SF2930 Regression Analysis

Size: px
Start display at page:

Download "SF2930 Regression Analysis"

Transcription

1 SF2930 Regression Analysis Alexandre Chotard Tree-based regression and classication 20 February / 30

2 Idag Overview Regression trees Pruning Bagging, random forests 2 / 30

3 Today Overview Regression trees Pruning Bagging, random forests 3 / 30

4 Setup Let Y be a real-valued random variable. Given x X R d, we want to predict the value of Y. To understand how dierent values of x inuence Y, we have N N examples (x i, y i ) i [1..N]. The variable Y can have discrete or continuous values, corresponding respectively to classication and regression problems. We consider here binary decision trees. A decision tree partitions X into simple regions (R j ) j [1..J]. For x = (x 1,..., x d ) R d and j such that x R j, the value predicted by the tree is the most represented class y among {x i R j } in classication problems, the average of {y i x i R j, i [1..N]} in regression problems. 4 / 30

5 Setup Each node n of the tree is associated to a subset R n of X, which is further split into two regions through a test comparing x i for some i [1..d] with a value c R. Then for l and r left and right children of n, R l := {x R n x i < c} R r := {x R n x i c} Years < Hits < Figur: A regression tree for predicting the log salary (in 1, 000$) of a baseball player, based on the number of years played and the number of hits made in the previous year. 5 / 30

6 238 R 3 Hits R R Years 1 Figur: The three-region partition provided by the regression tree in the previous gure. 6 / 30

7 Example: spam classication 600/1536 ch$< ch$> remove< /1177 remove>0.06 spam 48/359 hp<0.405 hp>0.405 spam spam 180/1065 9/112 26/337 0/22 ch!<0.191 ch!>0.191 george<0.15 CAPAVE<2.907 george>0.15 CAPAVE>2.907 spam spam spam 80/ /204 6/109 0/3 19/110 7/227 george<0.005 george>0.005 CAPAVE< CAPAVE> < >0.58 spam spam 80/652 0/209 36/123 16/81 18/109 0/1 hp<0.03 hp>0.03 free<0.065 free>0.065 spam 77/423 3/229 16/94 9/29 CAPMAX<10.5 business<0.145 CAPMAX>10.5 business> /238 57/185 spam 14/89 3/5 receive<0.125 edu<0.045 receive>0.125 edu>0.045 spam 19/236 1/2 48/113 9/72 our<1.2 our>1.2 spam 37/101 1/12 Figur: Tree for spam classication. Split variables are shown in blue. CAPMAX and CAPAVE = maximal and average length of the longest uninterrupted sequences of capital letters, respectively. 7 / 30

8 Questions How do we construct such trees? How large should a tree be? What are the pros and cons of tree-based methods? 8 / 30

9 Today Overview Regression trees Pruning Bagging, random forests 9 / 30

10 Regression trees vs. linear regression We generally want to approximate a relation Y = f (x) + ε. Linear regression involves linear functions f (x) = β 0 + We will instead consider p β j x j. j=1 f (x) = J m j 1 Rj (x), j=1 for a partition {R j } j [1..J] of X. 10 / 30

11 Building a regression tree: cost function We will construct the tree by minimizing RSS(m 1,..., m J, R 1,..., R J ) = = J j=1 N (y i f (x i)) 2 i=1 i:xi R j (y i f (x i)) 2 = J j=1 For each j, the m j minimizing the sum of squares i:xi R j (y i m j ) 2 is always i:xi R j (y i m j ) 2. m j = ȳ Rj = average over all y i such that x i R j. To nd the minimizing R j is however computationally infeasible in general. 11 / 30

12 Building a regression tree: top-down minimization Thus, in order to nd regions {R j } J j=1 minimizing J j=1 i:xi R j (y i ȳ Rj ) 2 }{{} Q Rj we proceed with a top-down, greedy approach. In the rst step, when splitting X into R 1 (k, s) = {x X : x k < s} and R 2 (k, s) = {x X : x k s}, we minimize w.r.t. k and s. Q R1 (k,s) + Q R2 (k,s) 12 / 30

