THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS

Size: px
Start display at page:

Download "THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS"

Transcription

1 The Pennsylvania State University The Graduate School Department of Mathematics THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS A Thesis in Mathematics by Michael J. Rowell c 2007 Michael J. Rowell Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007

2 The thesis of Michael J. Rowell was reviewed and approved* by the following: George Andrews Evan Pugh Professor of Mathematics Thesis Co-Adviser Chair of Committee Ae Ja Yee Assistant Professor of Mathematics Thesis Co-Adviser James Sellers Associate Professor of Mathematics Donald Richards Professor of Statistics John Roe Professor of Mathematics Head of Department of Mathematics *Signatures are on file in the Graduate School.

3 iii Abstract This thesis introduces a new generalized conjuagate Bailey pair and infinite families of conjugate Bailey pairs. We discuss the applications of each in conjuction with the Bailey transform. Results range over many different applications: generalized Lambert series, infinite products, Ramanujan-like identities, partitions, indefinite quadratics forms and sums of triangular numbers. We close with some partition-related remarks on two of the identities which appear in previous chapters, and use this interpretation to prove generalizations and finite forms of each of the identities.

4 iv Table of Contents List of Tables vii List of Figures viii Acknowledgments ix Chapter 1. Introduction Chapter 2. Preliminaries Partitions Different Sets of Partitions Hypergeometric q-series The Bailey Transform Umbral Methods Chapter 3. Conjugate Bailey Pairs A General Conjugate Bailey Pair Specific Conjugate Bailey Pairs Chapter 4. A Comprehensive Look into a Conjugate Bailey Pair Known Identities Generalized Lambert Series and Related Identities Infinite Products and Ramanujan-like Identities

5 v 4.4 Weighted sums Partitions Closing Remarks Chapter 5. A General Discussion of Various Conjugate Bailey Pairs Bailey Pairs and the Symmetric Bilateral Bailey Transform Lambert Series, Infinite Products and Ramanujan-like Identities Indefinite Quadratic Forms Partitions Sums of Triangular Numbers Chapter 6. Infinite Families of Conjugate Bailey Pairs A generalization of Watson s 8 φ 7 transformation formula Our Main Result Infinite families of conjugate Bailey pairs and Identities Chapter 7. Combinatorial and Partition-Related Remarks Some Generalizations of Fine s Identity A General Case of a Simple Bijection Finite Sums The Eulerian Number Triangle and the Polylogarithm Function Combining Eulerian Polynomials and our Generalization Another choice for A n (q) Combinatorial Interpretations of One of Ramanujan s Entries

6 7.2.1 Infinite Sums Finite Sums vi Chapter 8. Conclusions References

7 vii List of Tables 3.1 Conjugate Bailey Pairs for when a Conjugate Bailey Pairs for when a Conjugate Bailey Pairs for when a Conjugate Bailey Pairs for when a, b

8 viii List of Figures 2.1 A Young Diagram of the partition (4, 4, 2, 1) Our map, φ, used in illustrated above

9 ix Acknowledgments I would first and foremost like to thank my parents, Jim and Cindy Rowell. It was and continues to be their constant support that enables me to take the steps that I have taken in my life. They have been my most instrumental teachers throughout my life and without them I would be lost. This work would have never begun had it not been for the time and effort put forth by both Dr. George Andrews and Dr. Ae Ja Yee. I cannot begin to thank them enough for their patience and guidance. And lastly I would like to thank Lisa Johansen. It has been her unwavering love and support that has not only made me a better mathematician, but a better person as well.

