D. Determinants. a b c d e f

Size: px
Start display at page:

Download "D. Determinants. a b c d e f"

Transcription

1 D. Determinants Given a square array of numers, we associate with it a numer called the determinant of, and written either det(), or. For 2 2 and 3 3 arrays, the numer is defined y () a c d = ad c; a c d e f = aei+fg +dhc ceg di fha. g h i Do not memorize these as formulas learn instead the patterns which give the terms. The 2 2 case is easy: the product of the elements on one diagonal (the main diagonal ), minus the product of the elements on the other (the antidiagonal ). For the 3 3 case, three products get the + sign: those formed from the main diagonal, or having two factors parallel to the main diagonal. The other three get a negative sign: those from the antidiagonal, or having two factors parallel to it. Try the following example on your own, then check your work against the solution. 2 Example. Evaluate 3 2 using (). 2 4 Solution. Using the same order as in (), we get 2+( 8)+ 6 8 ( 2) = 7. Important facts aout : D-. is multiplied y if we interchange two rows or two columns. D-2. = 0 if one row or column is all zero, or if two rows or two columns are the same. D-3. is multiplied y c, if every element of some row or column is multiplied y c. D-4. The value of is unchanged if we add to one row (or column) a constant multiple of another row (resp. column). ll of these facts are easy to check for 2 2 determinants from the formula (); from this, their truth also for 3 3 determinants will follow from the Laplace expansion. Though the letters a,,c,... can e used for very small determinants, they can t for larger ones; it s important early on to get used to the standard notation for the entries of determinants. This is what the common software packages and the literature use. The determinants of order two and three would e written respectively a a 2 a a 2 a 3 a 2 a 22 a 2 a 22 a 23 a 3 a 32 a 33 There is another form for this rule which requires adding two extra columns to the determinant, ut this wastes too much time in practice and leads to awkward write-ups; instead, learn to evaluate each of the six products mentally, writing it down with the correct sign, and then add the six numers, as is done in Example. Note that the word determinant is also used for the square array itself, enclosed etween two vertical lines, as for example when one speaks of the second row of the determinant.

2 NOTES In general, the ij-entry, written a ij, is the numer in the i-th row and j-th column. Its ij-minor, written ij, is the determinant that s left after deleting from the row and column containing a ij. Its ij-cofactor, written here ij, is given as a formula y ij = ( ) i+j ij. For a 3 3 determinant, it is easier to think of it this way: we put + or in front of the ij-minor, according to whether + or occurs in the ij-position in the checkeroard pattern + + (2) Example.2 = 2 2. Find 2, 2, 22, 22. Solution. 2 = 2 =, 2 =. 22 = 3 2 = 7, 22 = 7. Laplace expansion y cofactors This is another way to evaluate a determinant; we give the rule for a 3 3. It generalizes easily to an n n determinant. Select any row (or column) of the determinant. Multiply each entry a ij in that row (or column) y its cofactor ij, and add the three resulting numers; you get the value of the determinant. s practice with notation, here is the formula for the Laplace expansion of a third order (i.e., a 3 3) determinant using the cofactors of the first row: (3) a +a 2 2 +a 3 3 = and the formula using the cofactors of the j-th column: (4) a j j +a 2j 2j +a 3j 3j = Example.3 Evaluate the determinant in Example.2 using the Laplace expansions y the first row and y the second column, and check y also using (). Solution. The Laplace expansion y the first row is = = ( ) 0 +3 ( 3) = 0. The Laplace expansion y the second column would e = = 0+2 ( 7) ( 4) = 0.

3 D. DETERMINNTS 3 Checking y (), we have = ( ) = 0. Example.4 Show the Laplace expansion y the first row agrees with definition (). Solution. We have a c d e f g h i = a e f d f +c d e h i g i g h = a(ei fh) (di fg)+c(dh eg), whose six terms agree with the six terms on the right of definition (). ( similar argument can e made for the Laplace expansion y any row or column.) rea and volume interpretation of the determinant: (5) ± a a 2 2 = area of parallelogram with edges = (a,a 2 ), = (, 2 ). a a 2 a 3 (6) ± 2 3 c c 2 c 3 = volume of parallelepiped with edges row-vectors,,c. C In each case, choose the sign which makes the left side non-negative. Proof of (5). We egin with two preliminary oservations. Let e the positive angle from to ; we assume it is < π, so that and have the general positions illustrated. Let = π/2, as illustrated. Then cos = sin. Draw the vector otained y rotating to the right y π/2. The picture shows that = ( 2, ), and =. To prove (5) now, we have a standard formula of Euclidean geometry, area of parallelogram = sin = cos, y the aove oservations =, y the geometric definition of dot product = a 2 a 2 y the formula for 2 2 This proves the area interpretation (5) if and have the position shown. If their positions are reversed, then the area is the same, ut the sign of the determinant is changed, so the formula has to read, area of parallelogram = ± a a 2 2, whichever sign makes the right side 0. The proof of the analogous volume formula (6) will e made when we study the scalar triple product C.

