Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11

Size: px
Start display at page:

Download "Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11"

Transcription

1 Symmetries of the Two-Higgs Doublet Model (2HDM) Eddie Santos Final Presentation, Physics 251 6/8/11

2 Outline Introduction to Higgs & Motivations for an Extended Higgs Sector Two-Higgs Doublet Model (2HDM) Basic Transformations and Higgs Family (HF) Symmetries of the 2HDM General CP (GCP) Symmetries of the 2HDM Multiple Symmetries

3 Higgs Boson: Motivations Standard model of particle physics gauge group: SU(3)cxSU(2)LxU(1)Y. Weak-force gauge bosons W +, W -, and Z bosons, and fermions naively predicted to be massless. Not true. Cannot acquire mass by radiative corrections, need Goldstone bosons to generate masses for Gauge Bosons. Introduce a complex scalar SU(2) doublet that acquires a vacuum expectation value (vev). Breaks electroweak symmetry and gives mass to W/Z bosons. Can couple to fermions via Yukawa terms, which generates fermion masses after the scalar acquires its vev.

4 Motivations for Multi-Higgs Doublet Models One Higgs Doublet is only the simplest scenario, still lots of freedom for an extended Higgs sector. Two-Higgs doublet model is simplest extension to SM Higgs sector. Peccei-Quinn solution to the Strong CP problem requires two-higgs doublets. Minimal Supersymmetric Standard Model (MSSM) requires two-higgs doublets to cancel potential gauge anomalies of the Higgsino superpartners. Allows an opportunity for CP violation.

5 Elements of the Two-Higgs Doublet Model (2HDM) The 2HDM consists of two hypercharge-one complex scalar SU(2) doublets: Φ a (x) = φ + a (x) φ 0 a(x) where a=1,2 Each Higgs doublet has 4 degrees of freedom, so between the two doublets, there are 8 total d.o.f. 3 of these d.o.f are eaten by the W/Z bosons, thus leaving 5 Higgs bosons: h 0 (light CP-even), H 0 (Heavier CP-even), A 0 (CP-odd), and H + /H -. Each doublet acquires a vev: 0 Φ a = v a 2 where v 2 = v v 2 2 =(246GeV) 2.

6 Tree-Level 2HDM Potential in a Generic Basis V H = m 2 11Φ 1 Φ 1 + m 2 22Φ 2 Φ 2 [m 2 12Φ 1 Φ 2 +(m 2 12) Φ 2 Φ 1]+ 1 2 λ 1(Φ 1 Φ 1) λ 2(Φ 2 Φ 2) 2 +λ 3 (Φ 1 Φ 1)(Φ 2 Φ 2)+λ 4 (Φ 1 Φ 2)(Φ 2 Φ 1)+ 1 2 [λ 5(Φ 1 Φ 2) 2 + λ 5(Φ 2 Φ 1) 2 ] +[λ 6 (Φ 1 Φ 2)+λ 6(Φ 2 Φ 1)](Φ 1 Φ 1)+[λ 7 (Φ 1 Φ 2)+λ 7(Φ 2 Φ 1)](Φ 2 Φ 2) Six real parameters: m 2 11,m 2 22, λ 1, λ 2, λ 3, λ 4. Four potentially complex parameters: m 2 12, λ 5, λ 6, λ 7. Constraints: bounded from below, stable, preserves U(1)EM.

7 Example of a 2HDM: MSSM λ 1 = λ 2 = 1 4 (g2 2 + g1), 2 λ 3 = 1 4 (g2 2 g1), 2 λ 4 = 1 2 g2 2, λ 5 = λ 6 = λ 7 =0. CP-conserving (all parameters are real).