10 1 Chapter 1 Introduction In 1949 W.N. Bailey introduced the Bailey transform [12], and using this transform was able to give a simple proof of the Rogers-Ramanujan identities; for q < 1, q n2 1 + (1 q)(1 q 2 ) (1 q n ) = 1 (1 q)(1 q 6 ) (1 q 4 )(1 q 9 ) (1.1) and q n2 +n 1 + (1 q)(1 q 2 ) (1 q n ) = 1 (1 q 2 )(1 q 7 ) (1 q 3 )(1 q 8 ) (1.2) as well as many other Ramanujan-like identities. The ingredients for the Bailey transform are two pairs, a Bailey pair and a conjugate Bailey pair. In 1951 Slater published a long list of known and new Bailey pairs [23] which Slater soon followed in 1952 by publishing a list of 130 Ramanujan-like identities, many of which were new. Since the introduction of the Bailey transform, there have many adavances in pairs, both Bailey and conjugate Bailey, and a long list of identities. One work in particular which served as the main motivation for this paper is a joint work by Andrews and Warnaar [9] in which a number of new conjugate Bailey pairs are introduced. It is the purpose of this manuscript to investigate the conjugate Bailey pairs used in their paper, generalize them,

11 2 apply the Bailey transform to them, and to interpret the results both analytically and combinatorially. The new pairs introduced by Andrews and Warnaar involved an indefinite sum which appeared to make things more complicated than previous pairs, but when used with appropriate Bailey pairs, produced interesting and less convoluted results. After an in-depth dissection of the proofs used by Andrews and Warnaar, I was able to consolidate the method used and generalize the pairs extensively. It turned out that not only were all of the conjugate Bailey pairs used in Andrews and Warnaar encompassed in this new pair, but also all of the conjugate Bailey pairs used in Bailey s and Slater s work were included in this new generalization. Chapter 3 of this manuscript discusses the previously mentioned steps. Once the generalized conjugate Bailey pair was found, it was left to show that it had interesting applications with the use of the Bailey transform. With many steps similar to those taken by Bailey, Slater, Andrews and Warnaar, we are able to present in Chapters 4 and 5 some of our results. While many of the new identities were easily simplified using classic identities such as the Jacobi triple product, some were unable to be simplified. It is with the use of Umbral methods that these identities were further simplified and were able to be interpreted as an elegant partition identity. Details of these Umbral methods can be found in Chapter 2. In Chapter 6, we again generalize our conjugate Bailey pair so that we are able to discuss infinite families of such pairs. In order to do so we make use of a generalization of Watson s transformation formula which can be proved with the use of Bailey Chains.

12 3 Such an investigation leads to infinite families of some of the identities found in previous chapters. Also explored in this thesis are some alternative methods of proof to some of the identities found using Andrews and Warnaar s conjugate Bailey pairs. In Chapter 7, interpreting the identities as partition identities we are able to present new finite forms of identities as well as many new interesting generalizations.

13 4 Chapter 2 Preliminaries This section is intended to introduce the reader to the basic definitions and notations that will be used later in this manuscript. I have chosen to introduce the topic as it was introduced to me, starting with partitions. It was after I was roped in by the elegance and simplicity of partition identities that I was shown the complicated world of q-series and the horrific notation that comes with it. 2.1 Partitions We define a partition as a finite nonincreasing sequence of positive integers, λ = (λ 1,..., λ k ). We refer to each λ i as the parts of our partition. We say that λ is a partition of n, λ = n, if the sum of the parts is equal to n. For example, there are 7 partitions of 5, (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). (2.1) We also define the following statistics for a partition, λ, λ 1 the largest part, µ(λ) the number of parts, µ k (λ) the number of parts equal to k,

14 5 #d(λ) the number of different parts. Another statistic made famous by Dyson is the rank of a partition, r(λ), which is equal to the largest part minus the number of parts, λ 1 µ(λ). We define P to be the set of all partitions. Example If we consider the partition λ = (10, 4, 4, 3, 2, 2, 2, 1), we have the following statistics: λ = 28, λ 1 = 10, µ(λ) = 8, µ 4 (λ) = 2, #d(λ) = 5, r(λ) = 2. To each partition we can associate a graphical representation [3, p. 6], in which case each row corresponds to a part of the partition (See Figure 2.1). In the example we have shown, nodes are expressed using boxes. It is also common to see dots used, in which case our representation is referred to as a Ferrers graph. Fig A Young Diagram of the partition (4, 4, 2, 1).

