BAGGING PREDICTORS AND RANDOM FOREST

Size: px
Start display at page:

Download "BAGGING PREDICTORS AND RANDOM FOREST"

Transcription

1 BAGGING PREDICTORS AND RANDOM FOREST DANA KANER M.SC. SEMINAR IN STATISTICS, MAY 2017 BAGIGNG PREDICTORS / LEO BREIMAN, 1996 RANDOM FORESTS / LEO BREIMAN, 2001 THE ELEMENTS OF STATISTICAL LEARNING (CHAPTERS 8,9,15) / HASTIE, TIBSHIRANI, FRIEDMAN

2 TABLE OF CONTENTS Bagging predictors - Introduction. The algorithm. Justification. Examples: classification and regressions trees, variable selection. Random forest - Decision trees. The algorithm. And more...

3 BAGGING - INTRODUCTION A method based on Bootstrap sampling for generating multiple versions of a predictor, and using them in order to get an improved predictor. Usually the algorithm works for unstable procedures (trees, neural nets). The evidence, both experimental and theoretical, is that bagging can push a good but unstable procedure a significant step towards optimality. On the other hand, it can slightly degrade the performance of stable procedures.

4 AGGREGATED PREDICTORS Consider a learning set L drawn from distribution F, and a procedure that forms a predictor θ = φ x, L for an unknown x. Now, imagine we can take K samples of N independent observations from F. In order to get a better prediction, we calculate an aggregated predictor. Great. So what exactly is the problem?

5 BAGGING - THE ALGORITHM Usually, we have a single learning set L drawn from distribution F, and a procedure that forms a predictor θ = φ x, L for an unknown x. We ll take B Bootstrap samples from distribution F: N i.i.d observations, drawn at random with replacement from L. For each sample b=1 B, we ll form a predictor φ x, L b. Numerical value: φ B = avg(φ x, L b ). Categorical value: the majority of the votes φ x, L b.

6 BETWEEN BAGGING AND BOOTSTRAP F L = {(x 1, y 1 ),,(x N, y N )} A single predictor: መθ = φ x, L F L b = {(x 1, y 1 ),, (x N, y N ) } For each sampling L from F: መθ = φ x, L Aggregated estimator: E( መθ) = E φ A = L (φ x, L ) argmax j p φ x, L = j B bootstrap samples from F : መθ b = φ x, L b Bagged estimator: φ avg(φ x B =, L b ) Majority vote of the B trees

7 BAGGING JUSTIFICATION - NUMERIC PREDICTION Consider a numeric aggregated predictor, based on replications of L from the same distribution F, φ A (x)=e L φ x, L. Given fixed x, y : E L [(y φ x, L ) 2 ] E L 2 (y φ x, L ) = (E L y E L φ x, L ) 2 = (y φ A (x)) 2 If we integrate both sides over the joint probability of x, y : E x,y E L [(y φ x, L ) 2 x, y] E x,y [(E L 2 (y φ x, L ))] E x,y,l [(y φ x, L ) 2 ] E x,y [(y φ A (x)) 2 ] average MSE(φ x, L ) over L samples MSE(φ A (x)) Therefore, φ A is better then φ, a predictor based on one sample from F.

8 BAGGING JUSTIFICATION - NUMERIC PREDICTION E x,y E L [(y φ x, L ) 2 L] E x,y [(E L 2 (y φ x, L ))] If E L [φ 2 2 x, L ] E L [φ x, L ] (i.e. small variance of φ over L replicates), an aggregation will not help. The more highly variable the φ x, L are (over different replicates of L), the more improvement aggregation may produce.

9 BAGGING JUSTIFICATION - NUMERIC PREDICTION φ A (x):=φ A (x,f) φ B : = φ A x, F Therefore, φ B is better then φ, a predictor based on one sample from F. A cross over point between instability and stability at which φ B stops improving on φ x, L and does worse: On the one hand, if the procedure φ is unstable on F, it can give improvement through aggregation - from one to many BS samples. On the other side, if the procedure φ is stable, then φ B will not be as accurate for data drown from F as φ A x, F φ x, L - from F to F.