8 Basis-Independent 2HDM Formalism V H = Y a bφ āφ b Z a bc d(φ āφ b )(Φ cφ d ), Use Einstein summation convention, where a,b,c,d = 1,2. Y 11 = m 2 11, Y 12 = m 2 12, Y 21 = (m 2 12), Y 22 = m 2 22, Z 1111 = λ 1, Z 2222 = λ 2, Z 1122 = Z 2211 = λ 3, Z 1221 = Z 2112 = λ 4, Z 1212 = λ 5, Z 2121 = λ 5, Z 1112 = Z 1211 = λ 6, Z 1121 = Z 2111 = λ 6, Z 2212 = Z 1222 = λ 7, Z 2221 = Z 2122 = λ 7.

9 Basis-Independent 2HDM Formalism V H = Y a bφ āφ b Z a bc d(φ āφ b )(Φ cφ d ), Wide array of possible basis choices for the 2HDM. Some bases carry parameters that are not physical in the generic 2HDM. Want to select basis-independent parameters that are uniquely defined, gauge invariant, and well-behaved under renormalization. Z a bc d = Z c da b Symmetry of quartic coupling:. Hermiticity of potential: (Y a b) = Y bā, (Z a bc d) = Z d cbā.

10 Basis Transformations The most general symmetry group between the two doublets is SL(2,C), but SL(2,C) changes the form of the kinetic term. U(2) is the most general subgroup of SL(2,C) that leaves the kinetic term unchanged. Thus, Φ a Φ a = U a bφ b, Φ ā Φ ā = Φ bu bā. where the unitary 2 x 2 matrices U U(2) satisfy the condition U aēu e b = δ a b

11 Basis Transformations Consequently, the coefficients must transform as Y a b Y a b = U aᾱy α βu β b, Z a bc d Z a bc d = U aᾱu c γ Z α βγ δu β b U δ d. and the vevs transform as v a v a = U a bv b.

12 2HDM Higgs Family (HF) Symmetries Let us assume the scalar potential has some explicit internal symmetry such that the coefficients of the potential stay exactly the same: Φ a Φ S a = S a bφ b. S is a unitary matrix, thus the kinetic terms are unchanged. As a result of the symmetry, Y a b = Y S a b = S aᾱy α βs β b, Z a bc d = Z S a bc d = S aᾱs c γ Z α βγ δs β b S δ d

13 2HDM Higgs Family (HF) Symmetries The HF symmetry group must be a subgroup of the full U(2) transformation group. However, there is always a U(1) subgroup of U(2) in which the 2HDM scalar potential is invariant, which is the U(1)Y symmetry group: U(1) Y : Φ a = e iθ Φ a. Invariance of U(1)Y is trivially guaranteed by the invariance SU(2)LxU(1)Y. HF symmetries are defined to be those Higgs family symmetries that are orthogonal to U(1)Y U(2).

14 Examples of HF symmetries Discrete Z2 preclude flavor-changing neutral currents (Glashow & Weinberg, Paschos): Z 2 : Φ 1 Φ 1, Φ 2 Φ 2. Π 2 : Φ 1 Φ 2, Actually the same as under a change of basis, though they have different impacts on the parameters of the potential. U(1) : Φ 1 e iθ Φ 1, Φ 2 e iθ Φ 2 Peccei-Quinn continuous U(1): but a potential invariant under U(1) is invariant under Z2. Existence of any of these symmetries is enough to guarantee the existence of a basis in which all the potential parameters are real (CP-invariance).

15 Simple Higgs Family Symmetry Consider a symmetry group G and require the following property: Scalar potential is invariant under a particular group element g (not equal to e) of G, sufficient to guarantee the scalar potential is invariant under the entire group G. Such symmetries are called simple Higgs Family symmetries. Examples: Discrete cyclic group Zn, Peccei-Quinn (PQ) U(1) symmetry. In the 2HDM, there are only two independent classes of simple HF symmetries: discrete Z2 flavor symmetry and a continuous PQ U(1) flavor symmetry.