13 Building a regression tree: top-down minimization (cont.) For a given k, the optimal s is quite easily found by scanning though the data. Repeating for all k [1..d] yields an optimal pair (k, s). Having found the best split, we partition the data into the two resulting regions and repeat the splitting process on each of these. And so forth. We stop growing the tree when some stopping criterion is reached, e.g., when no region contains more than ve training data. 13 / 30

14 Bias versus variance The tree size is a tuning parameter governing the model's complexity. A too large tree leads to overtting (high variance on test sets), while a too small tree leads to high bias. The optimal tree size should be determined adaptively from the data. One possibility is to split a node only if the split implies an RSS reduction exceeding a certain threshold; this is however treacherous in top-down minimization, as an apparently meaningless split may imply a good split later on. 14 / 30

15 Today Overview Regression trees Pruning Bagging, random forests 15 / 30

16 Cost complexity pruning Grow a large tree T 0 while storing the dierent Q Rj associated with each split. We dene a subtree T T 0 obtained by pruning T 0 in a bottom-up fashion. Let T denote the number of leaves R m (T ) in T. Dene, for some α 0, the cost function C α (T ) = T m=1 Q Rm(T ) + α T, where the Q Rm(T ) are available from the rst step. The idea is to nd a subtree T α minimizing C α (T ). 16 / 30

17 Cost complexity pruning (cont.) Large values of α leads to smaller trees. For α = 0, the solution is T 0. To nd T α, we create a sequence of subtrees by removing successively leaves whose elimination leads to the smallest increase of T m=1 Q R m(t ). To nd the optimal α, apply K-fold cross validation. 17 / 30

18 Example: baseball player salaries (cont.) Years < 4.5 RBI < 60.5 Hits < Putouts < 82 Years < 3.5 Years < Walks < 43.5 Runs < Walks < 52.5 RBI < 80.5 Years < Figur: Unpruned tree for the log salary (in 1, 000$) of a baseball player. 18 / 30

19 Trees vs. linear models X 2 X X 1 X X X X 1 X 1 Figur: True decision boundary is indicated by the shaded regions. Linear boundary vs. decision tree (boxes). 19 / 30

20 Node impurity The task of growing a classication tree is very similar to that of growing a regression tree. The only dierence is that the RSS is not meaningful any longer. We thus need to nd alternative measures Q m (T ) of node impurity. For this purpose, dene ˆp j,k = 1 R j i:xi R j 1 {yi =k} and k(j) = arg max k ˆp j,k and let, e.g., 1 ˆp j,k(j) misclassication error, Q m (T ) = K k=1 ˆp j,k(1 ˆp j,k ) Gini index, K ˆp k=1 j,k log ˆp j,k cross-entropy. 20 / 30

21 Node impurity measures Gini index Misclassification error Entropy p Figur: Node impurity measures for two-class classication, as a function of the proportion p in class 2. (Cross-entropy has been scaled.) 21 / 30

22 Pros and cons with tree-based methods Pros: Cons: Easy to explain, able to handle categorical or numerical data, scales well with N Do not, in their most basic form, have the same level of predictive accuracy as some other regression and classication approaches, can be very non-robust (i.e., small changes in the data leads to completely dierent trees). highly sensitive to data-representation: ill-suited to many problems The predictive accuracy can however be drastically improved using ideas as bagging and random forests discussed in the following. 22 / 30

23 Today Overview Regression trees Pruning Bagging, random forests 23 / 30

24 Prelude: the bootstrap Given an i.i.d. sample {x i} N i=1 from a probability density p, the bootstrap algorithm is based on the approximation ˆp(x) = 1 N N δ (x) x i i=1 of p. Given ˆp, a new sample set {x i }N i=1 with approximately the same distribution as {x i} N i=1 can be formed by sampling from ˆp, i.e., by drawing repeatedly N times among {x i} N i=1 with replacement. In machine learning applications, this can be used for creating articial replicates of the training set. 24 / 30