15 Different Sets of Partitions In later sections, we will use partitions to help us prove identities by showing that the coefficient of q n on either side of the identity counts the same set of partitions. Since it will not always be the case that the set of partitions that we need is going to be P, we define some other useful subsets of P. For example, we might restrict ourselves to partitions with each part less than a given bound or only allow parts which are odd. We start by defining D, the set of partitions in which all of our parts are distinct. If we continue our previous example we see that there are only 3 partitions of 5 into distinct parts, (5), (4, 1), (3, 2). (2.2) We can continue to further complicate our restrictions, but we need more specific statistics for our partitions. We define µ i (λ) as the number of parts of λ which are k congruent to i modulo k. We define the sets of partitions: 1. D k to be all partitions into distinct parts such that each part is congruent to k modulo k. 2. D i k to be all partitions into distinct parts such that each part is congruent to i, k or k i modulo k. 3. D k,i to be all partitions in D i k such that µi k 4. D = k,i to be all partitions in Di k such that µi k (λ) > µk i(λ). k (λ) µk i(λ). k We also define the set of partitions without gaps. A partition without gaps has the property that if k occurs as a part, then all positive integers less than k must occur

16 7 as parts. For example, there are 3 partitions of 5 without gaps, (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). (2.3) We note that it is not a coincidence that the number of partitions of 5 without gaps is equal to the number of partitions of 5 into distinct parts. There is a simple bijection between the two sets using conjugation. The conjugate of a partition can be found by considering the Young Diagram of a partition and referring to the columns as parts (rather than the rows). More can be read on the conjugate of a partition in [3, p. 7]. We can also consider partitions into odd parts in which there are no gaps. For example, the partition λ = (7, 5, 5, 3, 1, 1, 1). Our last set of partitions we will define is the set of overpartitions. An overpartition of n is a partition of n in which the first occurence of a number may be overlined. There are many more overpartitions of a number n than there are partitions of n. For example, there are 24 overpartitions of 5, compared to the 7 partitions. Below we show the 8 overpartitions of 3, (3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1). (2.4) 2.2 Hypergeometric q-series Often we are concerned with the number of partitions of a number. For example, we can define p(n) to be the number of partitions of n. As with many sequences, it is

17 often helpful to express it as a generating function which we will denote as P(q) ( q < 1), 8 P(q) = p(n)q n. (2.5) We first note that this can easily be expressed as p(n)q n = q λ 1 = 1 q n. (2.6) λ P n=1 We can see this by noting that each term on the right hand side, 1/(1 q n ) = 1 + q n + q 2n +, contributes the number of parts of size n. If we want to express the generating function for all partitions with distinct parts, we need to ensure that no part is chosen more than once. Thus, q λ = (1 + q n ). (2.7) λ D n=1 It is apparent at this point that we need to introduce some notation if we would like to cut down on the number of infinite product symbols we use. The following is standard q-series notation [19, p. xvi]: (a) k = (a; q) k = (1 a)(1 aq) (1 aq k 1 k 1 ) = (1 aq i ) (2.8) i=0 and (2.9) (a) = (a; q) = lim k (a; q) k = (1 aq i ). (2.10) i=0

18 9 We can also combine our infinite products in the following way: (a 1 ; q) k (a 2 ; q) k (a n ; q) k = (a 1, a 2,, a n ; q) k. (2.11) We also define an n+1 φ n basic hypergeometric series as [19, p. 4] n+1 φ n [ ] a1, a n+1 ; q, z = b 1,, b n k=0 (a 1, a n+1 ; q) k (q, b 1,, b n ; q) k z k. (2.12) With our new notation we can now easily express two of our generating functions, λ P q n = 1 (q) (2.13) and q n = ( q). (2.14) λ D of q-series. It is with this notation that we can introduce some of the more classic identities Theorem (Euler). [3, p. 19] z n (q) n = 1 (z). (2.15) Theorem (q-binomial Theorem). [3, p. 17] (a) n (q) n z n = (az) (z). (2.16)