10 BAGGING JUSTIFICATION - CLASSIFICATION Q j x = p φ x, L = j j s frequency over replicates of L for tree predictor φ. P j x The real distribution of j given x. The probability that a predictor φ will classify correctly: P correct classification x = The overall probability of correct classification: j Q j x P j x r = න( Q j x P j x ) P x dx j

11 BAGGING JUSTIFICATION - CLASSIFICATION σ j Q j x P j x max j P j x Equality for Q j x = Ι P j x =max i P i x Theoretical Best predictor: φ (x) = argmax j P j x The highest attainable correct classification rate: r = න max j P j x P x dx

12 BAGGING JUSTIFICATION - CLASSIFICATION Call φ order-correct at input x if: argmax j Q j x = argmax j P j x j given x is most likely to happen usually, φ x, L = j over many L duplicates The aggregated predictor: φ A (x) = argmax j Q j x Q A j x = Ι argmaxi Q i x =j P φ A wil classify correctly x = σ j Ι argmaxi Q i x =jp j x If φ A is order-correct at x: P φ A wil classify correctly x = max j P j x

13 BAGGING JUSTIFICATION - CLASSIFICATION Let C be all x s where φ A order-correct at. The correct-classification rate for φ A : r A = C Ι argmaxi Q i x =j P j x P xdx + c σ j Ι argmaxi Q i x =j P j x P Xdx = C max j P j x P x dx + c σ j Ι φa (x)=jp j x P x dx Reminder: r = max j P j x P x dx If a predictor is good in the sense that it is order-correct for most inputs x, then aggregation can transform it into a nearly optimal predictor.

14 BAGGING - REGRESSION TREES EXAMPLE Data sets divided into test set T and a learning set L, usually 10% and 90% respectively. A regression tree is constructed from L using 10-fold CV T squared error e s L, T. 25 Bootstrap samples L b are drawn from L predictors {φ 1 x, L 1,,φ 25 x, L 25 }. (x j, y j ) T, y j = 1 σ B B b=1 φ b x j, L b T e B L, T = 1 σ T T j=1 (yj y j ) 2 The random division of the data is repeated 100 times, the predictors: ( ഥe s, e B ).

15 BAGGING - REGRESSION TREES EXAMPLE The results ( ഥe s, e B ):

16 BAGGING - CLASSIFICATION TREES EXAMPLE Data sets are divided into test set T and a learning set L, 10% - 90%. A classification tree is constructed from L using 10-fold CV T misclassification rate e s L, T. 50 Bootstrap samples L b are drawn from L predictors {φ 1 x, L 1,,φ 50 x, L 50 }. (x j, y j ) T, the estimated class is the one having the plurality in {φ 1 x j, L b,,φ 50 x j, L b } T The bagging misclassification rate: e B L, T. The random division of the data is repeated 100 times, the predictors: ( ഥe s, e B ).

17 BAGGING - CLASSIFICATION TREES EXAMPLE The results ( ഥe s, e B ):

18 BAGGING - FORWARD STEPWISE SELECTION m: Given a predictor φ m based on x "1",, x "m 1" : Form a regression for y on x "1",, x "m 1", x "m" for each m that was not chosen. Select m that minimizes RSS(m). The output: a sequence of models for each m. Subset selection is nearly optimal if there are only a few large non-zero {β i }.

19 BAGGING - FORWARD STEPWISE SELECTION For 3,15 and 27 non-zero {β i } simulations: y = σ P=30 i=1 β i x i + ε, ε~n 0,1, L = { x 1, y 1,, x 60, y 60 }. Run FSS on L. Predictors {φ 1 (x), φ P (x)} mean squared errors e 1 s, e P s. 50 BS samples, b: predictors {φ 1 (x, L b ), φ P (x, L b )}. Bagged predictors {φ 1 B (x), φ P B (x)} mean squared errors {e 1 B, e P B }. Average over the 250 repetitions { e m ҧ S }, { e m ҧ B }, m = 1 P = 30.