25 Bagging In the case of regression, we have approximated the target function using J f (x) = ȳ Rj 1 Rj (x), j=1 where the partition {R j } N j=1 is formed using a decision tree. The decision trees discussed above suer generally from high variance, i.e., building the tree using a dierent training set may lead to a quite dierent f. Better would be to use B independent training sets of similar size, each yielding a tree f b, and use the model f avg (x) = 1 B B f b (x). b=1 25 / 30

26 Bagging (cont.) We use bootstrap sampling for creating articially B such training sets, each yielding a tree fb, and use the model f bag (x) = 1 B B b=1 f b (x). The trees fb are grown deep without pruning, implying that each tree has high variance but low bias. In the classication case, we can record the class predicted by each of the B trees, and take the most popular vote. 26 / 30

27 Bagging (cont.) The number of trees B is not a critical parameter with bagging; using a very large value of B will not lead to overtting. The reason is that the probability of making an error converges as B. The probability of making an error depends also on the expected correlation between errors of dierent trees f b (x) and f b (x) when (x, Y ) varies. 27 / 30

28 Some theory Indeed, in the classication case, let the margin function be m(x, y) = 1 B B b=1 1 {fb (x)=y} max k y 1 B B b=1 1 {fb (x)=k} Moreover, dene the generalization error by PE = P(m(x, Y ) < 0). breiman:2001 (breiman:2001) shows that PE converges as B. In addition, the PE can be bounded as PE (1 s 2 )ρ/s 2, where, roughly, s is the limiting margin functionthe strengthand ρ describes the expected correlation between the trees' errors as (x, Y ) varies. 28 / 30

29 Random park random forest In order to decorrelate the trees, it is desirable so build them dierent. Say that there is one strong predictor x i along with a number of other moderately strong predictors most or all of the trees will use this strong predictor in the top split all trees will look quite similar highly correlated predictions. Thus, at each split, consider only splitting of a randomly chosen subset of m d predictors. Therefore, on average (d m)/d of the splits will not even consider the strong predictor, and so other predictors will have more of a chance. Typically, one uses m d; m = d corresponds to standard bagging. 29 / 30

30 Example: cancer-type prediction Test Classification Error m=p m=p/2 m= p Number of Trees Figur: Here p = 500. The test error as a function of the number of trees. Each colored line corresponds to a dierent value of m. A single classication tree has an error rate of 45.7%. 30 / 30

Decision trees COMS 4771

Decision trees COMS 4771 Decision trees COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random pairs (i.e., labeled examples).

More information

BAGGING PREDICTORS AND RANDOM FOREST

BAGGING PREDICTORS AND RANDOM FOREST BAGGING PREDICTORS AND RANDOM FOREST DANA KANER M.SC. SEMINAR IN STATISTICS, MAY 2017 BAGIGNG PREDICTORS / LEO BREIMAN, 1996 RANDOM FORESTS / LEO BREIMAN, 2001 THE ELEMENTS OF STATISTICAL LEARNING (CHAPTERS

More information

the tree till a class assignment is reached

the tree till a class assignment is reached Decision Trees Decision Tree for Playing Tennis Prediction is done by sending the example down Prediction is done by sending the example down the tree till a class assignment is reached Definitions Internal

More information

Statistics and learning: Big Data

Statistics and learning: Big Data Statistics and learning: Big Data Learning Decision Trees and an Introduction to Boosting Sébastien Gadat Toulouse School of Economics February 2017 S. Gadat (TSE) SAD 2013 1 / 30 Keywords Decision trees

More information

Informal Definition: Telling things apart

Informal Definition: Telling things apart 9. Decision Trees Informal Definition: Telling things apart 2 Nominal data No numeric feature vector Just a list or properties: Banana: longish, yellow Apple: round, medium sized, different colors like

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Decision Trees Tobias Scheffer Decision Trees One of many applications: credit risk Employed longer than 3 months Positive credit

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Machine Learning. Nathalie Villa-Vialaneix - Formation INRA, Niveau 3