4 NOTES For n n determinants, the analog of definition () is a it complicated, and not used to compute them; that s done y the analog of the Laplace expansion, which we give in a moment, or y using Fact D-4 in a systematic way to make the entries elow the main diagonal all zero. Generalizing (5) and (6), n n determinants can e interpreted as the hypervolume in n-space of a n-dimensional parallelotope. For n n determinants, the minor ij of the entry a ij is defined to e the determinant otained y deleting the i-th row and j-th column; the cofactor ij is the minor, prefixed y a + or sign according to the natural generalization of the checkeroard pattern (2). Then the Laplace expansion y the i-th row would e = a i i +a i2 i a in in. This is an inductive calculation it expresses the determinant of order n in terms of determinants of order n. Thus, since we can calculate determinants of order 3, it allows us to calculate determinants of order 4; then determinants of order 5, and so on. If we take for definiteness i =, then the aove Laplace expansion formula can e used as the asis of an inductive definition of the n n determinant Example.5 Evaluate y its Laplace expansion y the first row Solution = ( 23) 3 2 = 3. Exercises: Section C

5 8.02 Notes and Exercises y. Mattuck and jorn Poonen with the assistance of T.Shifrin and S. LeDuc c M.I.T

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes

7.3. Determinants. Introduction. Prerequisites. Learning Outcomes Determinants 7.3 Introduction Among other uses, determinants allow us to determine whether a system of linear equations has a unique solution or not. The evaluation of a determinant is a key skill in engineering

More information

Calculus Notes and Exercises

Calculus Notes and Exercises 8.2 alculus Notes and Exercises A. Mattuck, with the assistance of T.Shifrin and S. LeDuc, and including a section on non-independent variables by Bjorn Poonen. 8.2 NOTES, EXEISES, AND SOLUTIONS Part I

More information

58. The Triangle Inequality for vectors is. dot product.] 59. The Parallelogram Law states that

58. The Triangle Inequality for vectors is. dot product.] 59. The Parallelogram Law states that 786 CAPTER 12 VECTORS AND TE GEOETRY OF SPACE 0, 0, 1, and 1, 1, 1 as shown in the figure. Then the centroid is. ( 1 2, 1 2, 1 2 ) ] x z C 54. If c a a, where a,, and c are all nonzero vectors, show that

More information

45. The Parallelogram Law states that. product of a and b is the vector a b a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1. a c. a 1. b 1.

45. The Parallelogram Law states that. product of a and b is the vector a b a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1. a c. a 1. b 1. SECTION 10.4 THE CROSS PRODUCT 537 42. Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular. 43.

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

Remark 3.2. The cross product only makes sense in R 3.

Remark 3.2. The cross product only makes sense in R 3. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

M. Matrices and Linear Algebra

M. Matrices and Linear Algebra M. Matrices and Linear Algebra. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices.

More information

Matrix Basic Concepts

Matrix Basic Concepts Matrix Basic Concepts Topics: What is a matrix? Matrix terminology Elements or entries Diagonal entries Address/location of entries Rows and columns Size of a matrix A column matrix; vectors Special types

More information

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2 Least squares: Mathematical theory Below we provide the "vector space" formulation, and solution, of the least squares prolem. While not strictly necessary until we ring in the machinery of matrix algera,

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

Homework Set #8 Solutions

Homework Set #8 Solutions Exercises.2 (p. 19) Homework Set #8 Solutions Assignment: Do #6, 8, 12, 14, 2, 24, 26, 29, 0, 2, 4, 5, 6, 9, 40, 42 6. Reducing the matrix to echelon form: 1 5 2 1 R2 R2 R1 1 5 0 18 12 2 1 R R 2R1 1 5

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

Section 1.6. M N = [a ij b ij ], (1.6.2)

Section 1.6. M N = [a ij b ij ], (1.6.2) The Calculus of Functions of Several Variables Section 16 Operations with Matrices In the previous section we saw the important connection between linear functions and matrices In this section we will

More information

DETERMINANTS, MINORS AND COFACTORS ALGEBRA 6. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1)

DETERMINANTS, MINORS AND COFACTORS ALGEBRA 6. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) DETERMINANTS, MINORS AND COFACTORS ALGEBRA 6 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Determinants, minors and cofactors 1/ 15 Adrian Jannetta Determinants Every square matrix has a number

More information

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications.