20 BAGGING - FORWARD STEPWISE SELECTION e m ҧs B e m ҧ m m m FSS is better for a small number of nonzero coefficients. Bigger error, less stable. Bagging is good for unstable procedures (linear regression with all coefficients is stable)

21 BAGGING AND RANDOM FOREST Consider B bootstrap samples drawn i.i.d from F, and B tree models based on them. Bias(average of predictions) = Bias(1 st prediction) Our only hope: reduce the variance. Assume σ 2 is the single tree variance, ρ is the correlation between trees. Then, the variance of the average of predictions is ρσ ρ B σ2 B ρσ 2. Random forest: a modification of bagging that builds a large collection of decorrelated trees, and then averages them. In other words, the idea is to reduce ρ, without increasing too much σ 2 or the MSE.

22 DECISION TREES - CART - INTRO We will define a tree by Θ = {(R m, c m )} M m=1. The tree prediction መf x = σ M m=1 c m Ι xεrm. Choosing c m (given R M ): Regression: average of {y i x i ϵr m }. Classification: majority of votes of {y i x i ϵr m }. Choosing R = {R 1,, R M } - greedy algorithm: At each stage, minimizing the selected error by variable x j and by s, the splitting point of x j.

23 REGRESSION TREES SIMULATION (ESL) Simulation of L, L = 30. x i = p. y i 0,1. ቊ P y i = 1 x i 0.5 = 0.2 P y i = 1 x i > 0.5 = 0.8

24 RANDOM FOREST - THE ALGORITHM For b = 1 to B: 1. Draw a bootstrap sample L b = {(x 1, y 1 ),, (x N, y N ) } from L. 2. Grow a RF tree to L b, by repeating at each terminal node until n min is reached: Select m variables at random from the p variables of x i. Pick the best variable and split-point among the m. Split the node into two daughter nodes. Output: B tree predictions {T b (x, Θ b )} B b=1, where Θ b = {(R m, c m )} M m=1. Prediction at a new point x: ቐ መC B rf መf rf B x = 1 B σt b(x, Θ b ) x = majority vote of {T b (x, Θ b )} B b=1.

25 RANDOM FOREST - REGRESSION TREE መf rf B x = 1 B σt b x, Θ b B መf rf x = E Θ L (T x, Θ L ) Var መf rf B x = ρ x σ 2 x + 1 ρ x B σ 2 x B Var መf rf x = ρ x σ 2 x ρ x = corr(t x, θ 1 L, T x, θ 2 L ), where θ 1 L, θ 2 L are representations of two RF trees grown to the randomly sampled L. In other words, ρ x is the theoretical correlation between trees, induced by repeatedly making training samples L from the population. σ 2 x = Var(T x, θ L.

26 RANDOM FOREST - REGRESSION TREE Var θ,l T x, θ L = Var L E θ L T x, θ L + E L Var θ L T x, θ L Total Variance Var L መf rf x + within L Variance of a tree pred m RF ensemble is better than one RF tree. m As for the bias: Bias x = μ x E L መf rf x = μ x E L E θ L (T x, Θ L ) Although for different models the shape and rate of the bias curves may differ, the general trend is that as m decreases, the bias increases.

27 RANDOM FOREST - REGRESSION TREE Usually, the default value for m is p 3 for regression and p for classification.

28 OUT OF BAG SAMPLES It turns out roughly 37% of the examples in L do not appear in a particular bootstrap training set. OOB samples: For each Bootstrap sampling, the OOB are the observations x i, y i which did not appear in the sample. The OOB samples can be used to form estimates for important quantities - error estimate, variable importance and more (Breiman,1996b, OOB estimation).

29 VARIABLE IMPORTANCE RF also use the OOB samples to construct an alternative way to compute variableimportance of features. Gini importance: mean gain in Gini impurity criterion produced by x j over all trees. OOB permutation VI: When the b th tree is grown, the OOB samples are passed down the tree, and the prediction misclassification rate is recorded. Then, the values for the m th variable are randomly permuted in the OOB samples, and the rate is again computed. The VI of feature m is computed as the average increase in misclassification rate (over all trees) as compared to the out-of-bag misclassification rate.