19 10 Theorem (Gauss). [3, p. 23] q n(n+1)/2 = (q2 ; q 2 ) (q; q 2 ). (2.17) Theorem (Jacobi Triple Product). [3, p. 21] ( 1) n a n q n(n 1)/2 = (a, q/a, q; q). (2.18) n= Theorem (Euler s Pentagonal Number). [3, p. 11] (q) = ( 1) k q k(3k+1)/2. (2.19) n= It should be noted that all of these identities are very closely related to partitions and their generating functions. For example, we can view the right hand side of (2.19) as (q) = λ D( 1) µ(λ) q λ. (2.20) So we can interpret this as the generating function for counting strict partitions in which their sign will be assigned based on the number of parts. From (2.19) we can see that when n is not a pentagonal number (i.e. of the form q n(3n+1)/2, n Z), there are the same number of strict partitions into an even number of parts as there are into an odd number of parts. For example, let us consider n = 8. Below are the 6 strict partitions of 8. Note that exactly half of them have an odd number of parts.

20 11 (8), (7, 1), (6, 2), (5, 3), (5, 2, 1), (4, 3, 1). 2.3 The Bailey Transform In 1949 [12], W.N. Bailey introduced what is now known as the Bailey Transform: If n β n = α r u n r v n+r, (2.21) r=0 and γ n = δ r u r n v r+n, (2.22) r=n then α n γ n = β n δ n, (2.23) subject to conditions on the four sequences α n, β n, γ n and δ n which make all the infinite series absolutely convergent. For the purpose of this thesis, we will need a slight variation on the Bailey transform. The following is referred to as the symmetric bilateral Bailey transform: If n β n = α r u n r v n+r, (2.24) r= n and γ n = r n δ r u r n v r+n, (2.25) then α n γ n = β n δ n, (2.26) n=

21 12 with the same convergent conditions on α n, β n, γ n and δ n. In either form, we refer to the series α n and β n as a Bailey pair and the series δ n and γ n as a conjugate Bailey pair. As the symmetric bilateral Bailey transform is the only version of the Bailey transform we will use for this thesis, we will refer to it as just the Bailey transform. As mentioned previously, Bailey used the Bailey transform to introduce a new method of proof for the Rogers-Ramanujan Identities and many other Ramanujan-like identities [12]. 2.4 Umbral Methods In later chapters, we implement the use of Jacobi s triple product to simplify our results to a Ramanujan-like identity. There are however, a list of results which appear to be closely related to these Ramanujan-like identities in which our triple product does not apply. It is for these identities that we can use an Umbral mapping in our triple product and simplify our results. For the purpose of this manuscript, an Umbral mapping allows replacing the powers of a given paramter with a sequence, (a n a n ). As long as our series are already expanded in terms of our parameter and the series will continue to converge after our substitution, we can use this Umbral mapping. For further discussion and examples please see [6].

22 In this section we will investigate Jacobi s triple product identity with the use of Umbral methods. Let us first recall Jacobi s triple product identity, 13 z n q n2 = ( zq, z 1 q, q 2 ; q 2 ). (2.27) n= Using the following simple application of (2.16) (with q q 2, z q/a followed by a ), z n q n2 (q 2 ; q 2 = ( zq; q 2 ) (2.28) ) n we can rewrite the triple product identity as z n q n2 = (q 2 ; q 2 z i j q i2 +j 2 ) n= (q i,j 0 2 ; q 2 ) i (q 2 ; q 2. (2.29) ) j We have now written our triple product identity in a way such that the variable z is conducive for an Umbral mapping. Let us consider the function, 0 for n 0 s(n) = 1 for n < 0. With this function we consider our Umbral mapping,