Machine Learning. Nathalie Villa-Vialaneix -  Formation INRA, Niveau 3 Machine Learning Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr http://www.nathalievilla.org IUT STID (Carcassonne) & SAMM (Université Paris 1) Formation INRA, Niveau 3 Formation INRA (Niveau

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions. f(x) = c m 1(x R m )

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions. f(x) = c m 1(x R m ) CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions with R 1,..., R m R p disjoint. f(x) = M c m 1(x R m ) m=1 The CART algorithm is a heuristic, adaptive

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Variance Reduction and Ensemble Methods

Variance Reduction and Ensemble Methods Variance Reduction and Ensemble Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Last Time PAC learning Bias/variance tradeoff small hypothesis

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions f (x) = M c m 1(x R m ) m=1 with R 1,..., R m R p disjoint. The CART algorithm is a heuristic, adaptive

More information

Chapter 14 Combining Models

Chapter 14 Combining Models Chapter 14 Combining Models T-61.62 Special Course II: Pattern Recognition and Machine Learning Spring 27 Laboratory of Computer and Information Science TKK April 3th 27 Outline Independent Mixing Coefficients

More information

Regression tree methods for subgroup identification I

Regression tree methods for subgroup identification I Regression tree methods for subgroup identification I Xu He Academy of Mathematics and Systems Science, Chinese Academy of Sciences March 25, 2014 Xu He (AMSS, CAS) March 25, 2014 1 / 34 Outline The problem

More information

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7 Bagging Ryan Tibshirani Data Mining: 36-462/36-662 April 23 2013 Optional reading: ISL 8.2, ESL 8.7 1 Reminder: classification trees Our task is to predict the class label y {1,... K} given a feature vector

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler + Machine Learning and Data Mining Decision Trees Prof. Alexander Ihler Decision trees Func-onal form f(x;µ): nested if-then-else statements Discrete features: fully expressive (any func-on) Structure:

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 06 - Regression & Decision Trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom

More information

Deconstructing Data Science

Deconstructing Data Science econstructing ata Science avid Bamman, UC Berkeley Info 290 Lecture 6: ecision trees & random forests Feb 2, 2016 Linear regression eep learning ecision trees Ordinal regression Probabilistic graphical

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Chapter 6. Ensemble Methods

Chapter 6. Ensemble Methods Chapter 6. Ensemble Methods Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Introduction

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Tree-based methods. Patrick Breheny. December 4. Recursive partitioning Bias-variance tradeoff Example Further remarks

Tree-based methods. Patrick Breheny. December 4. Recursive partitioning Bias-variance tradeoff Example Further remarks Tree-based methods Patrick Breheny December 4 Patrick Breheny STA 621: Nonparametric Statistics 1/36 Introduction Trees Algorithm We ve seen that local methods and splines both operate locally either by

More information

Supervised Learning via Decision Trees

Supervised Learning via Decision Trees Supervised Learning via Decision Trees Lecture 4 1 Outline 1. Learning via feature splits 2. ID3 Information gain 3. Extensions Continuous features Gain ratio Ensemble learning 2 Sequence of decisions

More information

Oliver Dürr. Statistisches Data Mining (StDM) Woche 11. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Oliver Dürr. Statistisches Data Mining (StDM) Woche 11. Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Statistisches Data Mining (StDM) Woche 11 Oliver Dürr Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften oliver.duerr@zhaw.ch Winterthur, 29 November 2016 1 Multitasking

More information

Learning Ensembles. 293S T. Yang. UCSB, 2017.

Learning Ensembles. 293S T. Yang. UCSB, 2017. Learning Ensembles 293S T. Yang. UCSB, 2017. Outlines Learning Assembles Random Forest Adaboost Training data: Restaurant example Examples described by attribute values (Boolean, discrete, continuous)

More information

Ensemble Methods and Random Forests

Ensemble Methods and Random Forests Ensemble Methods and Random Forests Vaishnavi S May 2017 1 Introduction We have seen various analysis for classification and regression in the course. One of the common methods to reduce the generalization

More information

day month year documentname/initials 1

day month year documentname/initials 1 ECE471-571 Pattern Recognition Lecture 13 Decision Tree Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi

More information

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes.

