Carapace Example: Confidence Intervals in the Wilcoxon Sign-rank Test

Size: px
Start display at page:

Download "Carapace Example: Confidence Intervals in the Wilcoxon Sign-rank Test"

Transcription

1 Math Treibergs Carapace Example: Confidence Intervals in the Wilcoxon Sign-rank Test Name: Example April 19, 2014 In this discussion, we look at confidence intervals in the Wilcoxon Sign-Rank Test for one sample. The data comes from an article by Jeffries, Voris and Yang, Diversity and Distribution of the Pedunculate Barnacles... on the Scillarid Lobster, Crustaceana, 1984, as quoted by Mendenhall, Beaver & Beaver, Introduction to Probability sand Statistics, 14th ed., Brooks Cole, The carapace lengths (in mm) of randomly selected lobsters caught in the seas near Singapore are simulated consistent with the given data. We assume that the sample X 1,..., X N comes from a continuous distribution that is symmetric about its mean µ. The Wilcoxon signed rank statistic is computed as follows. To test H 0 : µ = µ 0 ; H a : µ µ 0. we order the values X i µ 0 from lowest to highest. after throwing out any zero values, we have n nonzero terms. We rank them 1 to n. S + is the sum of the ranks corresponding to terms for which X i µ 0 is positive. The null hypothesis is rejected at the significance level α if S + c or S + n(n+1) 2 c where 2P (S + c) = α. Theorem 1. Fix µ 0. Assume that there are no ties and no zeros among the values X i µ 0 for i = 1..., n. Then S + is equal to the number of pairs (i, j) such that i j and X i + X j 2µ 0. Proof. Observe that the number of such pairs is unchanged if the observations are rearranged. Thus we may suppose that the observations are arranged from smallest to largest X (1) < < X (n). Let r i denote the rank of X (i) µ 0. Let k be the index where the X (i) µ 0 change sign, that is X (k) µ 0 < 0 < X (k+1) µ 0 Then the ranks decrease to k and then increase from k + 1: r 1 > r 2 > > r k, r k+1 < r k+2 < < r n. For example if the sample is 12.2, 10.0, 11.1, 15.5, 14.4 then X (1) = 10.0, X (2) = 11.1, X (3) = 12.2, X (4) = 14.4 and X (5) = 17.7 so if µ 0 = 13.9 then X (1) µ 0 = 3.9, X (2) µ 0 = 2.8, X (3) µ 0 = 1.7, X (4) µ 0 =.5 and X (5) µ 0 = 3.8 thus r 1 = 5, r 2 = 3, r 3 = 2, r 4 = 1 and r 5 = 4, and finally k = 3 and S + = r k r n = = 5. Let χ P be the indicator function which equals 1 if P is true and 0 otherwise. Then the number of pairs satisfying the condition is χ{x (i) + X (j) 2µ 0 } (1) χ{x i + X j 2µ 0 } = i j i j n = = = j=k+1 i=1 n j=k+1 i=1 n j=k+1 j χ{x (j) µ 0 µ 0 X (i) } (2) n χ{r i r j } (3) r j (4) = S + (5) 1

2 (1) holds because the number of pairs does not depend on the order of the variables. (2) holds because if i j k then X (i) µ 0 < X (j) µ 0 < 0 so that X (i) +X (j) < 2µ 0 and does not add to the sum. k + 1 i j if and only if r i r j and j < i if and only if r j < r i. On the other hand if i k then r i r j if and only is µ 0 X (i) = X (i) µ 0 X (j) µ 0 = X (j) µ 0 so X (i) + X (j) 2µ 0. On the other hand, r i r j if and only is µ 0 X (i) = X (i) µ 0 > X (j) µ 0 = X (j) µ 0 so X (i) + X (j) < 2µ 0. It means that for a given j and any i, X (i) + X (j) 2µ 0 if and only if r i < r j so we may replace the sum in (3). Now there are exactly r j is such that r i r j giving (4). But (5) is the definition of S +. The confidence interval associated to the Sign-Rank test H 0 above is the following: we consider the set of values { } Xi + X j A = : 1 i j n 2 If there are no ties, then S + is the number of elements of A that are not smaller than µ 0. If we sort A into {A (1) A (2) A (m) } where m = n(n+1) 2. The one and two-sided critical values for S + may be computed as follow. Assuming H 0, the chance that the sign of the ith observation X i µ 0 is positive or negative is equally likely. Thus the distribution of S + is obtained by looking at the histogram of values ±1 ± 2 ± 3 ± ± n each of which has an equal chance 2 n of occurring. They range from 0 to m. The pmf p(x) of S + is symmetrical about the mean µ S+ = n(n+1) 4. The one-sided upper critical value is P (S + c 1 ) = i c 1 p(i) = α. The two sided critical value c satisfies P (S + c) = P (S + m c) = α 2. These numbers are tabulated in tables A 13 and A 15 of the text. We show how to compute the values of these tables in the code, albeit inefficiently. Then the two-sided confidence interval for µ at the level α where c is the two-sided critical value that satisfies P (S + c) = α 2 is given by ( ) A(m+1 c), A (c). 2