23 14 Theorem ( 1) s(n) z n q n2 = (q 2 ; q 2 ) n= i,j 0 i j z i j q i2 +j 2 (q 2 ; q 2 ) i (q 2 ; q 2 ) j (q 2 ; q 2 ) i,j 0 i<j z i j q i2 +j 2 (q 2 ; q 2 ) i (q 2 ; q 2 ) j. (2.30) Proof. We invoke the Umbral mapping, z n ( 1) s(n) z n, z n q n2 = (q 2 ; q 2 ( 1) s(i j) z i j q i2 +j 2 ) n= (q i,j 0 2 ; q 2 ) i (q 2 ; q 2 (2.31) ) j = (q 2 ; q 2 ) i,j 0 i j z i j q i2 +j 2 (q 2 ; q 2 ) i (q 2 ; q 2 ) j (q 2 ; q 2 ) i,j 0 i<j z i j q i2 +j 2 (q 2 ; q 2 ) i (q 2 ; q 2 ) j. (2.32) While the generating functions for such identities may not be aesthetically pleasing to the eye, the combinatorial interpretations turn out to be much more elegant. With the notation we defined earlier and the use of Umbral methods, we are now able to translate these results into partition identities.

24 Theorem Let α n be a double-sided sequence which ensures convergence and k Z with k > 2. Then 15 α n ( 1) n q n(kn+k 2)/2 = n= λ D k 1 α µ k 1 k (λ) µ 1 k (λ)( 1)µ(λ) q λ. (2.33) Proof. Let z zq (k 2)/2 and q q k/2 in the Jacobi triple product. Then we have z n ( 1) n q n(kn+k 2)/2 = (z 1 q, zq k 1, q k ; q k ) (2.34) n= = λ D 1 k z µk 1 (λ) µ 1 k k (λ) ( 1) µ(λ) q λ. (2.35) We now invoke the umbral mapping z n α n. One of the more simple but elegant partition identities that follows from this Umbral map is the following: Corollary ( 1) n q n(3n+1)/2 (1 + q 2n+1 ) = = ( 1) n+s(n) q n(3n+1)/2 (2.36) n= ( 1) µ(λ) q λ λ D µ 2 3 (λ) µ1 3 (λ) 0 λ D µ 2 3 (λ) µ1 3 (λ)<0 ( 1) µ(λ) q λ. (2.37) And so we are given a variation of the well-known Pentagonal Number Theorem.

25 16 Chapter 3 Conjugate Bailey Pairs It appears in the literature that the main focus when using the Bailey transform is to find new Bailey pairs and use them in conjunction with one of the well-known conjugate Bailey pairs [12], [23], [24]. For whatever reason, there has been little interest expressed in finding new conjugate Bailey pairs. One obvious reason for this is that the relationship which must hold in these pairs is far more complicated. In a recent paper [9], Andrews and Warnaar made a monumental step in the direction of this thesis by introducing many new conjugate Bailey pairs. Two of the pairs introduced were very similar in appearance, but unfortunately the resemblance was all but lost at the proof level. They were the following, Lemma (Andrews, Warnaar). The identity, γ n = j n δ j u j n v j+n (3.1) holds for u n = v n = 1/(q 2 ; q 2 ) n with δ n = (q2 ; q 2 ) 2n ( q; q) 2n+1 q n, γ n = q n2 q j2 +j j n (3.2)