16 Maximal HF Symmetry group Examine the largest possible HF symmetry group, U(2). We determine the maximal HF symmetry group to be the HF symmetry that is orthogonal to U(1)Y. We begin by nothing that U(2) SU(2) U(1)Y/Z2. In our class, we ve become all too familiar with the isomorphism: SO(3) = SU(2)/Z 2. Therefore, U(2) SO(3) U(1)Y, and we identify SO(3) as the maximal HF symmetry group. Imposes the following constraints: All parameters are real, therefore the Higgs sector obeying maximal HF symmetry is CP-conserving.

17 Generalized CP (GCP) Symmetries CP Transformation on scalar fields: GCP combines basis transformation (with unitary matrix X) with CP transformation: Leaves kinetic terms invariant. Potential invariant under GCP if and only if Y a b = X aᾱy α βx β b =(X YX) a b, Z a bc d = X aᾱx c γz α βγ δx β bx δ d.

18 GCP and Basis Transformations If the scalar potential is invariant under a GCP transformation with a unitary matrix X, then after an additional basis transformation, the potential is invariant under a new GCP transformation with a new unitary matrix X = UXU T. For every matrix X, there exists a unitary matrix U such that X can be reduced to the form (Ecker, Grimus, & Neufeld 1987): X = UXU T = cos θ sin θ These leads to three classes of GCP symmetries: sin θ, where 0 θ π/2. cos θ CP1:θ =0,CP2:θ = π/2, CP3:0< θ < π/2.

19 CP1: θ=0 With θ=0, X is the unit matrix, and we get a standard CP transformation: CP1:Φ a Φ a The couplings are subject to the constraint Y a b = Y a b,z a bc d = Z a bc d. This forces all couplings to be real, which means m 2 12, λ 5, λ 6, λ 7. are all real, just what we d expect for a CP symmetry.

20 CP2: θ=π/2 With θ=π/2, X takes the form X = = Φ a a bφ b. If this symmetry holds in one basis, it holds in all basis choices (Davidson & Haber, 2005). CP2 invariance implies: m 2 11 = m 2 22,m 2 12 =0, λ 1 = λ 2, λ 6 = λ 7. Under these conditions, we can always find a basis where all the parameters are real (Gunion & Haber, 2005), implying that if a potential is invariant under CP2, then there is a basis where CP2 still holds and the potential is also invariant under CP1.

21 CP3: 0<θ<π/2 Analysis is a little more complicated (see Ferreira, Haber, Silva, 2009) but the constraints imposed on the potential are: Results are independent of the angle so long as it is between the bounds!

22 Impact of Symmetries on 2HDM Potential Ferreira, Haber, & Silva (2009)

23 Multiple Applications of GCP Symmetries If we apply a GCP transformation twice, we get (Φ GCP a ) GCP = X aᾱ (Φ GCP α ) = X aᾱ X α b Φ b. (GCP) 2 = XX. Thus, We can apply this to our three classes of GCP symmetries previously discussed: CP1: In this case, we have X=1, so (CP1) 2 = 1. Thus a CP1 invariant potential is invariant under the symmetry group Z2 = {1,CP1}. 0 1 CP2: Here X =, 1 0 which implies (CP2) 2 = -1. Thus a CP2 invariant potential is invariant under the symmetry group Z4 = {1,CP2,-1,-CP2}.

24 Multiple Applications of GCP Symmetries CP2(cont): If we denote (Z2)Y = {1,-1} as the two-element discrete subgroup of the global hypercharge U(1)Y, then the Z4/(Z2)Y Z2, and we conclude that the CP2-invariant potential exhibits a Z2 symmetry orthogonal to the Higgs flavor symmetries of the potential. cos 2θ sin 2θ CP3: The matrix X is given by X =, sin 2θ cos 2θ which can not be reduced to the identity. A CP3 invariant potential does however, exhibit a Z2 symmetry that is orthogonal to the Higgs flavor symmetries of the potential.

25 Multiple Symmetries and GCP Consider possibility of imposing more than one symmetry requirement on the Higgs potential. Case 1: Impose Z2 and Π2 symmetry in the same basis. This leads to: This is simply CP2 in the basis λ6=0. Using Z2 Π2 to denote the simultaneous symmetries of Z2 and Π2, we conclude Z2 Π2 = CP2 in the basis λ6=0. Note that we cannot do this for CP1. CP1 reduces the potential to 9 independent real parameters. The smallest HF symmetry Z2 can only reduce the potential to 8 real parameters.