30 VARIABLE IMPORTANCE (SPAM DATA)

SF2930 Regression Analysis

SF2930 Regression Analysis SF2930 Regression Analysis Alexandre Chotard Tree-based regression and classication 20 February 2017 1 / 30 Idag Overview Regression trees Pruning Bagging, random forests 2 / 30 Today Overview Regression

More information

Variance Reduction and Ensemble Methods

Variance Reduction and Ensemble Methods Variance Reduction and Ensemble Methods Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Last Time PAC learning Bias/variance tradeoff small hypothesis

More information

Lecture 13: Ensemble Methods

Lecture 13: Ensemble Methods Lecture 13: Ensemble Methods Applied Multivariate Analysis Math 570, Fall 2014 Xingye Qiao Department of Mathematical Sciences Binghamton University E-mail: qiao@math.binghamton.edu 1 / 71 Outline 1 Bootstrap

More information

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7

Bagging. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL 8.7 Bagging Ryan Tibshirani Data Mining: 36-462/36-662 April 23 2013 Optional reading: ISL 8.2, ESL 8.7 1 Reminder: classification trees Our task is to predict the class label y {1,... K} given a feature vector

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

ABC random forest for parameter estimation. Jean-Michel Marin

ABC random forest for parameter estimation. Jean-Michel Marin ABC random forest for parameter estimation Jean-Michel Marin Université de Montpellier Institut Montpelliérain Alexander Grothendieck (IMAG) Institut de Biologie Computationnelle (IBC) Labex Numev! joint

More information

RANDOMIZING OUTPUTS TO INCREASE PREDICTION ACCURACY

RANDOMIZING OUTPUTS TO INCREASE PREDICTION ACCURACY 1 RANDOMIZING OUTPUTS TO INCREASE PREDICTION ACCURACY Leo Breiman Statistics Department University of California Berkeley, CA. 94720 leo@stat.berkeley.edu Technical Report 518, May 1, 1998 abstract Bagging

More information

Ensemble Methods and Random Forests

Ensemble Methods and Random Forests Ensemble Methods and Random Forests Vaishnavi S May 2017 1 Introduction We have seen various analysis for classification and regression in the course. One of the common methods to reduce the generalization

More information

Importance Sampling: An Alternative View of Ensemble Learning. Jerome H. Friedman Bogdan Popescu Stanford University

Importance Sampling: An Alternative View of Ensemble Learning. Jerome H. Friedman Bogdan Popescu Stanford University Importance Sampling: An Alternative View of Ensemble Learning Jerome H. Friedman Bogdan Popescu Stanford University 1 PREDICTIVE LEARNING Given data: {z i } N 1 = {y i, x i } N 1 q(z) y = output or response

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13

Boosting. Ryan Tibshirani Data Mining: / April Optional reading: ISL 8.2, ESL , 10.7, 10.13 Boosting Ryan Tibshirani Data Mining: 36-462/36-662 April 25 2013 Optional reading: ISL 8.2, ESL 10.1 10.4, 10.7, 10.13 1 Reminder: classification trees Suppose that we are given training data (x i, y

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

Informal Definition: Telling things apart

Informal Definition: Telling things apart 9. Decision Trees Informal Definition: Telling things apart 2 Nominal data No numeric feature vector Just a list or properties: Banana: longish, yellow Apple: round, medium sized, different colors like

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 1

IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 1 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 1 1 2 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B 2 An experimental bias variance analysis of SVM ensembles based on resampling

More information

Statistics and learning: Big Data

Statistics and learning: Big Data Statistics and learning: Big Data Learning Decision Trees and an Introduction to Boosting Sébastien Gadat Toulouse School of Economics February 2017 S. Gadat (TSE) SAD 2013 1 / 30 Keywords Decision trees

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Decision Trees Tobias Scheffer Decision Trees One of many applications: credit risk Employed longer than 3 months Positive credit

More information

Chapter 6. Ensemble Methods

Chapter 6. Ensemble Methods Chapter 6. Ensemble Methods Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Introduction

More information

day month year documentname/initials 1

day month year documentname/initials 1 ECE471-571 Pattern Recognition Lecture 13 Decision Tree Hairong Qi, Gonzalez Family Professor Electrical Engineering and Computer Science University of Tennessee, Knoxville http://www.eecs.utk.edu/faculty/qi