The Cross Product. In this section, we will learn about: Cross products of vectors and their applications. The Cross Product In this section, we will learn about: Cross products of vectors and their applications. THE CROSS PRODUCT The cross product a x b of two vectors a and b, unlike the dot product, is a

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

Determinants of 2 2 Matrices

Determinants of 2 2 Matrices Determinants In section 4, we discussed inverses of matrices, and in particular asked an important question: How can we tell whether or not a particular square matrix A has an inverse? We will be able

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

a11 a A = : a 21 a 22

a11 a A = : a 21 a 22 Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are

More information

Determinants: summary of main results

Determinants: summary of main results Determinants: summary of main results A determinant of an n n matrix is a real number associated with this matrix. Its definition is complex for the general case We start with n = 2 and list important

More information

Diagonalization. MATH 1502 Calculus II Notes. November 4, 2008

Diagonalization. MATH 1502 Calculus II Notes. November 4, 2008 Diagonalization MATH 1502 Calculus II Notes November 4, 2008 We want to understand all linear transformations L : R n R m. The basic case is the one in which n = m. That is to say, the case in which the

More information

Chapter 2: Matrices and Linear Systems

Chapter 2: Matrices and Linear Systems Chapter 2: Matrices and Linear Systems Paul Pearson Outline Matrices Linear systems Row operations Inverses Determinants Matrices Definition An m n matrix A = (a ij ) is a rectangular array of real numbers

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

Determinant of a Matrix

Determinant of a Matrix 13 March 2018 Goals We will define determinant of SQUARE matrices, inductively, using the definition of Minors and cofactors. We will see that determinant of triangular matrices is the product of its diagonal

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

The Determinant. Chapter Definition of the Determinant

The Determinant. Chapter Definition of the Determinant Chapter 5 The Determinant 5.1 Definition of the Determinant Given a n n matrix A, we would like to define its determinant. We already have a definition for the 2 2 matrix. We define the determinant of

More information

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix Algebra & Trig. I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Matrices and Determinants

Matrices and Determinants Chapter1 Matrices and Determinants 11 INTRODUCTION Matrix means an arrangement or array Matrices (plural of matrix) were introduced by Cayley in 1860 A matrix A is rectangular array of m n numbers (or

More information

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway Linear Algebra: Lecture Notes Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway November 6, 23 Contents Systems of Linear Equations 2 Introduction 2 2 Elementary Row

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

MATRIX DETERMINANTS. 1 Reminder Definition and components of a matrix

MATRIX DETERMINANTS. 1 Reminder Definition and components of a matrix MATRIX DETERMINANTS Summary Uses... 1 1 Reminder Definition and components of a matrix... 1 2 The matrix determinant... 2 3 Calculation of the determinant for a matrix... 2 4 Exercise... 3 5 Definition

More information

Lecture 7: Vectors and Matrices II Introduction to Matrices (See Sections, 3.3, 3.6, 3.7 and 3.9 in Boas)

Lecture 7: Vectors and Matrices II Introduction to Matrices (See Sections, 3.3, 3.6, 3.7 and 3.9 in Boas) Lecture 7: Vectors and Matrices II Introduction to Matrices (See Sections 3.3 3.6 3.7 and 3.9 in Boas) Here we will continue our discussion of vectors and their transformations. In Lecture 6 we gained

More information

Lecture 2: Vector-Vector Operations

Lecture 2: Vector-Vector Operations Lecture 2: Vector-Vector Operations Vector-Vector Operations Addition of two vectors Geometric representation of addition and subtraction of vectors Vectors and points Dot product of two vectors Geometric

More information

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is

The Cross Product The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is The Cross Product 1-1-2018 The cross product of v = (v 1,v 2,v 3 ) and w = (w 1,w 2,w 3 ) is v w = (v 2 w 3 v 3 w 2 )î+(v 3 w 1 v 1 w 3 )ĵ+(v 1 w 2 v 2 w 1 )ˆk = v 1 v 2 v 3 w 1 w 2 w 3. Strictly speaking,