26 Multiple Symmetries and GCP Case 2: Impose U(1) and Π2 symmetry in the same basis. This leads to: This isn t the CP3 explicitly shown, but we can choose a basis transformation U that takes Re λ5= λ1 - λ3 - λ4, where λ5 = 0. Thus we conclude U(1) Π2 = CP3 in some basis. Note that we cannot do this for CP1. CP1 reduces the potential to 9 independent real parameters. The smallest HF symmetry Z2 can only reduce the potential to 8 real parameters. Case 3: Impose U(1) (PQ) and CP3 in the same basis. We obtain precisely the constraints resulting from the SO(3) HF symmetry. Thus U(1) CP3 = SO(3).

27 Maximal Symmetry Group of the Potential Orthogonal to U(1)Y The standard CP symmetry CP1 is a discrete Z2 symmetry is not a subgroup of the U(2) basis transformation group. We have noted that 2HDM scalar potentials that exhibit any nontrivial HF symmetry G is automatically CP conserving. Thus the maximal symmetry group is thus the semi-direct product of G and Z2. The maximal symmetry groups are listed below (ex: U(1) Z2 SO(2) Z2 O(2), and SO(3) Z2 O(3)).

28 Conclusions Higgs mechanism provides masses for W/Z bosons and fermions. Two-Higgs doublets is the simplest extension to the SM and contains 5 Higgs bosons. Can impose discrete symmetries and continuous symmetries that lead to constraints on the parameters of the 2HDM. Three classes of Generalized CP (GCP) symmetries, which are related to multiple applications of the aforementioned discrete and continuous symmetries in specific bases.

29 Bibliography J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter s Guide (Perseus Publishing, Cambridge, MA, 1990). S. Davidson and H. E. Haber, Phys. Rev. D 72, (2005) P. M. Ferreira, H. E. Haber, and J. P. Silva Phys. Rev. D 79, (2009) P. M. Ferreira and J. P. Silva, Phys. Rev. D 78, (2008)

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

The Two-Higgs-Doublet Model: Past, Present and Future

The Two-Higgs-Doublet Model: Past, Present and Future The Two-Higgs-Doublet Model: Past, Present and Future Augusto Barroso Fest Howard E. Haber 24 October 2008 Outline A (biased) history of the two-higgs-doublet model (2HDM) The paradox of tan β The general

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

arxiv:hep-ph/ v5 27 Nov 2005

arxiv:hep-ph/ v5 27 Nov 2005 IPPP/03/23 DCPT/03/46 SCIPP-04/15 hep-ph/0504050 April, 2005 arxiv:hep-ph/0504050v5 27 Nov 2005 Basis-independent methods for the two-higgs-doublet model Sacha Davidson 1, 2 and Howard E. Haber 1,3 1 Institute

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

CORFU HDMs. symmetry The Inert Model Various vacua Today= Inert phase Thermal evolutions Z 2

CORFU HDMs. symmetry The Inert Model Various vacua Today= Inert phase Thermal evolutions Z 2 CORFU2010 5.09. 2010 2HDMs Z 2 symmetry The Inert Model Various vacua Today= Inert phase Thermal evolutions Maria Krawczyk University of Warsaw I. Ginzburg, K. Kanishev (Novosibirsk University), D.Sokołowska,

More information

Invariants and CP violation in the 2HDM and 3HDM

Invariants and CP violation in the 2HDM and 3HDM Invariants and CP violation in the 2HDM and 3HDM Talk given at Workshop on the Standard Model and Beyond, Corfu September 5, 2017 Odd Magne Ogreid Based on work with B. Grzadkowski and P. Osland Motivations

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Higgs Boson Physics, Part II

Higgs Boson Physics, Part II Higgs Boson Physics, Part II Laura Reina TASI 004, Boulder Outline of Part II What do we know about the Standard Model Higgs boson? indirect bounds on M H from the theoretical consistency of the Standard

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

Spontaneous CP violation and Higgs spectra

Spontaneous CP violation and Higgs spectra PROCEEDINGS Spontaneous CP violation and Higgs spectra CERN-TH, CH-111 Geneva 3 E-mail: ulrich.nierste@cern.ch Abstract: A general theorem relating Higgs spectra to spontaneous CP phases is presented.