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions. f(x) = c m 1(x R m )

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions. f(x) = c m 1(x R m ) CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions with R 1,..., R m R p disjoint. f(x) = M c m 1(x R m ) m=1 The CART algorithm is a heuristic, adaptive

More information

Machine Learning. Ensemble Methods. Manfred Huber

Machine Learning. Ensemble Methods. Manfred Huber Machine Learning Ensemble Methods Manfred Huber 2015 1 Bias, Variance, Noise Classification errors have different sources Choice of hypothesis space and algorithm Training set Noise in the data The expected

More information

Machine Learning Recitation 8 Oct 21, Oznur Tastan

Machine Learning Recitation 8 Oct 21, Oznur Tastan Machine Learning 10601 Recitation 8 Oct 21, 2009 Oznur Tastan Outline Tree representation Brief information theory Learning decision trees Bagging Random forests Decision trees Non linear classifier Easy

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12 Ensemble Methods Charles Sutton Data Mining and Exploration Spring 2012 Bias and Variance Consider a regression problem Y = f(x)+ N(0, 2 ) With an estimate regression function ˆf, e.g., ˆf(x) =w > x Suppose

More information

Ensembles of Classifiers.

Ensembles of Classifiers. Ensembles of Classifiers www.biostat.wisc.edu/~dpage/cs760/ 1 Goals for the lecture you should understand the following concepts ensemble bootstrap sample bagging boosting random forests error correcting

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions

CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions CART Classification and Regression Trees Trees can be viewed as basis expansions of simple functions f (x) = M c m 1(x R m ) m=1 with R 1,..., R m R p disjoint. The CART algorithm is a heuristic, adaptive

More information

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes.

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes. Random Forests One of the best known classifiers is the random forest. It is very simple and effective but there is still a large gap between theory and practice. Basically, a random forest is an average

More information

PDEEC Machine Learning 2016/17

PDEEC Machine Learning 2016/17 PDEEC Machine Learning 2016/17 Lecture - Model assessment, selection and Ensemble Jaime S. Cardoso jaime.cardoso@inesctec.pt INESC TEC and Faculdade Engenharia, Universidade do Porto Nov. 07, 2017 1 /

More information

Diagnostics. Gad Kimmel

Diagnostics. Gad Kimmel Diagnostics Gad Kimmel Outline Introduction. Bootstrap method. Cross validation. ROC plot. Introduction Motivation Estimating properties of an estimator. Given data samples say the average. x 1, x 2,...,

More information

1 Handling of Continuous Attributes in C4.5. Algorithm

1 Handling of Continuous Attributes in C4.5. Algorithm .. Spring 2009 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Classification/Supervised Learning Potpourri Contents 1. C4.5. and continuous attributes: incorporating continuous

More information

Lossless Online Bayesian Bagging

Lossless Online Bayesian Bagging Lossless Online Bayesian Bagging Herbert K. H. Lee ISDS Duke University Box 90251 Durham, NC 27708 herbie@isds.duke.edu Merlise A. Clyde ISDS Duke University Box 90251 Durham, NC 27708 clyde@isds.duke.edu

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics 1 WALD LECTURE II LOOKING INSIDE THE BLACK BOX Leo Breiman UCB Statistics leo@stat.berkeley.edu ORIGIN OF BLACK BOXES 2 Statistics uses data to explore problems. Think of the data as being generated by

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Chapter 14 Combining Models

Chapter 14 Combining Models Chapter 14 Combining Models T-61.62 Special Course II: Pattern Recognition and Machine Learning Spring 27 Laboratory of Computer and Information Science TKK April 3th 27 Outline Independent Mixing Coefficients

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods

Ensemble learning 11/19/13. The wisdom of the crowds. Chapter 11. Ensemble methods. Ensemble methods The wisdom of the crowds Ensemble learning Sir Francis Galton discovered in the early 1900s that a collection of educated guesses can add up to very accurate predictions! Chapter 11 The paper in which