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes. Random Forests One of the best known classifiers is the random forest. It is very simple and effective but there is still a large gap between theory and practice. Basically, a random forest is an average

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation If Y {1,..., K} and g k denotes the density for the conditional distribution of X given Y = k the Bayes classifier is f (x) = argmax π k g k (x) k If ĝ k for k = 1,..., K are

More information

Generalization to Multi-Class and Continuous Responses. STA Data Mining I

Generalization to Multi-Class and Continuous Responses. STA Data Mining I Generalization to Multi-Class and Continuous Responses STA 5703 - Data Mining I 1. Categorical Responses (a) Splitting Criterion Outline Goodness-of-split Criterion Chi-square Tests and Twoing Rule (b)

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Machine Learning & Data Mining

Machine Learning & Data Mining Group M L D Machine Learning M & Data Mining Chapter 7 Decision Trees Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University Top 10 Algorithm in DM #1: C4.5 #2: K-Means #3: SVM

More information

Ensembles. Léon Bottou COS 424 4/8/2010

Ensembles. Léon Bottou COS 424 4/8/2010 Ensembles Léon Bottou COS 424 4/8/2010 Readings T. G. Dietterich (2000) Ensemble Methods in Machine Learning. R. E. Schapire (2003): The Boosting Approach to Machine Learning. Sections 1,2,3,4,6. Léon

More information

Decision Tree And Random Forest

Decision Tree And Random Forest Decision Tree And Random Forest Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni. Koblenz-Landau, Germany) Spring 2019 Contact: mailto: Ammar@cu.edu.eg

More information

Random Forests. Sören Mindermann September 21, Bachelorproject Begeleiding: dr. B Kleijn

Random Forests. Sören Mindermann September 21, Bachelorproject Begeleiding: dr. B Kleijn Random Forests Sören Mindermann September 21, 2016 Bachelorproject Begeleiding: dr. B Kleijn Korteweg-de Vries Instituut voor Wiskunde Faculteit der Natuurwetenschappen, Wiskunde en Informatica Universiteit

More information

Regression and Classification Trees

Regression and Classification Trees Regression and Classification Trees 1 Regression Trees The basic idea behind regression trees is the following: Group the n subjects into a bunch of groups based solely on the explanatory variables. Prediction

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

Machine Learning 2nd Edi7on

Machine Learning 2nd Edi7on Lecture Slides for INTRODUCTION TO Machine Learning 2nd Edi7on CHAPTER 9: Decision Trees ETHEM ALPAYDIN The MIT Press, 2010 Edited and expanded for CS 4641 by Chris Simpkins alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Ethem Alpaydin and Tom Mitchell) sscott@cse.unl.edu In Homework 1, you are (supposedly) 1 Choosing a data set 2 Extracting a test set of size > 30 3 Building a tree on the training

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

Chapter ML:III. III. Decision Trees. Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning

Chapter ML:III. III. Decision Trees. Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning Chapter ML:III III. Decision Trees Decision Trees Basics Impurity Functions Decision Tree Algorithms Decision Tree Pruning ML:III-34 Decision Trees STEIN/LETTMANN 2005-2017 Splitting Let t be a leaf node

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Learning = improving with experience Improve over task T (e.g, Classification, control tasks) with respect

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Introduction to machine learning

Introduction to machine learning 1/59 Introduction to machine learning Victor Kitov v.v.kitov@yandex.ru 1/59 Course information Instructor - Victor Vladimirovich Kitov Tasks of the course Structure: Tools lectures, seminars assignements:

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees CS194-10 Fall 2011 Lecture 8 CS194-10 Fall 2011 Lecture 8 1 Outline Decision tree models Tree construction Tree pruning Continuous input features CS194-10 Fall 2011 Lecture 8 2

