Lectures on Linear Algebra for IT

Size: px
Start display at page:

Download "Lectures on Linear Algebra for IT"

Transcription

1 Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic

2 11. Determinants 11.1 Inductive Definition of a Determinant 11.2 Determinant and Antisymmetric Forms 11.3 Determinant Evaluation 11.4 Determinant of the Product of Matrices 11.5 Cofactor Expansion Across any Row 11.6 Adjugate Matrix and Matrix Inverse 11.7 Determinant of a Matrix Transpose 11.8 Determinant as a Function of Columns 11.9 Cramer s Rule for Linear Systems

3 11.1 Inductive Definition of a Determinant We solve the linear system a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2. By performing replacement elementary row operations we obtain [ ] [ a11 a 12 b 1 a 21 a 22 b 2 a 22 r 1 a 12 r 2 ] a 11 a 12 b 1 a 11 a 22 a 12 a 21 0 b 1 a 22 a 12 b 2 [ ] [ ] a11 a 12 b 1 a11 a 12 b 1 a 21 a 22 b 2 a 11 r 2 a 21 r 1 0 a 11 a 22 a 12 a 21 a 11 b 2 b 1 a 21 from where, for a 11 a 22 a 12 a 21 0, is x 1 = b 1a 22 a 12 b 2 a 11 a 22 a 12 a 21, x 2 = a 11b 2 b 1 a 21 a 11 a 22 a 12 a 21.

4 11.1 Inductive Definition of a Determinant Notice, it is possible to express the nominator and the denominator too by the following matrix function: [ ] a b det = c d a b c d = ad bc. Then, the solution of the system can be writen in the form b 1 a 12 b 2 a 22 a 11 b 1 a 21 b 2 x 1 =, x 2 =, d d where d = a 11 a 22 a 12 a 21 = a 11 a 12 a 21 a 22 Simmilar formulas will be given in general for the linear systems of n equations with n variables.

5 11.1 Inductive Definition of a Determinant Definition 1 If A = [a ij ] is a square matrix, then the minor of the entry in the i-th row and j-th column is the submatrix of A formed by deleting the i-th row and j-th column, denoted by M A ij. Example 1 A = , M A 12 = [ ].

6 11.1 Inductive Definition of a Determinant Definition 2 For a real or a complex square matrix A = [a ij ] of the size n the Determinant of A is the number denoted by det A or A which is obtained as follows: D1 For n = 1, is det A = det [a 11 ] = a 11. D2 For n > 1, with assumption that we know how to evaluate determinant of any square matrix of size n 1, is det A = a 11 M A 11 a12 M A 12 + a13 M A 13 + ( 1) n+1 a 1n M A 1n Note: The determinant of an n n matrix is the function of the matrix entries, defined explicitly for n = 1 and defined recursively for n > 1. In general, an n n determinant is defined by determinants of (n 1) (n 1) submatrices.

7 11.1 Inductive Definition of a Determinant Example = = 1 ( ) 2 ( ) + 3 (1 2 ( 1) 1 ) = 1 ( 5) = 8. Example 3 l l l 21 l l 32 l = l l n1 l n2... l nn l n2 l n3... l nn The above calculation implies: det I = 1. = = l 11 l nn.

8 11.1 Inductive Definition of a Determinant Definition 3 Given A = [a ij ] we define the (i, j)-cofactor of A to be the number A ij given by A ij = ( 1) i+j M A ij. Then the formula D2 becomes det A = a 11 A a 1n A 1n and is called cofactor expansion across the first row of A. Note: What is the number of arithmetic operations to evaluate a n n determinant? Using the formula D2 - sum of n products of a number with (n 1) (n 1) determinant. Using the formula D2 again - sum of n(n 1) products of a number with (n 2) (n 2) determinant. By repeating this procedure we obtain, that the evaluation of a n n determinant requires sum of n! terms, that are products of n numbers. Altogether it is (n 1)n! products. More efficient ways to evaluate a determinant are known.

9 11.2 Determinant and Antisymmetric Forms Lemma 1 Suppose A = [a ij ] and B = [b ij ] are square matrices whose entries may differ only in the first row. Let α be any scalar, then αra 1 = α det A, r A 1 + r B 1 = det A + det B. Proof: αa αa 1n αra 1 = a a 2n = αa 11 A αa 1n A 1n = α det A a n1... a nn a 11 + b a 1n + b 1n ra 1 + r B 1 = a a 2n = (a 11 + b 11 )A (a 1n + b 1n )A 1n a n1... a nn = (a 11 A a 1n A 1n ) + (b 11 A b 1n A 1n ) = det A + det B.