More information

Bagging and Other Ensemble Methods

Bagging and Other Ensemble Methods Bagging and Other Ensemble Methods Sargur N. Srihari srihari@buffalo.edu 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties as Constrained Optimization 3. Regularization and Underconstrained

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Classification of Longitudinal Data Using Tree-Based Ensemble Methods

Classification of Longitudinal Data Using Tree-Based Ensemble Methods Classification of Longitudinal Data Using Tree-Based Ensemble Methods W. Adler, and B. Lausen 29.06.2009 Overview 1 Ensemble classification of dependent observations 2 3 4 Classification of dependent observations

More information

Decision trees COMS 4771

Decision trees COMS 4771 Decision trees COMS 4771 1. Prediction functions (again) Learning prediction functions IID model for supervised learning: (X 1, Y 1),..., (X n, Y n), (X, Y ) are iid random pairs (i.e., labeled examples).

More information

Constructing Prediction Intervals for Random Forests

Constructing Prediction Intervals for Random Forests Senior Thesis in Mathematics Constructing Prediction Intervals for Random Forests Author: Benjamin Lu Advisor: Dr. Jo Hardin Submitted to Pomona College in Partial Fulfillment of the Degree of Bachelor

More information

Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities ; CU- CS

Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities ; CU- CS University of Colorado, Boulder CU Scholar Computer Science Technical Reports Computer Science Spring 5-1-23 Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities

More information

A Simple Algorithm for Learning Stable Machines

A Simple Algorithm for Learning Stable Machines A Simple Algorithm for Learning Stable Machines Savina Andonova and Andre Elisseeff and Theodoros Evgeniou and Massimiliano ontil Abstract. We present an algorithm for learning stable machines which is

More information

Deconstructing Data Science

Deconstructing Data Science econstructing ata Science avid Bamman, UC Berkeley Info 290 Lecture 6: ecision trees & random forests Feb 2, 2016 Linear regression eep learning ecision trees Ordinal regression Probabilistic graphical

More information

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler + Machine Learning and Data Mining Decision Trees Prof. Alexander Ihler Decision trees Func-onal form f(x;µ): nested if-then-else statements Discrete features: fully expressive (any func-on) Structure:

More information

Learning Ensembles. 293S T. Yang. UCSB, 2017.

Learning Ensembles. 293S T. Yang. UCSB, 2017. Learning Ensembles 293S T. Yang. UCSB, 2017. Outlines Learning Assembles Random Forest Adaboost Training data: Restaurant example Examples described by attribute values (Boolean, discrete, continuous)

More information

Neural Networks and Ensemble Methods for Classification

Neural Networks and Ensemble Methods for Classification Neural Networks and Ensemble Methods for Classification NEURAL NETWORKS 2 Neural Networks A neural network is a set of connected input/output units (neurons) where each connection has a weight associated

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

arxiv: v5 [stat.me] 18 Apr 2016

arxiv: v5 [stat.me] 18 Apr 2016 Correlation and variable importance in random forests Baptiste Gregorutti 12, Bertrand Michel 2, Philippe Saint-Pierre 2 1 Safety Line 15 rue Jean-Baptiste Berlier, 75013 Paris, France arxiv:1310.5726v5

More information

Data analysis strategies for high dimensional social science data M3 Conference May 2013

Data analysis strategies for high dimensional social science data M3 Conference May 2013 Data analysis strategies for high dimensional social science data M3 Conference May 2013 W. Holmes Finch, Maria Hernández Finch, David E. McIntosh, & Lauren E. Moss Ball State University High dimensional

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information

Regression tree methods for subgroup identification I

Regression tree methods for subgroup identification I Regression tree methods for subgroup identification I Xu He Academy of Mathematics and Systems Science, Chinese Academy of Sciences March 25, 2014 Xu He (AMSS, CAS) March 25, 2014 1 / 34 Outline The problem

More information

TDT4173 Machine Learning

TDT4173 Machine Learning TDT4173 Machine Learning Lecture 9 Learning Classifiers: Bagging & Boosting Norwegian University of Science and Technology Helge Langseth IT-VEST 310 helgel@idi.ntnu.no 1 TDT4173 Machine Learning Outline