More information

Lecture 7: DecisionTrees

Lecture 7: DecisionTrees Lecture 7: DecisionTrees What are decision trees? Brief interlude on information theory Decision tree construction Overfitting avoidance Regression trees COMP-652, Lecture 7 - September 28, 2009 1 Recall:

More information

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning Question of the Day Machine Learning 2D1431 How can you make the following equation true by drawing only one straight line? 5 + 5 + 5 = 550 Lecture 4: Decision Tree Learning Outline Decision Tree for PlayTennis

More information

Statistical Consulting Topics Classification and Regression Trees (CART)

Statistical Consulting Topics Classification and Regression Trees (CART) Statistical Consulting Topics Classification and Regression Trees (CART) Suppose the main goal in a data analysis is the prediction of a categorical variable outcome. Such as in the examples below. Given

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

1 Handling of Continuous Attributes in C4.5. Algorithm

1 Handling of Continuous Attributes in C4.5. Algorithm .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Classification/Supervised Learning Potpourri Contents 1. C4.5. and continuous attributes: incorporating continuous

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

1/sqrt(B) convergence 1/B convergence B

1/sqrt(B) convergence 1/B convergence B The Error Coding Method and PICTs Gareth James and Trevor Hastie Department of Statistics, Stanford University March 29, 1998 Abstract A new family of plug-in classication techniques has recently been

More information

Adaptive Crowdsourcing via EM with Prior

Adaptive Crowdsourcing via EM with Prior Adaptive Crowdsourcing via EM with Prior Peter Maginnis and Tanmay Gupta May, 205 In this work, we make two primary contributions: derivation of the EM update for the shifted and rescaled beta prior and

More information

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1

Decision Trees. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. February 5 th, Carlos Guestrin 1 Decision Trees Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 5 th, 2007 2005-2007 Carlos Guestrin 1 Linear separability A dataset is linearly separable iff 9 a separating

More information

Ensembles of Classifiers.

Ensembles of Classifiers. Ensembles of Classifiers www.biostat.wisc.edu/~dpage/cs760/ 1 Goals for the lecture you should understand the following concepts ensemble bootstrap sample bagging boosting random forests error correcting

More information

C4.5 - pruning decision trees

C4.5 - pruning decision trees C4.5 - pruning decision trees Quiz 1 Quiz 1 Q: Is a tree with only pure leafs always the best classifier you can have? A: No. Quiz 1 Q: Is a tree with only pure leafs always the best classifier you can

More information

Low Bias Bagged Support Vector Machines

Low Bias Bagged Support Vector Machines Low Bias Bagged Support Vector Machines Giorgio Valentini Dipartimento di Scienze dell Informazione Università degli Studi di Milano, Italy valentini@dsi.unimi.it Thomas G. Dietterich Department of Computer

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

An Empirical Study of Building Compact Ensembles

An Empirical Study of Building Compact Ensembles An Empirical Study of Building Compact Ensembles Huan Liu, Amit Mandvikar, and Jigar Mody Computer Science & Engineering Arizona State University Tempe, AZ 85281 {huan.liu,amitm,jigar.mody}@asu.edu Abstract.

More information

Random Forests: Finding Quasars

Random Forests: Finding Quasars This is page i Printer: Opaque this Random Forests: Finding Quasars Leo Breiman Michael Last John Rice Department of Statistics University of California, Berkeley 0.1 Introduction The automatic classification

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Lecture VII: Classification I. Dr. Ouiem Bchir

Lecture VII: Classification I. Dr. Ouiem Bchir Lecture VII: Classification I Dr. Ouiem Bchir 1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class. Find

More information

Jeffrey D. Ullman Stanford University

Jeffrey D. Ullman Stanford University Jeffrey D. Ullman Stanford University 3 We are given a set of training examples, consisting of input-output pairs (x,y), where: 1. x is an item of the type we want to evaluate. 2. y is the value of some

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Model Averaging With Holdout Estimation of the Posterior Distribution

