N x, y fy xf D x, y fn x, y f N x, y. F D x, y Clearly, t s suffces to show that: + t β b β dt a f N x,y fy xf D x,y F D x,y o, b fn x, y f N x, y o. The proof of the frst had uses argumets smlar to those used the proof of lemma 4.6. Of the secod part, wll be establshed fn x, y f N x, y 0, V ar fn x, y f N x, y 0 as For all,...,, we put δ x, y ϕ x, a b K xh y b K xh y F where δ x, y s a tragular array of martgale dffereces accordg to the σ algebra F ext by H ad H4 we obta f N x, y f N x, y δ x, y δ x, y 0 by defto of δ x, y, we wrte δ x, y δ x, y.

17 Goutal, Mechab, Issa ad Soudd / ProbStat Forum, Volume, Aprl 08, Pages Furthermore, by Jese s equalty we have δ x, y ϕ x, a b K xh y F ϕ x, a b K x F ϕ x, a P X x, a Cb φ x, a ϕ x, a H y B F so, we obta δ x, y C b φ x, a ϕ. x, a We deduce that var fn x, y f N x, y 0 as sce H. Ackowledgmet. The authors would lke to thak the referee for hs/her costrctve commets ad suggestos, whch mproved the qualty ad presetato of the paper. Refereces Ardjou, F.Z., At Hea, L. ad Laksac, A. 06. A recursve kerel estmate of the fuctoal modal regresso uder ergodc depedece codto, Joural of Statstcal Theory ad Practce, 0, Attouch, M.k., Belabed, F.Z. 04. The k Nearest Neghbors estmato of the codtoal hazard fucto for fuctoal data, RVSTATStatstcal Joural,, Bezad, F., Laksac, A. ad Tebboue, F. 06. Note o codtoal quatles for fuctoal ergodc data, C. R. Acad.Sc.Pars,Ser.I, 354, Ferraty, F., ad Veu, P Noparametrc fuctoal data aalyss, Sprger Seres Statstcs, Sprger New York. 5 Ferraty, F., Rabh, A., ad Veu, P stmato o-paramétrque de la focto de hasard avec varable explcatve foctoelle,rev. Roumae Math. Pures Appl, 53, 8. 6 Gherballah, A., Laksac, A., ad Sekkal, S. 03. Noparametrc M-regresso for fuctoal ergodc data, Statstcs ad Probablty Letters 83, Laïb, N., ad Loua, D. 00. Noparametrc Kerel regresso estmato for fuctoal statoary ergodc data: Asymptotc proprtes, J. Mult. Aal., 0, Laïb, N., ad Loua, D. 0. Rates of strog cossteces of the regresso fucto estmator for fuctoal statoary ergodc data, J. of Stat. Pla. ad If., 4, Laksac, A., ad Mechab, B. 00. stmato o-paramtrque de la focto de hasard avec varable explcatve foctoelle : cas des doées spatales, Rev. Roumae Math. Pures Appl, 55, Laksac, A., ad Mechab, B. 04. Codtoal hazard estmate for fuctoal radom felds, Joural of Statstcal Theory ad Practce, 8, Massm, I., ad Mechab, B. 06. Local lear estmato of the codtoal hazard fucto, Iteratoal Joural of Statstcs & coomcs 7, -. Qutela-del-Río, A Hazard fucto gve a fuctoal varable: No-parametrc estmato uder strog mxg codtos, J. Noparametr. Stat., 0, Ramsay, J.O., ad Slverma, B.W. 00. Appled fuctoal data aalyss; Methods ad case studes, Sprger-Verlag, New York.

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Large and Moderate Deviation Principles for Kernel Distribution Estimator

Large and Moderate Deviation Principles for Kernel Distribution Estimator Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, 871-890 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/mf.2014.4488 Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables Aas da Academa Braslera de Cêcas 2006 784: 65-62 Aals of the Brazla Academy of Sceces ISSN 000-3765 www.scelo.br/aabc Marckewcz strog laws for lear statstcs of ρ -mxg sequeces of radom varables GUANG-HUI

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Lecture Notes to Rice Chapter 5

Lecture Notes to Rice Chapter 5 ECON 430 Revsed Sept. 06 Lecture Notes to Rce Chapter 5 By H. Goldste. Chapter 5 gves a troducto to probablstc approxmato methods, but s suffcet for the eeds of a adequate study of ecoometrcs. The commo

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods Malaysa Umodalty Joural Tests of Mathematcal for Global Optmzato Sceces (): of 05 Sgle - 5 Varable (007) Fuctos Usg Statstcal Methods Umodalty Tests for Global Optmzato of Sgle Varable Fuctos Usg Statstcal

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution Scece Joural of Appled Mathematcs ad Statstcs 06; 4(4): 9- http://www.scecepublshggroup.com/j/sjams do: 0.648/j.sjams.060404. ISSN: 76-949 (Prt); ISSN: 76-95 (Ole) Estmato of the Loss ad Rsk Fuctos of