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

CP violation in charged Higgs production and decays in the Complex 2HDM

CP violation in charged Higgs production and decays in the Complex 2HDM CP violation in charged Higgs production and decays in the Complex 2HDM Abdesslam Arhrib National Cheung Keung University (NCKU), Faculté des Sciences et Techniques Tangier, Morocco Based on: A.A, H. Eberl,

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

arxiv: v2 [hep-ph] 8 Feb 2010

arxiv: v2 [hep-ph] 8 Feb 2010 A Two-Higgs Doublet Model With Remarkable CP Properties arxiv:1001.0574v2 [hep-ph] 8 Feb 2010 P. M. Ferreira a,b and João P. Silva a,c a Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Testing the presence of CP violation in the 2HDM

Testing the presence of CP violation in the 2HDM Testing the presence of CP violation in the 2HDM B. Grzadkowski Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland E-mail: bohdan.grzadkowski@fuw.edu.pl O. M. Ogreid Bergen University

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

Neutrino Masses in the MSSM

Neutrino Masses in the MSSM Neutrino Masses in the MSSM Steven Rimmer Supervisor: Dr. Athanasios Dedes Institute of Particle Physics Phenomenology, University of Durham A supersymmetric standard model Find the most general Lagrangian

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

To Higgs or not to Higgs

To Higgs or not to Higgs To Higgs or not to Higgs vacuum stability and the origin of mass Wolfgang Gregor Hollik DESY Hamburg Theory Group Dec 12 2016 MU Programmtag Mainz The Higgs mechanism and the origin of mass [CERN bulletin]

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Oblique corrections in the Dine-Fischler-Srednicki axion model

Oblique corrections in the Dine-Fischler-Srednicki axion model EPJ Web of Conferences 16, 44 16 DOI: 1.151/ epjconf/161644 ICNFP 15 Oblique corrections in the Dine-Fischler-Srednicki axion model Alisa Katanaeva 1,a and Domènec Espriu 1 V. A. Fock Department of Theoretical

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Roni Harnik LBL and UC Berkeley

Roni Harnik LBL and UC Berkeley Roni Harnik LBL and UC Berkeley with Daniel Larson and Hitoshi Murayama, hep-ph/0309224 Supersymmetry and Dense QCD? What can we compare b/w QCD and SQCD? Scalars with a chemical potential. Exact Results.

More information

Triviality Bound on Lightest Higgs Mass in NMSSM. S.R. Choudhury, Mamta and Sukanta Dutta

Triviality Bound on Lightest Higgs Mass in NMSSM. S.R. Choudhury, Mamta and Sukanta Dutta Triviality Bound on Lightest Higgs Mass in NMSSM S.R. Choudhury, Mamta and Sukanta Dutta Department of Physics and Astrophysics, University of Delhi, Delhi-110007, INDIA. Abstract We study the implication

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Lecture 6 The Super-Higgs Mechanism

Lecture 6 The Super-Higgs Mechanism Lecture 6 The Super-Higgs Mechanism Introduction: moduli space. Outline Explicit computation of moduli space for SUSY QCD with F < N and F N. The Higgs mechanism. The super-higgs mechanism. Reading: Terning

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

EDMs from the QCD θ term

EDMs from the QCD θ term ACFI EDM School November 2016 EDMs from the QCD θ term Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture II outline The QCD θ term Toolbox: chiral symmetries and their breaking Estimate of the