3 Data Set Used in this Analysis : # Math 3080 Carapace Data April 19, 2014 # Treibergs # # From an article by Jeffries, Voris and Yang, "Diversity and Distribution # of the Pedunculate Barnacles on the Scillarid Lobster," Crustaceana, # 1984 as quoted by Mendenhall, Beaver & Beaver, Introduction to # Probability sand Statistics, 14th ed., Brooks Cole, # # The carapace lengths (in mm) of randomly selected lobsters caught in # the seas near Singapore are simulated consistent with the given data R Session: R version ( ) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN Platform: i386-apple-darwin9.8.0/i386 (32-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type license() or licence() for distribution details. Natural language support but running in an English locale R is a collaborative project with many contributors. Type contributors() for more information and citation() on how to cite R or R packages in publications. Type demo() for some demos, help() for on-line help, or help.start() for an HTML browser interface to help. 3

4 Type q() to quit R. [R.app GUI 1.41 (5874) i386-apple-darwin9.8.0] [History restored from /Users/andrejstreibergs/.Rapp.history] > > tt=read.table("m3082datacarapace.txt",header=t) > attach(tt) > tt > t2=read.table("m3082datacarapace.txt",header=t) > attach(t2) > table()

5 > ############### CRITICAL VALUES FOR SIGNED-RANK TEST ################# > ############### ILLUSTRATE DETAILS FOR N=5 ########################### > di=5 > #### MATRIX WHOSE COLS ARE ALL POSSIBLE POSITIVE RANK SUMS ############ > M=matrix(1:(di*2^di),ncol=2^di) > for(i in 1:di){M[i,]=rep(i*0:1,each=2^(i-1),length=2^di)} > M [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [1,] [2,] [3,] [4,] [5,] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [1,] [2,] [3,] [4,] [5,] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [1,] [2,] [3,] [4,] [5,] > ################ PDF OF S+ ######################################## > p=table(margin.table(m,2))/2^di;sum(p) [1] 1 > p # ############# WORK OUT TAIL PROBABILITIES ########################## > cump=cumsum(p) > np=length(p);np;di*(di+1)/2+1 [1] 16 [1] 16 > names(cump)=np-1:np > #### N=5 ONE-TAILED CRITICAL FOR SIGNED-RANK TEST (TABLE A13) #### > #### c1 AND ALPHA TABLE ######################################### > cump

6 > cum2p=1-2*cumsum(p) > names(cum2p)=np-1:np > #### N=5 TWO-TAILED CRITICAL FOR SIGNED-RANK TEST (TABLE A15) #### > #### c AND ALPHA TABLE ########################################## > cum2p[1:(np/2)] > > #### COMPUTE TWO-SIDED CRITICAL VALUES FOR CARAPACE DATA ########### > di=length(); di [1] 18 > M=matrix(1:(di*2^di),ncol=2^di) > for(i in 1:di){M[i,]=rep(i*0:1,each=2^(i-1),length=2^di)} > p=table(margin.table(m,2))/2^di;sum(p) [1] 1 > cum2p=1-2*cumsum(p) > np=length(p);np;di*(di+1)/2+1 [1] 172 [1] 172 > names(cum2p)=np-1:np > #### N=18 TWO-TAILED CRITICAL FOR SIGNED-RANK TEST (TABLE A15) ### > #### c AND ALPHA TABLE ########################################## > cum2p[1:(np/2)]