More information

A practical threshold estimation for jump processes

A practical threshold estimation for jump processes A practcal threshold estmato for jump processes Yasutaka Shmzu (Osaka Uversty, Japa) WORKSHOP o Face ad Related Mathematcal ad Statstcal Issues @ Kyoto, JAPAN, 3 6 Sept., 2008. Itroducto O (Ω, F,P; {F

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Module 7. Lecture 7: Statistical parameter estimation

Module 7. Lecture 7: Statistical parameter estimation Lecture 7: Statstcal parameter estmato Parameter Estmato Methods of Parameter Estmato 1) Method of Matchg Pots ) Method of Momets 3) Mamum Lkelhood method Populato Parameter Sample Parameter Ubased estmato

More information

Econometrics. 3) Statistical properties of the OLS estimator

Econometrics. 3) Statistical properties of the OLS estimator 30C0000 Ecoometrcs 3) Statstcal propertes of the OLS estmator Tmo Kuosmae Professor, Ph.D. http://omepre.et/dex.php/tmokuosmae Today s topcs Whch assumptos are eeded for OLS to work? Statstcal propertes

More information

arxiv: v1 [math.st] 24 Oct 2016

arxiv: v1 [math.st] 24 Oct 2016 arxv:60.07554v [math.st] 24 Oct 206 Some Relatoshps ad Propertes of the Hypergeometrc Dstrbuto Peter H. Pesku, Departmet of Mathematcs ad Statstcs York Uversty, Toroto, Otaro M3J P3, Caada E-mal: pesku@pascal.math.yorku.ca

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

IFYMB002 Mathematics Business Appendix C Formula Booklet

IFYMB002 Mathematics Business Appendix C Formula Booklet Iteratoal Foudato Year (IFY IFYMB00 Mathematcs Busess Apped C Formula Booklet Related Documet: IFY Mathematcs Busess Syllabus 07/8 IFYMB00 Maths Busess Apped C Formula Booklet Cotets lease ote that the

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

ˆn i 1 ni ni Ž. Ý Ý CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES

ˆn i 1 ni ni Ž. Ý Ý CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES The Aals of Proalty 997, Vol. 5, No., 443456 CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES BY MAGDA PELIGRAD AND SERGEY UTEV Uversty of Ccat ad Isttute of MathematcsNovosrs I ths paper we study the CLT for

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information Malaysa Joural of Mathematcal Sceces (): 97- (9) Bayes Estmator for Expoetal Dstrbuto wth Exteso of Jeffery Pror Iformato Hadeel Salm Al-Kutub ad Noor Akma Ibrahm Isttute for Mathematcal Research, Uverst

More information

Chapter 3 Sampling For Proportions and Percentages

Chapter 3 Sampling For Proportions and Percentages Chapter 3 Samplg For Proportos ad Percetages I may stuatos, the characterstc uder study o whch the observatos are collected are qualtatve ature For example, the resposes of customers may marketg surveys

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Module 7: Probability and Statistics

Module 7: Probability and Statistics Lecture 4: Goodess of ft tests. Itroducto Module 7: Probablty ad Statstcs I the prevous two lectures, the cocepts, steps ad applcatos of Hypotheses testg were dscussed. Hypotheses testg may be used to

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

4. Standard Regression Model and Spatial Dependence Tests

4. Standard Regression Model and Spatial Dependence Tests 4. Stadard Regresso Model ad Spatal Depedece Tests Stadard regresso aalss fals the presece of spatal effects. I case of spatal depedeces ad/or spatal heterogeet a stadard regresso model wll be msspecfed.

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Chapter 11 The Analysis of Variance

Chapter 11 The Analysis of Variance Chapter The Aalyss of Varace. Oe Factor Aalyss of Varace. Radomzed Bloc Desgs (ot for ths course) NIPRL . Oe Factor Aalyss of Varace.. Oe Factor Layouts (/4) Suppose that a expermeter s terested populatos

More information

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Mathematcal ad Computatoal Applcatos, Vol. 7, No., pp. 29-38, 202 BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION Durdu Karasoy Departmet of Statstcs, Hacettepe Uversty, 06800 Beytepe, Akara,

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study IJIEST Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue 5, July 04. Bayes Iterval Estmato for bomal proporto ad dfferece of two bomal proportos wth Smulato Study Masoud Gaj, Solmaz hlmad

More information

3. Basic Concepts: Consequences and Properties

3. Basic Concepts: Consequences and Properties : 3. Basc Cocepts: Cosequeces ad Propertes Markku Jutt Overvew More advaced cosequeces ad propertes of the basc cocepts troduced the prevous lecture are derved. Source The materal s maly based o Sectos.6.8

More information

Lecture 1 Review of Fundamental Statistical Concepts

Lecture 1 Review of Fundamental Statistical Concepts Lecture Revew of Fudametal Statstcal Cocepts Measures of Cetral Tedecy ad Dsperso A word about otato for ths class: Idvduals a populato are desgated, where the dex rages from to N, ad N s the total umber

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy OPEN ACCESS Coferece Proceedgs Paper Etropy www.scforum.et/coferece/ecea- Some Statstcal Ifereces o the Records Webull Dstrbuto Usg Shao Etropy ad Rey Etropy Gholamhosse Yar, Rezva Rezae * School of Mathematcs,

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information