More information

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012 Mass degenerate Higgs Hunters explore the 2HDM Howard E. Haber West Coast LHC Theory Meeting @ UC Riverside December 7, 2012 Outline A boson born on the 4 th of July 2012 Properties of the Higgs boson

More information

A Two Higgs Doublet Model for the Top Quark

A Two Higgs Doublet Model for the Top Quark UR 1446 November 1995 A Two Higgs Doublet Model for the Top Quark Ashok Das and Chung Kao 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA Abstract A two Higgs doublet

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

arxiv:hep-ph/ v2 2 May 1997

arxiv:hep-ph/ v2 2 May 1997 PSEUDOSCALAR NEUTRAL HIGGS BOSON PRODUCTION IN POLARIZED γe COLLISIONS arxiv:hep-ph/961058v May 1997 M. SAVCI Physics Department, Middle East Technical University 06531 Ankara, Turkey Abstract We investigate

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

arxiv: v1 [hep-ph] 8 Oct 2013

arxiv: v1 [hep-ph] 8 Oct 2013 Impersonating the Standard Model Higgs Boson: Alignment without Decoupling Marcela Carena a,b,c, Ian Low d,e,f, Nausheen R. Shah g, and Carlos E. M. Wagner b,c,e a Fermi National Accelerator Laboratory,

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Two models with extra Higgs doublets and Axions

Two models with extra Higgs doublets and Axions Two models with extra Higgs doublets and Axions H Serôdio (KAIST) 4 th KIAS Workshop Particle Physics and Cosmology, 30 October 2014 In collaboration with: Alejandro Celis, Javier Fuentes-Martin Works:

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

A novel and economical explanation for SM fermion masses and mixings

A novel and economical explanation for SM fermion masses and mixings Eur. Phys. J. C 06) 76:50 DOI 0.40/epjc/s005-06-45-y etter A novel and economical explanation for SM fermion masses and mixings A. E. Cárcamo Hernández a Universidad Técnica Federico Santa María and Centro

More information

The bestest little Higgs

The bestest little Higgs The bestest little Higgs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Schmaltz, Martin, Daniel

More information

Electroweak Symmetry Breaking and the Higgs Mechanism

Electroweak Symmetry Breaking and the Higgs Mechanism Electroweak Symmetry Breaking and the Higgs Mechanism Roger Wolf 06. Mai 2014 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of Baden-Wuerttemberg and National

More information

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/ with Zackaria Chacko and Hock-Seng Goh hep-ph/0506256 Naturalness and LHC LHC is going to be exciting from the start (first 10 fb -1 ). t L +? = Natural SMt R NP Naturalness and LHC LHC is going to be

More information

Pseudoscalar Higgs boson signatures at the LHC

Pseudoscalar Higgs boson signatures at the LHC Pseudoscalar Higgs boson signatures at the LHC David Englert in collaboration with Elena Accomando, Matthew Chapman, Stefano Moretti International School of Subnuclear Physics Erice, Sicily 2 June, 216

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Supersymmetry Highlights. Kevin Hambleton

Supersymmetry Highlights. Kevin Hambleton Supersymmetry Highlights Kevin Hambleton Outline SHO Example Why SUSY? SUSY Fields Superspace Lagrangians SUSY QED MSSM i Warm Up A Hint Of SUSY... Remember Quantum Simple Harmonic Oscillator... Canonical

More information

SUSY Higgs Physics at the LHC.

SUSY Higgs Physics at the LHC. SUSY Higgs Physics at the LHC. D.J. Miller Dresden, 3 rd July 2008 Outline: Introduction: The SM Higgs Sector The minimal SUSY Higgs sector The NMSSM The mnssm A Local Peccei-Quinn Symmetry (and the E

More information

Sreerup Raychaudhuri TIFR

Sreerup Raychaudhuri TIFR The Boson in the Model Sreerup Raychaudhuri TIFR What everyone knows What everyone knows Electroweak interactions are very accurately described by a local SU(2) U(1) gauge theory The gauge symmetry does

More information