7 > > [1] [16] > ######### GENERATE ALL (X[I]+X[J])/2 FOR I \le J ##################### > xpx=1:(n*(n+1)/2) > n=length();n [1] 18 > for(j in 1:n){for(i in 1:j){xPx[j*(j-1)/2+i]=([i]+[j])/2}} > sxpx=sort(xpx) > ############## SORTED VALUES (X[I]+X[J])/2 FOR I \le J ############## > sxpx [1] [13] [25] [37] [49] [61] [73] [85] [97] [109] [121] [133] [145] [157] [169] > ############## TWO-SIDED CI ON MU FOR CARAPACE DATA ################## > ############## ALPHA =.05 ############################################# > c05=131;n1=di*(di+1)/2-c05+1;c(sxpx[n1],sxpx[c05]) [1] > ############## CANNED CI FOR MU IN SIGNED-RANK TEST ################# > wilcox.test(,conf.int=t) Wilcoxon signed rank test data: V = 171, p-value = 7.629e-06 alternative hypothesis: true location is not equal to 0 95 percent confidence interval: sample estimates: (pseudo)median

8 > ############## ALPHA =.01 ############################################# > c01=143;n1=di*(di+1)/2-c01+1;c(sxpx[n1],sxpx[c01]) [1] > wilcox.test(,conf.int=t,conf.level=.99) Wilcoxon signed rank test data: V = 171, p-value = 7.629e-06 alternative hypothesis: true location is not equal to 0 99 percent confidence interval: sample estimates: (pseudo)median 66.1 > ### CANNED CI DOES NOT USE C=143 OF TABLE A15 FOR 99.0 % TEST ##### > c01=144;n1=di*(di+1)/2-c01+1;c(sxpx[n1],sxpx[c01]) [1]

9 Histogram of Frequency

Gas Transport Example: Confidence Intervals in the Wilcoxon Rank-Sum Test

Gas Transport Example: Confidence Intervals in the Wilcoxon Rank-Sum Test Math 3080 1. Treibergs Gas Transport Example: Confidence Intervals in the Wilcoxon Rank-Sum Test Name: Example April 19, 014 In this discussion, we look at confidence intervals in the Wilcoxon Rank-Sum

More information

Spectrophotometer Example: One-Factor Random Effects ANOVA

Spectrophotometer Example: One-Factor Random Effects ANOVA Math 3080 1. Treibergs Spectrophotometer Example: One-Factor Random Effects ANOVA Name: Example Jan. 22, 2014 Today s example was motivated from problem.14.9 of Walpole, Myers, Myers and Ye, Probability

More information

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters

Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Math 3080 1. Treibergs Horse Kick Example: Chi-Squared Test for Goodness of Fit with Unknown Parameters Name: Example April 4, 014 This R c program explores a goodness of fit test where the parameter is

More information

Pumpkin Example: Flaws in Diagnostics: Correcting Models

Pumpkin Example: Flaws in Diagnostics: Correcting Models Math 3080. Treibergs Pumpkin Example: Flaws in Diagnostics: Correcting Models Name: Example March, 204 From Levine Ramsey & Smidt, Applied Statistics for Engineers and Scientists, Prentice Hall, Upper

More information

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN Math 3070 1. Treibergs Extraterrestial Life Example: One-Sample CI and Test of Proportion Name: Example May 31, 2011 The existence of intelligent life on other planets has fascinated writers, such as H.

More information

Straw Example: Randomized Block ANOVA

Straw Example: Randomized Block ANOVA Math 3080 1. Treibergs Straw Example: Randomized Block ANOVA Name: Example Jan. 23, 2014 Today s example was motivated from problem 13.11.9 of Walpole, Myers, Myers and Ye, Probability and Statistics for

More information

(1) (AE) (BE) + (AB) + (CE) (AC) (BE) + (ABCE) +(DE) (AD) (BD) + (ABDE) + (CD) (ACDE) (BCDE) + (ABCD)

(1) (AE) (BE) + (AB) + (CE) (AC) (BE) + (ABCE) +(DE) (AD) (BD) + (ABDE) + (CD) (ACDE) (BCDE) + (ABCD) Math 3080 1. Treibergs Peanut xample: 2 5 alf Replication Factorial xperiment Name: xample Feb. 8, 2014 We describe a 2 5 experimental design with one half replicate per cell. It comes from a paper by

More information

Problem 4.4 and 6.16 of Devore discuss the Rayleigh Distribution, whose pdf is x, x > 0; x x 0. x 2 f(x; θ) dx x=0. pe p dp.