More information

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech

StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data. Ilya Narsky, Caltech StatPatternRecognition: A C++ Package for Multivariate Classification of HEP Data Ilya Narsky, Caltech Motivation Introduction advanced classification tools in a convenient C++ package for HEP researchers

More information

Supplementary material for Intervention in prediction measure: a new approach to assessing variable importance for random forests

Supplementary material for Intervention in prediction measure: a new approach to assessing variable importance for random forests Supplementary material for Intervention in prediction measure: a new approach to assessing variable importance for random forests Irene Epifanio Dept. Matemàtiques and IMAC Universitat Jaume I Castelló,

More information

Random Forests for Ordinal Response Data: Prediction and Variable Selection

Random Forests for Ordinal Response Data: Prediction and Variable Selection Silke Janitza, Gerhard Tutz, Anne-Laure Boulesteix Random Forests for Ordinal Response Data: Prediction and Variable Selection Technical Report Number 174, 2014 Department of Statistics University of Munich

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

the tree till a class assignment is reached

the tree till a class assignment is reached Decision Trees Decision Tree for Playing Tennis Prediction is done by sending the example down Prediction is done by sending the example down the tree till a class assignment is reached Definitions Internal

More information

Cross Validation & Ensembling

Cross Validation & Ensembling Cross Validation & Ensembling Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning

More information

2D1431 Machine Learning. Bagging & Boosting

2D1431 Machine Learning. Bagging & Boosting 2D1431 Machine Learning Bagging & Boosting Outline Bagging and Boosting Evaluating Hypotheses Feature Subset Selection Model Selection Question of the Day Three salesmen arrive at a hotel one night and

More information

Chapter ML:II (continued)

Chapter ML:II (continued) Chapter ML:II (continued) II. Machine Learning Basics Regression Concept Learning: Search in Hypothesis Space Concept Learning: Search in Version Space Measuring Performance ML:II-96 Basics STEIN/LETTMANN

More information

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri CSE 151 Machine Learning Instructor: Kamalika Chaudhuri Ensemble Learning How to combine multiple classifiers into a single one Works well if the classifiers are complementary This class: two types of

More information

Discrimination Among Groups. Classification (and Regression) Trees

Discrimination Among Groups. Classification (and Regression) Trees Discrimination Among Groups P Are groups significantly different? (How valid are the groups?) < Multivariate Analysis of Variance [(NP)MANOVA] < Multi-Response Permutation Procedures [MRPP] < Analysis

More information

Low Bias Bagged Support Vector Machines

Low Bias Bagged Support Vector Machines Low Bias Bagged Support Vector Machines Giorgio Valentini Dipartimento di Scienze dell Informazione, Università degli Studi di Milano, Italy INFM, Istituto Nazionale per la Fisica della Materia, Italy.

More information

JEROME H. FRIEDMAN Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA

JEROME H. FRIEDMAN Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 1 SEPARATING SIGNAL FROM BACKGROUND USING ENSEMBLES OF RULES JEROME H. FRIEDMAN Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305 E-mail: jhf@stanford.edu

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu From statistics to data science BAE 815 (Fall 2017) Dr. Zifei Liu Zifeiliu@ksu.edu Why? How? What? How much? How many? Individual facts (quantities, characters, or symbols) The Data-Information-Knowledge-Wisdom

More information

Ensemble Methods for Machine Learning

Ensemble Methods for Machine Learning Ensemble Methods for Machine Learning COMBINING CLASSIFIERS: ENSEMBLE APPROACHES Common Ensemble classifiers Bagging/Random Forests Bucket of models Stacking Boosting Ensemble classifiers we ve studied

More information

REGRESSION TREE CREDIBILITY MODEL

REGRESSION TREE CREDIBILITY MODEL LIQUN DIAO AND CHENGGUO WENG Department of Statistics and Actuarial Science, University of Waterloo Advances in Predictive Analytics Conference, Waterloo, Ontario Dec 1, 2017 Overview Statistical }{{ Method

More information

Cover Letter. Inflated Results and Spurious Conclusions: A Re-Analysis of the MacArthur Violence Risk

Cover Letter. Inflated Results and Spurious Conclusions: A Re-Analysis of the MacArthur Violence Risk Cover Letter Please consider this manuscript, entitled The Lack of Cross-Validation Can Lead to Inflated Results and Spurious Conclusions: A Re-Analysis of the MacArthur Violence Risk Assessment Study,

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Variable importance measures in regression and classification methods

Variable importance measures in regression and classification methods MASTER THESIS Variable importance measures in regression and classification methods Institute for Statistics and Mathematics Vienna University of Economics and Business under the supervision of Univ.Prof.