Model Averaging With Holdout Estimation of the Posterior Distribution Model Averaging With Holdout stimation of the Posterior Distribution Alexandre Lacoste alexandre.lacoste.1@ulaval.ca François Laviolette francois.laviolette@ift.ulaval.ca Mario Marchand mario.marchand@ift.ulaval.ca

More information

Predictive Modeling: Classification. KSE 521 Topic 6 Mun Yi

Predictive Modeling: Classification. KSE 521 Topic 6 Mun Yi Predictive Modeling: Classification Topic 6 Mun Yi Agenda Models and Induction Entropy and Information Gain Tree-Based Classifier Probability Estimation 2 Introduction Key concept of BI: Predictive modeling

More information

Advanced Techniques for Mining Structured Data: Process Mining

Advanced Techniques for Mining Structured Data: Process Mining Advanced Techniques for Mining Structured Data: Process Mining Frequent Pattern Discovery /Event Forecasting Dr A. Appice Scuola di Dottorato in Informatica e Matematica XXXII Problem definition 1. Given

More information

Lossless Online Bayesian Bagging

Lossless Online Bayesian Bagging Lossless Online Bayesian Bagging Herbert K. H. Lee ISDS Duke University Box 90251 Durham, NC 27708 herbie@isds.duke.edu Merlise A. Clyde ISDS Duke University Box 90251 Durham, NC 27708 clyde@isds.duke.edu

More information

Constructing Prediction Intervals for Random Forests

Constructing Prediction Intervals for Random Forests Senior Thesis in Mathematics Constructing Prediction Intervals for Random Forests Author: Benjamin Lu Advisor: Dr. Jo Hardin Submitted to Pomona College in Partial Fulfillment of the Degree of Bachelor

More information

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12 Ensemble Methods Charles Sutton Data Mining and Exploration Spring 2012 Bias and Variance Consider a regression problem Y = f(x)+ N(0, 2 ) With an estimate regression function ˆf, e.g., ˆf(x) =w > x Suppose

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Discriminant analysis and classification Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 Consider the examples: An online banking service

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 Feb 24 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Prediction III Goal

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees Outline Top-Down Decision Tree Construction Choosing the Splitting Attribute Information Gain and Gain Ratio 2 DECISION TREE An internal node is a test on an attribute. A

More information

Decision Trees (Cont.)

Decision Trees (Cont.) Decision Trees (Cont.) R&N Chapter 18.2,18.3 Side example with discrete (categorical) attributes: Predicting age (3 values: less than 30, 30-45, more than 45 yrs old) from census data. Attributes (split

More information

Filter Methods. Part I : Basic Principles and Methods

Filter Methods. Part I : Basic Principles and Methods Filter Methods Part I : Basic Principles and Methods Feature Selection: Wrappers Input: large feature set Ω 10 Identify candidate subset S Ω 20 While!stop criterion() Evaluate error of a classifier using

More information

University of Alberta

University of Alberta University of Alberta CLASSIFICATION IN THE MISSING DATA by Xin Zhang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master

More information

Aijun An and Nick Cercone. Department of Computer Science, University of Waterloo. methods in a context of learning classication rules.

Aijun An and Nick Cercone. Department of Computer Science, University of Waterloo. methods in a context of learning classication rules. Discretization of Continuous Attributes for Learning Classication Rules Aijun An and Nick Cercone Department of Computer Science, University of Waterloo Waterloo, Ontario N2L 3G1 Canada Abstract. We present

More information

A Decision Stump. Decision Trees, cont. Boosting. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. October 1 st, 2007

A Decision Stump. Decision Trees, cont. Boosting. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. October 1 st, 2007 Decision Trees, cont. Boosting Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 1 st, 2007 1 A Decision Stump 2 1 The final tree 3 Basic Decision Tree Building Summarized

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

Hierarchical models for the rainfall forecast DATA MINING APPROACH

Hierarchical models for the rainfall forecast DATA MINING APPROACH Hierarchical models for the rainfall forecast DATA MINING APPROACH Thanh-Nghi Do dtnghi@cit.ctu.edu.vn June - 2014 Introduction Problem large scale GCM small scale models Aim Statistical downscaling local

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information