Problem 4.4 and 6.16 of Devore discuss the Rayleigh Distribution, whose pdf is x, x > 0; x x 0. x 2 f(x; θ) dx x=0. pe p dp. Math 3070 1. Treibergs Blade Stress Example: Estimate Parameter of Rayleigh Distribution. Name: Example June 15, 2011 Problem 4.4 and 6.16 of Devore discuss the Rayleigh Distribution, whose pdf is ) x

More information

f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 Math Treibergs

f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 Math Treibergs Math 3070 1. Treibergs f Simulation Example: Simulating p-values of Two Sample Variance Test. Name: Example June 26, 2011 The t-test is fairly robust with regard to actual distribution of data. But the

More information

Math Treibergs. Turbine Blade Example: 2 6 Factorial Name: Example Experiment with 1 4 Replication February 22, 2016

Math Treibergs. Turbine Blade Example: 2 6 Factorial Name: Example Experiment with 1 4 Replication February 22, 2016 Math 3080 1. Treibergs Turbine Blade Example: 2 6 actorial Name: Example Experiment with 1 4 Replication ebruary 22, 2016 An experiment was run in the VPI Mechanical Engineering epartment to assess various

More information

Natural language support but running in an English locale

Natural language support but running in an English locale R version 3.2.1 (2015-06-18) -- "World-Famous Astronaut" Copyright (C) 2015 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin13.4.0 (64-bit) R is free software and comes with ABSOLUTELY

More information

Beam Example: Identifying Influential Observations using the Hat Matrix

Beam Example: Identifying Influential Observations using the Hat Matrix Math 3080. Treibergs Beam Example: Identifying Influential Observations using the Hat Matrix Name: Example March 22, 204 This R c program explores influential observations and their detection using the

More information

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN Math 3070 1. Treibergs Design of a Binomial Experiment: Programming Conditional Statements Name: Example May 20, 2011 How big a sample should we test in order that the Type I and Type II error probabilities

More information

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN Math 3070 1. Tibergs Simulating the Sampling Distribution of the t-statistic Name: Eample May 20, 2011 How well does a statistic behave when the assumptions about the underlying population fail to hold?

More information

X = S 2 = 1 n. X i. i=1

X = S 2 = 1 n. X i. i=1 Math 3070 1. Treibergs Horse Kick Example: Confidence Interval for Poisson Parameter Name: Example July 3, 2011 The Poisson Random Variable describes the number of occurences of rare events in a period

More information

Munitions Example: Negative Binomial to Predict Number of Accidents

Munitions Example: Negative Binomial to Predict Number of Accidents Math 37 1. Treibergs Munitions Eample: Negative Binomial to Predict Number of Accidents Name: Eample July 17, 211 This problem comes from Bulmer, Principles of Statistics, Dover, 1979, which is a republication

More information

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN Math 3080 1. Treibergs Spray Data: 2 3 Factorial with Multiple Replicates Per ell ANOVA Name: Example April 7, 2010 Data File Used in this Analysis: # Math 3081-1 Spray Data April 17,2010 # Treibergs #

More information

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN

R version ( ) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN Math 3080 1. Treibergs Bread Wrapper Data: 2 4 Incomplete Block Design. Name: Example April 26, 2010 Data File Used in this Analysis: # Math 3080-1 Bread Wrapper Data April 23, 2010 # Treibergs # # From

More information

Math Treibergs. Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, Data File Used in this Analysis:

Math Treibergs. Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, Data File Used in this Analysis: Math 3080 1. Treibergs Peanut Oil Data: 2 5 Factorial design with 1/2 Replication. Name: Example April 22, 2010 Data File Used in this Analysis: # Math 3080-1 Peanut Oil Data April 22, 2010 # Treibergs

More information

Distribution-Free Procedures (Devore Chapter Fifteen)

Distribution-Free Procedures (Devore Chapter Fifteen) Distribution-Free Procedures (Devore Chapter Fifteen) MATH-5-01: Probability and Statistics II Spring 018 Contents 1 Nonparametric Hypothesis Tests 1 1.1 The Wilcoxon Rank Sum Test........... 1 1. Normal

More information

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines)