26 17 and δ n = (q) 2n q n, γ n = q 2n2 q j(j+1)/2. (3.3) j 2n One of the more striking observations of these new pairs is the existence of a restricted sum in γ n, a characteristic not seen in previous conjugate Bailey pairs. Andrews, who had already moved on to other research, encouraged me to look into these pairs feeling that he had only touched a small amount of what appeared to be a larger picture. My goal, upon seeing the pairs, was to unify the two pairs above, as well as the others in the paper, into one generalization. After a great deal of studying the pairs and their proofs, which differed in style, I was able to generalize the pairs a great deal. Seldom as this occurs, I was able to achieve my goal; bringing together the pairs as well as their proofs. In this chapter, I present this generalization and its proof. As Andrews had hinted, the pairs were in fact just the tip of an iceberg; the generalization found contained an infinite number of new conjugate Bailey pairs. To give an indication of the vastness of such pairs, tables of some of the simple pairs are presented later in this chapter. 3.1 A General Conjugate Bailey Pair The following theorem is our main result regarding conjugate Bailey pairs. We present a very general conjugate Bailey pair and it s proof. It should be mentioned that the proof, while proving a much more general identity, was able to simplify greatly those steps taken by Andrews and Warnaar in their paper [9].

27 18 Theorem γ n = δ j (3.4) (q; q) j n j n (fq; q) j+n = (efq/a, a; q) ( n 1 ) n q n(n 1)/2 (fq, fq/a; q) n a (efq n+1 /a, fq/a, b, c; q) j (eq/a; q) j n (efq j n 2 /ab, efq 2 /ac, fq n+1, eq; q) j (q; q) j n ( (1 efq 2j+1 /a) ef ) j q j(j+3)/2 (3.5) bc where ( δ n = (efq2 /abc, efq/a; q) (efq 2 /ab, efq 2 (a, b, c; q) n efq 2 ) n. (3.6) /ac; q) (eq; q) n abc

28 19 Proof. Our proof is an application of Watsons 8 φ 7 transformation: γ n = j n δ j (q; q) j n (fq; q) j+n (3.7) = (efq2 /abc, efq/a; q) (efq 2 /ab, efq 2 /ac; q) = (efq2 /abc, efq/a; q) (efq 2 /ab, efq 2 /ac; q) = (efq2 /abc, efq/a; q) (efq 2 /ab, efq 2 /ac; q) (a, b, c; q) j (eq; q) j n j (q; q) j n (fq; q) j+n ( (a, b, c; q) n (eq; q) n (fq; q) 2n ( (a, b, c; q) n (eq; q) n (fq; q) 2n efq 2n+3 efq 2n+1 lim d 8φ a, efq 2n+3 a, 7 efq 2n+1 a, efq 2n+1 a a ( efq 2 ) n ( abc 3 φ 2 efq 2 ) j (3.8) abc aq n, bq n, cq n efq2 eq n+1, fq2n+1 ; q, abc ) (3.9) efq 2 ) n (efqn+2 /ab, efq n+2 /ac; q) abc (efq 2n+2 /a, efq 2 /abc; q), fqn+1 a, eq a, bqn, cq n, d, eq n+1, fq 2n+1, efqn+2 ab, efqn+2 ac, 0 ; q, efq2+n bcd (3.10) by eq.(iii.17) [19, p. 360] with a = efq 2n+1 /a, b = fq n+1 /a, c = eq/a, d, e = bq n and f = cq n. After some simplification we see that this = (efq/a, a; q) ( n 1 ) n q n(n 1)/2 (fq, fq/a; q) n a (efq n+1 ( /a, fq/a, b, c; q) j (eq/a; q) j n (efq j n 2 /ab, efq 2 /ac, fq n+1 (1 efq 2j+1 /a) ef ) j q j(j+3)/2., eq; q) j (q; q) j n bc (3.11) It should be noted that all conjugate Bailey pairs introduced in Andrews and Warnaar s work [9] are encompassed in this theorem. It should also be noted that the