10 11.2 Determinant and Antisymmetric Forms Lemma 2 If A=[a ij ] is a square matrix of the size n 2, then det A = r A 1 r A 2 = r A 2 r A 1. Proof: For a 2 2 determinant is ra 1 r A = a 11 a 12 = 2 a 21 a 22 = a 11 a 22 a 12 a 21 = (a 21 a 12 a 22 a 11 ) = ra 2 r A 1. Proof of the general case relies on Cofactor expansion (D2 formula) with further work on determinants of minors. It is more complicated and to avoid lengthy expressions we omit the proof.

11 11.2 Determinant and Antisymmetric Forms Theorem 1 Let A = [a ij ] be a square matrix of size n 2 and let B = [b ij ] be the matrix obtained from A by interchange of i-th and j-th row. Then r A i det A = r A j i j r A j = r A i i j = det B. Proof: Proof relies on Lemma 2 and is done by mathematical induction (find in literature).

12 11.2 Determinant and Antisymmetric Forms Theorem 2 Let A and B be square matrices of size n which have the same entries except of the k-the row. Then for any scalar α is αr A k = α det A, r A k + rb k = det A + det B. Proof: Proof relies on Lemma 1 and Theorem 1 and again is done by mathematical induction (find in literature). Note: The meaning of preceding two Theorems (1 and 2) can be summarized in one sentence: A determinant is an antisymmetric bilinear form of any two rows of a matrix.

13 11.2 Determinant and Antisymmetric Forms Consequent properties of determinants: For any square matrix A the following holds: 1. If A has two rows equal, then det A = If A has a zero row, then det A = If another square matrix B is the same as A except of the k-th row and r B k = r A k + αr A l, k l, then det B = det A. 4. If the rows of A are linearly dependent, then det A = 0.

14 11.3 Determinant Evaluation Here we describe in words how simply elementary row operations affect the value of a determinant. 1. An interchange of two rows alternates the sign of the determinant. 2. If a row is multiplied by a scalar α, also the value of the determinant is multiplied by α. 3. Performing replacement operation (add a multiple of one row to another row) does not change the value of the determinant. So the elementary row operations are the powerfull tool for evaluating determinants, if they are used to transform a matrix into a form convenient for the determinant evaluation. So far for us the convenient form is a lower triangular form, then the determinant value is the product of diagonal entries (as we have seen in Example 3).

15 Example = Determinant Evaluation = 2 = 2 ( 6) 1 ( 1) = 12 +r 3 +2r 3 = r 2 = Example r 3 r 2 = = r = = ( 2) 1 1 = 2 r 2 =

16 11.4 Determinant of the Product of Matrices Theorem 3 If A and B are square matrices of the size n, then det(ab) = det A det B. Proof: First suppose A is diagonal. Then d d A = d n Then det(ab) = d 1 r B 1. d n r B n = d 1 d n det B = det A det B.

17 11.4 Determinant of the Product of Matrices Proof: (kont.) For any matrix A exists a sequence of elementary transformation matrices T 1,..., T k, that consists of l interchanges and k l replacements, so that d d T k T 1 A = = D d n Because left multiplication by an elementary transformation matrix T is equivalent to performing the elementary row operation on the multiplied matrix, we can write det(ab) = ( 1) l det(t k T 1 AB) = ( 1) l det(db) = = ( 1) l det D det B = ( 1) l det(t k T 1 A) det B = = ( 1) l ( 1) l det A det B = det A det B.

18 11.5 Cofactor Expansion Across any Row Theorem 4 Let A = [a ij ] be a square matrix of the size n > 1. Then for any row index k is det A = a k1 A k1 + + a kn A kn. Corollary 1 Let A = [a ij ] be a square matrix of the size n > If k, l are the two different row indexes of rows of A, then a k1 A l1 + + a kn A ln = If A is a triangular matrix, then det A = a 11 a nn.

19 11.6 Adjugate Matrix and Matrix Inverse Definition 4 Let A be any square matrix of the size n > 1. Then adjugate matrix of A denoted by à is the square matrix of the same size as A defined by A A n1 à =....., A 1n... A nn where A ij = ( 1) i+j M A ij. (The ij-th cofactor of A.) Example 6 For A = is à =

20 Example 6 (cont.) 11.6 Adjugate Matrix and Matrix Inverse And here is calculation of the cofactors individually. For A = is à = A 11 = = 2, A 12 = = ( 2 6) = 8, A 13 = = 2, A 21 = = ( 2 1) = 3, A 22 = = 3 3 = 6, A 23 = = 3, A 31 = = 4, A 32 = = 4, A 33 = = 4.