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines) Dr. Maddah ENMG 617 EM Statistics 10/12/12 Nonparametric Statistics (Chapter 16, Hines) Introduction Most of the hypothesis testing presented so far assumes normally distributed data. These approaches

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

Resampling Methods. Lukas Meier

Resampling Methods. Lukas Meier Resampling Methods Lukas Meier 20.01.2014 Introduction: Example Hail prevention (early 80s) Is a vaccination of clouds really reducing total energy? Data: Hail energy for n clouds (via radar image) Y i

More information

Nonparametric Tests. Mathematics 47: Lecture 25. Dan Sloughter. Furman University. April 20, 2006

Nonparametric Tests. Mathematics 47: Lecture 25. Dan Sloughter. Furman University. April 20, 2006 Nonparametric Tests Mathematics 47: Lecture 25 Dan Sloughter Furman University April 20, 2006 Dan Sloughter (Furman University) Nonparametric Tests April 20, 2006 1 / 14 The sign test Suppose X 1, X 2,...,

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 9: June 6, Abstract. Regression and R.

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 9: June 6, Abstract. Regression and R. July 22, 2013 1 ohp9 Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 9: June 6, 2013 Regression and R. Abstract Regression Correlation shows the statistical strength

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 1 One-Sample Methods 3 1.1 Parametric Methods.................... 4 1.1.1 One-sample Z-test (see Chapter 0.3.1)...... 4 1.1.2 One-sample t-test................. 6 1.1.3 Large sample

More information

This is particularly true if you see long tails in your data. What are you testing? That the two distributions are the same!

This is particularly true if you see long tails in your data. What are you testing? That the two distributions are the same! Two sample tests (part II): What to do if your data are not distributed normally: Option 1: if your sample size is large enough, don't worry - go ahead and use a t-test (the CLT will take care of non-normal

More information

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I 1 / 16 Nonparametric tests Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I Nonparametric one and two-sample tests 2 / 16 If data do not come from a normal

More information

Non-parametric (Distribution-free) approaches p188 CN

Non-parametric (Distribution-free) approaches p188 CN Week 1: Introduction to some nonparametric and computer intensive (re-sampling) approaches: the sign test, Wilcoxon tests and multi-sample extensions, Spearman s rank correlation; the Bootstrap. (ch14

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

(U 338-E) 2018 Nuclear Decommissioning Cost Triennial Proceeding A Workpapers

(U 338-E) 2018 Nuclear Decommissioning Cost Triennial Proceeding A Workpapers (U 338-E) 2018 Nuclear Decommissioning Cost Triennial Proceeding A.18-03-009 Workpapers 2018 SCE Trust Fund Contributions and Financial Assumptions SCE-06 Chapter II: Burial Escalation Rate Calculation

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Second Midterm Exam Name: Solutions March 19, 2014

Second Midterm Exam Name: Solutions March 19, 2014 Math 3080 1. Treibergs σιι Second Midterm Exam Name: Solutions March 19, 2014 (1. The article Withdrawl Strength of Threaded Nails, in Journal of Structural Engineering, 2001, describes an experiment to

More information

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size?

OHSU OGI Class ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Brainerd Basic Statistics Sample size? ECE-580-DOE :Statistical Process Control and Design of Experiments Steve Basic Statistics Sample size? Sample size determination: text section 2-4-2 Page 41 section 3-7 Page 107 Website::http://www.stat.uiowa.edu/~rlenth/Power/

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

More information

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown Nonparametric Statistics Leah Wright, Tyler Ross, Taylor Brown Before we get to nonparametric statistics, what are parametric statistics? These statistics estimate and test population means, while holding

More information

3. Nonparametric methods

3. Nonparametric methods 3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

More information

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies.

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies. I. T or F. (1 points each) 1. The χ -distribution is symmetric. F. The χ may be negative, zero, or positive F 3. The chi-square distribution is skewed to the right. T 4. The observed frequency of a cell

More information

Robustness and Distribution Assumptions

Robustness and Distribution Assumptions Chapter 1 Robustness and Distribution Assumptions 1.1 Introduction In statistics, one often works with model assumptions, i.e., one assumes that data follow a certain model. Then one makes use of methodology

More information

What to do today (Nov 22, 2018)?