More information

LA lecture 4: linear eq. systems, (inverses,) determinants

LA lecture 4: linear eq. systems, (inverses,) determinants LA lecture 4: linear eq. systems, (inverses,) determinants Yesterday: ˆ Linear equation systems Theory Gaussian elimination To follow today: ˆ Gaussian elimination leftovers ˆ A bit about the inverse:

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M. Matrices and Linear Algebra

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

NOTES ON LINEAR ALGEBRA. 1. Determinants

NOTES ON LINEAR ALGEBRA. 1. Determinants NOTES ON LINEAR ALGEBRA 1 Determinants In this section, we study determinants of matrices We study their properties, methods of computation and some applications We are familiar with the following formulas

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

DETERMINANTS, COFACTORS, AND INVERSES

DETERMINANTS, COFACTORS, AND INVERSES DEERMIS, COFCORS, D IVERSES.0 GEERL Determinants originally were encountered in the solution of simultaneous linear equations, so we will use that perspective here. general statement of this problem is:

More information

UNIT 1 DETERMINANTS 1.0 INTRODUCTION 1.1 OBJECTIVES. Structure

UNIT 1 DETERMINANTS 1.0 INTRODUCTION 1.1 OBJECTIVES. Structure UNIT 1 DETERMINANTS Determinants Structure 1.0 Introduction 1.1 Objectives 1.2 Determinants of Order 2 and 3 1.3 Determinants of Order 3 1.4 Properties of Determinants 1.5 Application of Determinants 1.6

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI In this lesson you will learn how to find the cross product of two vectors how to find an orthogonal vector to a plane defined by two vectors how

More information

Matrices. In this chapter: matrices, determinants. inverse matrix

Matrices. In this chapter: matrices, determinants. inverse matrix Matrices In this chapter: matrices, determinants inverse matrix 1 1.1 Matrices A matrix is a retangular array of numbers. Rows: horizontal lines. A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information

Announcements Wednesday, October 25

Announcements Wednesday, October 25 Announcements Wednesday, October 25 The midterm will be returned in recitation on Friday. The grade breakdown is posted on Piazza. You can pick it up from me in office hours before then. Keep tabs on your

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants THE ALGEBRA OF DETERMINANTS 1. Determinants We have already defined the determinant of a 2 2 matrix: det = ad bc. We ve also seen that it s handy for determining when a matrix is invertible, and when it

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

7.2 Matrix Algebra. DEFINITION Matrix. D 21 a 22 Á a 2n. EXAMPLE 1 Determining the Order of a Matrix d. (b) The matrix D T has order 4 * 2.

7.2 Matrix Algebra. DEFINITION Matrix. D 21 a 22 Á a 2n. EXAMPLE 1 Determining the Order of a Matrix d. (b) The matrix D T has order 4 * 2. 530 CHAPTER 7 Systems and Matrices 7.2 Matrix Algebra What you ll learn about Matrices Matrix Addition and Subtraction Matrix Multiplication Identity and Inverse Matrices Determinant of a Square Matrix

More information

Worksheet 1.3: Introduction to the Dot and Cross Products

Worksheet 1.3: Introduction to the Dot and Cross Products Boise State Math 275 (Ultman Worksheet 1.3: Introduction to the Dot and Cross Products From the Toolbox (what you need from previous classes Trigonometry: Sine and cosine functions. Vectors: Know what

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be characterized by a single real number scaled to appropriate units of

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

Presentation by: H. Sarper. Chapter 2 - Learning Objectives

Presentation by: H. Sarper. Chapter 2 - Learning Objectives Chapter Basic Linear lgebra to accompany Introduction to Mathematical Programming Operations Research, Volume, th edition, by Wayne L. Winston and Munirpallam Venkataramanan Presentation by: H. Sarper

More information

6.4 Determinants and Cramer s Rule

6.4 Determinants and Cramer s Rule 6.4 Determinants and Cramer s Rule Objectives Determinant of a 2 x 2 Matrix Determinant of an 3 x 3 Matrix Determinant of a n x n Matrix Cramer s Rule If a matrix is square (that is, if it has the same

More information

1 Matrices and Systems of Linear Equations

1 Matrices and Systems of Linear Equations March 3, 203 6-6. Systems of Linear Equations Matrices and Systems of Linear Equations An m n matrix is an array A = a ij of the form a a n a 2 a 2n... a m a mn where each a ij is a real or complex number.