21 11.6 Adjugate Matrix and Matrix Inverse Theorem 5 Let A be a square matrix of size n > 1. Then for det A 0 the inverse of A is A 1 = 1 det AÃ. Example 7 For the matrix A from Example 6 the inverse matrix is = = Corollary 2 A matrix A is invertible (regular) if and only if det A 0. Proof: For A a singular matrix, the rows of A are dependent. Therefore, by the Corollary 4, det A = 0. The opposite direction of the claim is true by Theorem 5.

22 11.7 Determinant of a Matrix Transpose Theorem 6 Let A be a square matrix. Then det A = det A. Proof: Every permutation matrix P can be written as a product of elementary permutation matrices P = P 1 P k, where each P i is symmetric. Then P = P k P 1 and det P = P k P 1 = det P. This is true also for any triangular matrix, since the determinant is then equal to the product of diagonal entries and transpose of a triangular matrix is again triangular with the same diagonal. For A is any square matrix, then according to LUP factorization there exist a lower triangular matrix L, an upper triangular matrix U, and a permutation matrix P such, that A = LUP. By the Theorem 3, about the determinant of product of matrices is det A = det(p U L ) = P U L = L U P = det(lup) = det A.

23 11.8 Determinant as a Function of Columns The Theorem 6 implies, that a determinant as well as a function of rows can be considered as a function of columns with all it s properties. For instance a determinant is an antisymmetric bilinear form of any two matrix columns. Theorem 7 Let A be any square matrix of the size n > 1. Then for i = 1,..., n is det A = a 1i A 1i + + a ni A ni. Note: A determinant can be evaluated by the cofactor expansion down any column of a matrix.

24 11.9 Cramer s Rule for Linear Systems We might use the matrix inverse of an invertible matrix A of size n > 1 to solve the linear system Ax = b. Then the solution vector x has the entries x i, where x i = [ A 1 b ] i = 1 det A (A 1ib A ni b n ). The i-th column minors do not contain entries of the i-th column of A. Therefore the above expression in the parentheses is the same as cofactor expansion down the i-th column of the matrix i i A b i = [ b ] = [ ] s A 1... s A i 1 b s A i+1... s A n, which is obtained from A by replacing the i-th column with the right side vector b. And so we can write x i = det Ab i det A, i = 1,..., n The above formula is called Cramer s rule.

25 Example Cramer s Rule for Linear Systems Use Cramer s rule to solve the system 3x 1 + 2x 2 + x 3 = 6 2x 1 + 2x 3 = 0 3x 1 x 2 x 3 = 0 Solution: Individually we evaluate all the determinants needed to apply Cramer s rule A = = 20 and A b 1 = By Cramer s rule, = 12, Ab 2 = = 48, Ab 3 = x 1 = Ab 1 det A = 3 5, x 2 = Ab 2 det A = 12 5, x 3 = Ab 3 det A = 3 5. = 12

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr Tereza Kovářová, PhD following content of lectures by Ing Petr Beremlijski, PhD Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 3 Inverse Matrix

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 5. Linear

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Chapter 4. Determinants

Chapter 4. Determinants 4.2 The Determinant of a Square Matrix 1 Chapter 4. Determinants 4.2 The Determinant of a Square Matrix Note. In this section we define the determinant of an n n matrix. We will do so recursively by defining

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

II. Determinant Functions

II. Determinant Functions Supplemental Materials for EE203001 Students II Determinant Functions Chung-Chin Lu Department of Electrical Engineering National Tsing Hua University May 22, 2003 1 Three Axioms for a Determinant Function

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion

Chapter 2:Determinants. Section 2.1: Determinants by cofactor expansion Chapter 2:Determinants Section 2.1: Determinants by cofactor expansion [ ] a b Recall: The 2 2 matrix is invertible if ad bc 0. The c d ([ ]) a b function f = ad bc is called the determinant and it associates

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Chapter 2. Square matrices

Chapter 2. Square matrices Chapter 2. Square matrices Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/18 Invertible matrices Definition 2.1 Invertible matrices An n n matrix A is said to be invertible, if there is a

More information

ECON 186 Class Notes: Linear Algebra

ECON 186 Class Notes: Linear Algebra ECON 86 Class Notes: Linear Algebra Jijian Fan Jijian Fan ECON 86 / 27 Singularity and Rank As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse).