What to do today (Nov 22, 2018)? What to do today (Nov 22, 2018)? Part 1. Introduction and Review (Chp 1-5) Part 2. Basic Statistical Inference (Chp 6-9) Part 3. Important Topics in Statistics (Chp 10-13) Part 4. Further Topics (Selected

More information

Nonparametric Independence Tests

Nonparametric Independence Tests Nonparametric Independence Tests Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Nonparametric

More information

Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data

Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data 999 Prentice-Hall, Inc. Chap. 9 - Chapter Topics Comparing Two Independent Samples: Z Test for the Difference

More information

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Understand Difference between Parametric and Nonparametric Statistical Procedures Parametric statistical procedures inferential procedures that rely

More information

Soc3811 Second Midterm Exam

Soc3811 Second Midterm Exam Soc38 Second Midterm Exam SEMI-OPE OTE: One sheet of paper, signed & turned in with exam booklet Bring our Own Pencil with Eraser and a Hand Calculator! Standardized Scores & Probability If we know the

More information

Unit 14: Nonparametric Statistical Methods

Unit 14: Nonparametric Statistical Methods Unit 14: Nonparametric Statistical Methods Statistics 571: Statistical Methods Ramón V. León 8/8/2003 Unit 14 - Stat 571 - Ramón V. León 1 Introductory Remarks Most methods studied so far have been based

More information

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Hypothesis esting Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Statistical Hypothesis: conjecture about a population parameter

More information

Composite Hypotheses. Topic Partitioning the Parameter Space The Power Function

Composite Hypotheses. Topic Partitioning the Parameter Space The Power Function Toc 18 Simple hypotheses limit us to a decision between one of two possible states of nature. This limitation does not allow us, under the procedures of hypothesis testing to address the basic question:

More information

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

More information

TMA4255 Applied Statistics V2016 (23)

TMA4255 Applied Statistics V2016 (23) TMA4255 Applied Statistics V2016 (23) Part 7: Nonparametric tests Signed-Rank test [16.2] Wilcoxon Rank-sum test [16.3] Anna Marie Holand April 19, 2016, wiki.math.ntnu.no/tma4255/2016v/start 2 Outline

More information

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures Non-parametric Test Stephen Opiyo Overview Distinguish Parametric and Nonparametric Test Procedures Explain commonly used Nonparametric Test Procedures Perform Hypothesis Tests Using Nonparametric Procedures

More information

Introduction to Statistical Data Analysis III

Introduction to Statistical Data Analysis III Introduction to Statistical Data Analysis III JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? The

More information

Nonparametric tests. Mark Muldoon School of Mathematics, University of Manchester. Mark Muldoon, November 8, 2005 Nonparametric tests - p.

Nonparametric tests. Mark Muldoon School of Mathematics, University of Manchester. Mark Muldoon, November 8, 2005 Nonparametric tests - p. Nonparametric s Mark Muldoon School of Mathematics, University of Manchester Mark Muldoon, November 8, 2005 Nonparametric s - p. 1/31 Overview The sign, motivation The Mann-Whitney Larger Larger, in pictures

More information

Formulas and Tables by Mario F. Triola

Formulas and Tables by Mario F. Triola Copyright 010 Pearson Education, Inc. Ch. 3: Descriptive Statistics x f # x x f Mean 1x - x s - 1 n 1 x - 1 x s 1n - 1 s B variance s Ch. 4: Probability Mean (frequency table) Standard deviation P1A or

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

Nonparametric Location Tests: k-sample

Nonparametric Location Tests: k-sample Nonparametric Location Tests: k-sample Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F.

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F. Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Non-parametric Hypothesis Testing

Non-parametric Hypothesis Testing Non-parametric Hypothesis Testing Procedures Hypothesis Testing General Procedure for Hypothesis Tests 1. Identify the parameter of interest.. Formulate the null hypothesis, H 0. 3. Specify an appropriate

More information

Non-parametric tests, part A:

Non-parametric tests, part A: Two types of statistical test: Non-parametric tests, part A: Parametric tests: Based on assumption that the data have certain characteristics or "parameters": Results are only valid if (a) the data are

More information

ST4241 Design and Analysis of Clinical Trials Lecture 7: N. Lecture 7: Non-parametric tests for PDG data

ST4241 Design and Analysis of Clinical Trials Lecture 7: N. Lecture 7: Non-parametric tests for PDG data ST4241 Design and Analysis of Clinical Trials Lecture 7: Non-parametric tests for PDG data Department of Statistics & Applied Probability 8:00-10:00 am, Friday, September 2, 2016 Outline Non-parametric