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Ensemble Methods: Jay Hyer

Ensemble Methods: Jay Hyer Ensemble Methods: committee-based learning Jay Hyer linkedin.com/in/jayhyer @adatahead Overview Why Ensemble Learning? What is learning? How is ensemble learning different? Boosting Weak and Strong Learners

More information

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7]

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] 8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] While cross-validation allows one to find the weight penalty parameters which would give the model good generalization capability, the separation of

More information

Performance of Cross Validation in Tree-Based Models

Performance of Cross Validation in Tree-Based Models Performance of Cross Validation in Tree-Based Models Seoung Bum Kim, Xiaoming Huo, Kwok-Leung Tsui School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, Georgia 30332 {sbkim,xiaoming,ktsui}@isye.gatech.edu

More information

Influence measures for CART

Influence measures for CART Jean-Michel Poggi Orsay, Paris Sud & Paris Descartes Joint work with Avner Bar-Hen Servane Gey (MAP5, Paris Descartes ) CART CART Classification And Regression Trees, Breiman et al. (1984) Learning set

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

Random Forests: Finding Quasars

Random Forests: Finding Quasars This is page i Printer: Opaque this Random Forests: Finding Quasars Leo Breiman Michael Last John Rice Department of Statistics University of California, Berkeley 0.1 Introduction The automatic classification

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part VI: Cross-validation Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD) 453 Modern

More information

Variance and Bias for General Loss Functions

Variance and Bias for General Loss Functions Machine Learning, 51, 115 135, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Variance and Bias for General Loss Functions GARETH M. JAMES Marshall School of Business, University

More information

Discriminative v. generative

Discriminative v. generative Discriminative v. generative Naive Bayes 2 Naive Bayes P (x ij,y i )= Y i P (y i ) Y j P (x ij y i ) P (y i =+)=p MLE: max P (x ij,y i ) a j,b j,p p = 1 N P [yi =+] P (x ij =1 y i = ) = a j P (x ij =1

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c Warm up D cai.yo.ie p IExrL9CxsYD Sglx.Ddl f E Luo fhlexi.si dbll Fix any a, b, c > 0. 1. What is the x 2 R that minimizes ax 2 + bx + c x a b Ta OH 2 ax 16 0 x 1 Za fhkxiiso3ii draulx.h dp.d 2. What is

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof Ganesh Ramakrishnan October 20, 2016 1 / 25 Decision Trees: Cascade of step

More information

Machine Learning. Nathalie Villa-Vialaneix - Formation INRA, Niveau 3

Machine Learning. Nathalie Villa-Vialaneix -  Formation INRA, Niveau 3 Machine Learning Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr http://www.nathalievilla.org IUT STID (Carcassonne) & SAMM (Université Paris 1) Formation INRA, Niveau 3 Formation INRA (Niveau

More information

Harrison B. Prosper. Bari Lectures

Harrison B. Prosper. Bari Lectures Harrison B. Prosper Florida State University Bari Lectures 30, 31 May, 1 June 2016 Lectures on Multivariate Methods Harrison B. Prosper Bari, 2016 1 h Lecture 1 h Introduction h Classification h Grid Searches

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 24 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 Feb 24 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Prediction III Goal

More information

Ensemble Learning in the Presence of Noise

Ensemble Learning in the Presence of Noise Universidad Autónoma de Madrid Master s Thesis Ensemble Learning in the Presence of Noise Author: Maryam Sabzevari Supervisors: Dr. Gonzalo Martínez Muñoz, Dr. Alberto Suárez González Submitted in partial

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information