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0

k=1 ( 1)k+j M kj detm kj. detm = ad bc. = 1 ( ) 2 ( )+3 ( ) = = 0 4 Determinants The determinant of a square matrix is a scalar (i.e. an element of the field from which the matrix entries are drawn which can be associated to it, and which contains a surprisingly large

More information

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method Module 1: Matrices and Linear Algebra Lesson 3 Inverse of Matrices by Determinants and Gauss-Jordan Method 3.1 Introduction In lecture 1 we have seen addition and multiplication of matrices. Here we shall

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

Determinant of a Matrix

Determinant of a Matrix 13 March 2018 Goals We will define determinant of SQUARE matrices, inductively, using the definition of Minors and cofactors. We will see that determinant of triangular matrices is the product of its diagonal

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Notes on Determinants and Matrix Inverse

Notes on Determinants and Matrix Inverse Notes on Determinants and Matrix Inverse University of British Columbia, Vancouver Yue-Xian Li March 17, 2015 1 1 Definition of determinant Determinant is a scalar that measures the magnitude or size of

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

Determinants. Recall that the 2 2 matrix a b c d. is invertible if

Determinants. Recall that the 2 2 matrix a b c d. is invertible if Determinants Recall that the 2 2 matrix a b c d is invertible if and only if the quantity ad bc is nonzero. Since this quantity helps to determine the invertibility of the matrix, we call it the determinant.

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

Properties of the Determinant Function

Properties of the Determinant Function Properties of the Determinant Function MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Overview Today s discussion will illuminate some of the properties of the determinant:

More information

Determinants. Beifang Chen

Determinants. Beifang Chen Determinants Beifang Chen 1 Motivation Determinant is a function that each square real matrix A is assigned a real number, denoted det A, satisfying certain properties If A is a 3 3 matrix, writing A [u,

More information

MATH2210 Notebook 2 Spring 2018

MATH2210 Notebook 2 Spring 2018 MATH2210 Notebook 2 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 2 MATH2210 Notebook 2 3 2.1 Matrices and Their Operations................................

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Cayley-Hamilton Theorem

Cayley-Hamilton Theorem Cayley-Hamilton Theorem Massoud Malek In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n Let A be an n n matrix Although det (λ I n A

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

Determinants: summary of main results

Determinants: summary of main results Determinants: summary of main results A determinant of an n n matrix is a real number associated with this matrix. Its definition is complex for the general case We start with n = 2 and list important

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

Lecture 10: Determinants and Cramer s Rule

Lecture 10: Determinants and Cramer s Rule Lecture 0: Determinants and Cramer s Rule The determinant and its applications. Definition The determinant of a square matrix A, denoted by det(a) or A, is a real number, which is defined as follows. -by-

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

Inverses and Determinants

Inverses and Determinants Engineering Mathematics 1 Fall 017 Inverses and Determinants I begin finding the inverse of a matrix; namely 1 4 The inverse, if it exists, will be of the form where AA 1 I; which works out to ( 1 4 A

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

Math 317, Tathagata Basak, Some notes on determinant 1 Row operations in terms of matrix multiplication 11 Let I n denote the n n identity matrix Let E ij denote the n n matrix whose (i, j)-th entry is

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262

Determinants. Samy Tindel. Purdue University. Differential equations and linear algebra - MA 262 Determinants Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. Determinants Differential equations

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

2 b 3 b 4. c c 2 c 3 c 4

2 b 3 b 4. c c 2 c 3 c 4 OHSx XM511 Linear Algebra: Multiple Choice Questions for Chapter 4 a a 2 a 3 a 4 b b 1. What is the determinant of 2 b 3 b 4 c c 2 c 3 c 4? d d 2 d 3 d 4 (a) abcd (b) abcd(a b)(b c)(c d)(d a) (c) abcd(a

More information

Linear Algebra and Vector Analysis MATH 1120

Linear Algebra and Vector Analysis MATH 1120 Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Introduction to Matrices

Introduction to Matrices 214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Math Camp Notes: Linear Algebra I

Math Camp Notes: Linear Algebra I Math Camp Notes: Linear Algebra I Basic Matrix Operations and Properties Consider two n m matrices: a a m A = a n a nm Then the basic matrix operations are as follows: a + b a m + b m A + B = a n + b n