More information

Relating Graph to Matlab

Relating Graph to Matlab There are two related course documents on the web Probability and Statistics Review -should be read by people without statistics background and it is helpful as a review for those with prior statistics

More information

Chapter 18 Resampling and Nonparametric Approaches To Data

Chapter 18 Resampling and Nonparametric Approaches To Data Chapter 18 Resampling and Nonparametric Approaches To Data 18.1 Inferences in children s story summaries (McConaughy, 1980): a. Analysis using Wilcoxon s rank-sum test: Younger Children Older Children

More information

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis jmding/math475/index.

Math 475. Jimin Ding. August 29, Department of Mathematics Washington University in St. Louis   jmding/math475/index. istical A istic istics : istical Department of Mathematics Washington University in St. Louis www.math.wustl.edu/ jmding/math475/index.html August 29, 2013 istical August 29, 2013 1 / 18 istical A istic

More information

One-Sample Numerical Data

One-Sample Numerical Data One-Sample Numerical Data quantiles, boxplot, histogram, bootstrap confidence intervals, goodness-of-fit tests University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

Lecture 10: Generalized likelihood ratio test

Lecture 10: Generalized likelihood ratio test Stat 200: Introduction to Statistical Inference Autumn 2018/19 Lecture 10: Generalized likelihood ratio test Lecturer: Art B. Owen October 25 Disclaimer: These notes have not been subjected to the usual

More information

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA)

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) BSTT523 Pagano & Gauvreau Chapter 13 1 Nonparametric Statistics Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) In particular, data

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II

Outline The Rank-Sum Test Procedure Paired Data Comparing Two Variances Lab 8: Hypothesis Testing with R. Week 13 Comparing Two Populations, Part II Week 13 Comparing Two Populations, Part II Week 13 Objectives Coverage of the topic of comparing two population continues with new procedures and a new sampling design. The week concludes with a lab session.

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Module 9: Nonparametric Statistics Statistics (OA3102)

Module 9: Nonparametric Statistics Statistics (OA3102) Module 9: Nonparametric Statistics Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 15.1-15.6 Revision: 3-12 1 Goals for this Lecture

More information

General Certificate of Education Advanced Level Examination June 2014

General Certificate of Education Advanced Level Examination June 2014 General Certificate of Education Advanced Level Examination June 2014 Biology BIO6T/Q14/task Unit 6T A2 Investigative Skills Assignment Task Sheet Introduction Investigating populations You will use leaves

More information

Non-Parametric Two-Sample Analysis: The Mann-Whitney U Test

Non-Parametric Two-Sample Analysis: The Mann-Whitney U Test Non-Parametric Two-Sample Analysis: The Mann-Whitney U Test When samples do not meet the assumption of normality parametric tests should not be used. To overcome this problem, non-parametric tests can

More information

STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test.

STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test. STAT 135 Lab 8 Hypothesis Testing Review, Mann-Whitney Test by Normal Approximation, and Wilcoxon Signed Rank Test. Rebecca Barter March 30, 2015 Mann-Whitney Test Mann-Whitney Test Recall that the Mann-Whitney

More information

Categorical Data Analysis. The data are often just counts of how many things each category has.

Categorical Data Analysis. The data are often just counts of how many things each category has. Categorical Data Analysis So far we ve been looking at continuous data arranged into one or two groups, where each group has more than one observation. E.g., a series of measurements on one or two things.

More information

F79SM STATISTICAL METHODS

F79SM STATISTICAL METHODS F79SM STATISTICAL METHODS SUMMARY NOTES 9 Hypothesis testing 9.1 Introduction As before we have a random sample x of size n of a population r.v. X with pdf/pf f(x;θ). The distribution we assign to X is

More information

Statistics 224 Solution key to EXAM 2 FALL 2007 Friday 11/2/07 Professor Michael Iltis (Lecture 2)

Statistics 224 Solution key to EXAM 2 FALL 2007 Friday 11/2/07 Professor Michael Iltis (Lecture 2) NOTE : For the purpose of review, I have added some additional parts not found on the original exam. These parts are indicated with a ** beside them Statistics 224 Solution key to EXAM 2 FALL 2007 Friday

More information

MATH Notebook 3 Spring 2018

MATH Notebook 3 Spring 2018 MATH448001 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2010 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH448001 Notebook 3 3 3.1 One Way Layout........................................