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n

b 1 b 2.. b = b m A = [a 1,a 2,...,a n ] where a 1,j a 2,j a j = a m,j Let A R m n and x 1 x 2 x = x n Lectures -2: Linear Algebra Background Almost all linear and nonlinear problems in scientific computation require the use of linear algebra These lectures review basic concepts in a way that has proven

More information

Linear Algebra and Vector Analysis MATH 1120

Linear Algebra and Vector Analysis MATH 1120 Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

22m:033 Notes: 3.1 Introduction to Determinants

22m:033 Notes: 3.1 Introduction to Determinants 22m:033 Notes: 3. Introduction to Determinants Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman October 27, 2009 When does a 2 2 matrix have an inverse? ( ) a a If A =

More information

Math 425 Lecture 1: Vectors in R 3, R n

Math 425 Lecture 1: Vectors in R 3, R n Math 425 Lecture 1: Vectors in R 3, R n Motiating Questions, Problems 1. Find the coordinates of a regular tetrahedron with center at the origin and sides of length 1. 2. What is the angle between the

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Determinant: 3.2 Evaluation of Determinant with Elementary

Determinant: 3.2 Evaluation of Determinant with Elementary Determinant: 3.2 Evaluation of Determinant with Elementary Operations September 18 As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not

More information

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants Unit II - Matrix arithmetic 1 Things we can already do with matrices equality

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition

VECTORS. Given two vectors! and! we can express the law of vector addition geometrically. + = Fig. 1 Geometrical definition of vector addition VECTORS Vectors in 2- D and 3- D in Euclidean space or flatland are easy compared to vectors in non- Euclidean space. In Cartesian coordinates we write a component of a vector as where the index i stands

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists Vectors, Linear Combinations, and Matrix-Vector Mulitiplication In this section, we introduce vectors, linear combinations, and matrix-vector multiplication The rest of the class will involve vectors,

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

LS.1 Review of Linear Algebra

LS.1 Review of Linear Algebra LS. LINEAR SYSTEMS LS.1 Review of Linear Algebra In these notes, we will investigate a way of handling a linear system of ODE s directly, instead of using elimination to reduce it to a single higher-order

More information

MTH 306 Spring Term 2007

MTH 306 Spring Term 2007 MTH 306 Spring Term 2007 Lesson 3 John Lee Oregon State University (Oregon State University) 1 / 27 Lesson 3 Goals: Be able to solve 2 2 and 3 3 linear systems by systematic elimination of unknowns without

More information

CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices

CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices CSCI 239 Discrete Structures of Computer Science Lab 6 Vectors and Matrices This lab consists of exercises on real-valued vectors and matrices. Most of the exercises will required pencil and paper. Put

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

Elementary Linear Algebra

Elementary Linear Algebra Matrices J MUSCAT Elementary Linear Algebra Matrices Definition Dr J Muscat 2002 A matrix is a rectangular array of numbers, arranged in rows and columns a a 2 a 3 a n a 2 a 22 a 23 a 2n A = a m a mn We

More information

Inverses and Determinants

Inverses and Determinants Engineering Mathematics 1 Fall 017 Inverses and Determinants I begin finding the inverse of a matrix; namely 1 4 The inverse, if it exists, will be of the form where AA 1 I; which works out to ( 1 4 A

More information

Introduction to Matrices

Introduction to Matrices 214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the

More information

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative

More information

CHAPTER 1 MATRICES SECTION 1.1 MATRIX ALGEBRA. matrices Configurations like π 6 1/2

CHAPTER 1 MATRICES SECTION 1.1 MATRIX ALGEBRA. matrices Configurations like π 6 1/2 page 1 of Section 11 CHAPTER 1 MATRICES SECTION 11 MATRIX ALGEBRA matrices Configurations like 2 3 4 1 6 5, 2 3 7 1 2 π 6 1/2 are called matrices The numbers inside the matrix are called entries If the

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 11. Determinants

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

MITOCW ocw-18_02-f07-lec02_220k

MITOCW ocw-18_02-f07-lec02_220k MITOCW ocw-18_02-f07-lec02_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

Cofactors and Laplace s expansion theorem

Cofactors and Laplace s expansion theorem Roberto s Notes on Linear Algebra Chapter 5: Determinants Section 3 Cofactors and Laplace s expansion theorem What you need to know already: What a determinant is. How to use Gauss-Jordan elimination to

More information