29 20 conjugate Bailey pair used by Bailey [12] and Slater [24] in their work, δ n = (y) n (z) n xn y n z n, γ n = (x/y) (x/z) (y) n (z) n x n (x) (x/yz) (x/y) n (x/z) n y n z n (3.12) is also a special case of our theorem. We can see this by allowing a = eq followed by some simple change of variables. 3.2 Specific Conjugate Bailey Pairs Throughout the paper corollaries and theorems will use special cases of Theorem However, in most cases there will still be at least one open parameter. In order to show the number of pairs that our theorem can create, we give some tables of some of the more simple pairs. As we saw in the previous section, allowing a = eq allowed for a large simplification. Our theorem will also simplify greatly if we allow e = a. The following conjugate Bailey pair has the mapping q q 2 followed by e = a, f = 1, a aq, b bq and c cq in Theorem Corollary γ n = j n δ j (q 2 ; q 2 ) j n (q 2 ; q 2 ) j+n (3.13) = (aq; q2 ( ) n (q/a; q 2 1 ) n q n2 (q/a, bq, cq; q 2 ) j ) n a (q j n 3 /b, q 3 /c, aq 3 ; q 2 (1 q 4j+2 ( ) a ) j q j(j+2) ) j bc (3.14)

30 21 where δ n = (q2 /bc, q 2 ; q 2 ( ) (q 3 /b, q 3 /c; q 2 (1 aq)(bq, cq; q2 ) n q 2 ) n ) (1 aq 2n+1. (3.15) ) bc All pairs written in the following tables are special cases of Corollary The values for a, b and c accompany each pair. We note that the two lemmas of Andrews and Warnaar previously mentioned appear on our list: a = 1, b = 1, c = q and a = 0, b = 1, c = q.

31 22 a b c γ n δ n ( 1) n q n2 j n ( 1) n q n2 j n 1 1 q ( 1) n q n2 j n 1 1 q ( 1) n q n2 j n ( 1) n q n2 j n (1+q 2j+1 ) ( 1) j q j2 +2j (1 q 2j+1 ) 2 q j2 +2j (1 q 2j+1 ) (1+q 2j+1 ) (1 q 2j+1 ) ( 1)j q j2 +j (1+q 2j+1 ) +j (1 q 2j+1 ) qj2 ( 1) j q j2 +2j (1+q 2j+1 ) ( q) 2 (q2 ; q 2 ) 2 (q;q 2 ) 2 n (1 q 2n+1 ) q2n (q 2 ;q 4 ) n ( q 2 ; q 2 ) (q 4 ; q 4 ) (1 q 2n+1 ) ( 1)n q 2n (q) 2n (1 q 2n+1 ) qn (q; q) 2n ( q; q 2 ) 2 (q2 ; q 2 ) (1 q 2n+1 ) ( 1)n (q) n (q) 2 ( q2 ; q 2 ) 2 ( q;q 2 ) 2 n (1 q 2n+1 ) q2n 1 1 q ( 1) n q n2 j n qj2 +j ( q; q) 2n (1 q 2n+1 ) ( 1)n q n 1 1 q ( 1) n q n2 j n ( 1)j q j2 +j 1 1 ( 1) n q n2 j n (1+q 2j+1 ) +2j (1 q 2j+1 ) q2j2 1 1 ( 1) n q n2 j n ( 1)j q 2j2 +2j (q) (q; q 2 ) ( q) 2n (1 q 2n+1 ) qn (q;q 2 ) n ( q) (q 2 ; q 2 ) (1 q 2n+1 ) ( 1)n q n2 +2n (q) ( q 2 ; q 2 ) ( q;q 2 ) n +2n (1 q 2n+1 ) qn2 1 q ( 1) n q n2 j 2n qj(j+1)/2 (q2 ;q 2 ) n (1 q 2n+1 ) ( 1)n q n2 +n 1 q ( 1) n q n2 j 2n ( 1) j/2 q j(j+1)/2 (q) ( q; q 2 ) ( q 2 ;q 2 ) n (1 q 2n+1 ) qn2 +n 1 q 2 ( 1) n q n2 j n (1 + q2j+1 ) 2 ( 1) j q 2j2 (q) ( q 2 ; q 2 ) ( q;q 2 ) n+1 (1 q 2n+1 ) qn2 1 ( 1) n q n2 j 3n ( 1) j 3 q j(j+2)/3 (q 2 ; q 2 q ) 2n2 +2n j 0,1 mod 3 (1 q 2n+1 ) Table 3.1. Conjugate Bailey Pairs for when a 1.