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Wilcoxon Test and Calculating Sample Sizes

Wilcoxon Test and Calculating Sample Sizes Wilcoxon Test and Calculating Sample Sizes Dan Spencer UC Santa Cruz Dan Spencer (UC Santa Cruz) Wilcoxon Test and Calculating Sample Sizes 1 / 33 Differences in the Means of Two Independent Groups When

More information

Lecture 21. December 19, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 21. December 19, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Version 1: Equality of Distributions. 3. F (x) and G(x) represent the distribution functions corresponding to the Xs and Y s, respectively.

Version 1: Equality of Distributions. 3. F (x) and G(x) represent the distribution functions corresponding to the Xs and Y s, respectively. 4 Two-Sample Methods 4.1 The (Mann-Whitney) Wilcoxon Rank Sum Test Version 1: Equality of Distributions Assumptions: Given two independent random samples X 1, X 2,..., X n and Y 1, Y 2,..., Y m : 1. The

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

STAT Section 5.8: Block Designs

STAT Section 5.8: Block Designs STAT 518 --- Section 5.8: Block Designs Recall that in paired-data studies, we match up pairs of subjects so that the two subjects in a pair are alike in some sense. Then we randomly assign, say, treatment

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

Violating the normal distribution assumption. So what do you do if the data are not normal and you still need to perform a test?

Violating the normal distribution assumption. So what do you do if the data are not normal and you still need to perform a test? Violating the normal distribution assumption So what do you do if the data are not normal and you still need to perform a test? Remember, if your n is reasonably large, don t bother doing anything. Your

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Practice Problems Section Problems

Practice Problems Section Problems Practice Problems Section 4-4-3 4-4 4-5 4-6 4-7 4-8 4-10 Supplemental Problems 4-1 to 4-9 4-13, 14, 15, 17, 19, 0 4-3, 34, 36, 38 4-47, 49, 5, 54, 55 4-59, 60, 63 4-66, 68, 69, 70, 74 4-79, 81, 84 4-85,

More information

General Certificate of Education Advanced Level Examination June 2013

General Certificate of Education Advanced Level Examination June 2013 General Certificate of Education Advanced Level Examination June 2013 Human Biology HBI6T/P13/task Unit 6T A2 Investigative Skills Assignment Task Sheet Investigation into whether reaction time is different

More information

Chapter 8 Class Notes Comparison of Paired Samples

Chapter 8 Class Notes Comparison of Paired Samples Chapter 8 Class Notes Comparison of Paired Samples In this chapter, we consider the analysis of paired data. To illustrate, (in the spirit of p.332 ex.8.s.5) an agronomist randomly selected six wheat plants

More information

Nonparametric tests, Bootstrapping

Nonparametric tests, Bootstrapping Nonparametric tests, Bootstrapping http://www.isrec.isb-sib.ch/~darlene/embnet/ Hypothesis testing review 2 competing theories regarding a population parameter: NULL hypothesis H ( straw man ) ALTERNATIVEhypothesis

More information

Nonparametric Methods

Nonparametric Methods Nonparametric Methods Marc H. Mehlman marcmehlman@yahoo.com University of New Haven Nonparametric Methods, or Distribution Free Methods is for testing from a population without knowing anything about the

More information

Regression Analysis: Exploring relationships between variables. Stat 251

Regression Analysis: Exploring relationships between variables. Stat 251 Regression Analysis: Exploring relationships between variables Stat 251 Introduction Objective of regression analysis is to explore the relationship between two (or more) variables so that information

More information

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba

B.N.Bandodkar College of Science, Thane. Random-Number Generation. Mrs M.J.Gholba B.N.Bandodkar College of Science, Thane Random-Number Generation Mrs M.J.Gholba Properties of Random Numbers A sequence of random numbers, R, R,., must have two important statistical properties, uniformity

More information

Introduction to Statistics and Error Analysis II

Introduction to Statistics and Error Analysis II Introduction to Statistics and Error Analysis II Physics116C, 4/14/06 D. Pellett References: Data Reduction and Error Analysis for the Physical Sciences by Bevington and Robinson Particle Data Group notes

More information