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

9 Appendix. Determinants and Cramer s formula

9 Appendix. Determinants and Cramer s formula LINEAR ALGEBRA: THEORY Version: August 12, 2000 133 9 Appendix Determinants and Cramer s formula Here we the definition of the determinant in the general case and summarize some features Then we show how

More information

Chapter 3. Basic Properties of Matrices

Chapter 3. Basic Properties of Matrices 3.1. Basic Definitions and Notations 1 Chapter 3. Basic Properties of Matrices Note. This long chapter (over 100 pages) contains the bulk of the material for this course. As in Chapter 2, unless stated

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 10 Row expansion of the determinant Our next goal is

More information

22m:033 Notes: 3.1 Introduction to Determinants

22m:033 Notes: 3.1 Introduction to Determinants 22m:033 Notes: 3. Introduction to Determinants Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman October 27, 2009 When does a 2 2 matrix have an inverse? ( ) a a If A =

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Digital Workbook for GRA 6035 Mathematics

Digital Workbook for GRA 6035 Mathematics Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Linear Algebra Primer

Linear Algebra Primer Introduction Linear Algebra Primer Daniel S. Stutts, Ph.D. Original Edition: 2/99 Current Edition: 4//4 This primer was written to provide a brief overview of the main concepts and methods in elementary

More information

Here are some additional properties of the determinant function.

Here are some additional properties of the determinant function. List of properties Here are some additional properties of the determinant function. Prop Throughout let A, B M nn. 1 If A = (a ij ) is upper triangular then det(a) = a 11 a 22... a nn. 2 If a row or column

More information

Matrices. In this chapter: matrices, determinants. inverse matrix

Matrices. In this chapter: matrices, determinants. inverse matrix Matrices In this chapter: matrices, determinants inverse matrix 1 1.1 Matrices A matrix is a retangular array of numbers. Rows: horizontal lines. A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 41 a

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 16, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns.

MATRICES. knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. MATRICES After studying this chapter you will acquire the skills in knowledge on matrices Knowledge on matrix operations. Matrix as a tool of solving linear equations with two or three unknowns. List of

More information

1 Matrices and Systems of Linear Equations

1 Matrices and Systems of Linear Equations Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 207, v 260) Contents Matrices and Systems of Linear Equations Systems of Linear Equations Elimination, Matrix Formulation

More information

SPRING OF 2008 D. DETERMINANTS

SPRING OF 2008 D. DETERMINANTS 18024 SPRING OF 2008 D DETERMINANTS In many applications of linear algebra to calculus and geometry, the concept of a determinant plays an important role This chapter studies the basic properties of determinants

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

Homework Set #8 Solutions

Homework Set #8 Solutions Exercises.2 (p. 19) Homework Set #8 Solutions Assignment: Do #6, 8, 12, 14, 2, 24, 26, 29, 0, 2, 4, 5, 6, 9, 40, 42 6. Reducing the matrix to echelon form: 1 5 2 1 R2 R2 R1 1 5 0 18 12 2 1 R R 2R1 1 5

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer D.S. Stutts November 8, 995 Introduction This primer was written to provide a brief overview of the main concepts and methods in elementary linear algebra. It was not intended to

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

Determinants: Uniqueness and more

Determinants: Uniqueness and more Math 5327 Spring 2018 Determinants: Uniqueness and more Uniqueness The main theorem we are after: Theorem 1 The determinant of and n n matrix A is the unique n-linear, alternating function from F n n to

More information

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram

The determinant. Motivation: area of parallelograms, volume of parallepipeds. Two vectors in R 2 : oriented area of a parallelogram The determinant Motivation: area of parallelograms, volume of parallepipeds Two vectors in R 2 : oriented area of a parallelogram Consider two vectors a (1),a (2) R 2 which are linearly independent We

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic

Things we can already do with matrices. Unit II - Matrix arithmetic. Defining the matrix product. Things that fail in matrix arithmetic Unit II - Matrix arithmetic matrix multiplication matrix inverses elementary matrices finding the inverse of a matrix determinants Unit II - Matrix arithmetic 1 Things we can already do with matrices equality

More information

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II)

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II) Math 59 Lecture 2 (Tue Mar 5) Gaussian elimination and LU factorization (II) 2 Gaussian elimination - LU factorization For a general n n matrix A the Gaussian elimination produces an LU factorization if

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 3 Review of Matrix Algebra Vectors and matrices are essential for modern analysis of systems of equations algebrai, differential, functional, etc In this

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information