32 23 a b c γ n δ n q n2 j n q n2 j n q j2 +2j (1 q 2j+1 ) ( 1) j q j2 +2j (1+q 2j+1 ) ( q) 2 (q2 ; q 2 ) 2 (q;q 2 ) 2 n (1+q 2n+1 ) q2n (q 2 ;q 4 ) n ( q 2 ; q 2 ) (q 4 ; q 4 ) (1+q 2n+1 ) ( 1)n q 2n 1 1 q q n2 j n qj2 +j (q) 2n (1+q 2n+1 ) (q)n 1 1 q q n2 j n ( 1)j q j2 +j ( q,q 2 ;q 2 ) (q; q) 2n (q; q) (1+q 2n+1 ) ( 1)n (q) n q n2 j n 1 1 q q n2 j n 1 1 q q n2 j n (1 q 2j+1 ) q j2 +2j (1+q 2j+1 ) 2 (1 q 2j+1 ) (1+q 2j+1 ) ( 1)j q j2 +j (1 q 2j+1 ) +j (1+q 2j+1 ) qj2 (q) 2 ( q2 ; q 2 ) 2 ( q;q 2 ) 2 n (1+q 2n+1 ) q2n ( q; q) 2n (1+q 2n+1 ) ( 1)n q n (q) ( q) 2n ( q) (1+q 2n+1 ) qn 1 1 q n2 j n ( 1)j q 2j2 +2j (q 2 ;q 2 ) (q;q 2 ) n (q;q 2 ) (1+q 2n+1 ) ( 1)n q n2 +2n 1 1 q n2 j n (1 q 2j+1 ) +2j (1+q 2j+1 ) q2j2 (q 2 ;q 2 ) ( q;q 2 ) n +2n ( q;q 2 ) (1+q 2n+1 ) qn2 1 q q n2 j n (1 q2j+1 )( 1) j q 2j2 +j (q 2 ;q 2 ) n (1+q 2n+1 ) ( 1)n q n2 +n 1 q q n2 (1 j n q2j+1 )q 2j2 +j (q 2 ;q 2 ) ( q2 ;q 2 ) n +n ( q 2 ;q 2 ) (1+q 2n+1 ) qn2 1 q 2 q n2 j n (1 q2j+1 ) 2 ( 1) j q 2j2 (q 2 ;q 2 ) (q;q 2 ) (q;q 2 )n+1 (1+q 2n+1 ) ( 1)n q n2 1 q n2 j 3n ( 1) j 3 j 3 q j(j+2)/3 (q 2 ; q 2 q ) 2n2 +2n j 0,1 mod 3 (1+q 2n+1 ) Table 3.2. Conjugate Bailey Pairs for when a 1.

33 24 a b c γ n δ n q 2n2 j n (1+q 2j+1 ) (1 q 2j+1 ) q2j(j+1) ( q) 2 (q2 ; q 2 ) 2 (q; q2 ) 2 n q2n q 2n2 j n ( 1)j q 2j(j+1) (q 2 ; q 2 ) ( q 2 ; q 2 ) 2 (q2 ; q 4 ) n ( 1) n q 2n 0 1 q q 2n2 j 2n qj(j+1)/2 (q) 2n q n 0 1 q q 2n2 j 2n ( 1) j/2 q j(j+1)/2 (q 2 ; q 2 ) ( q; q 2 ) 2 (q; q) 2n( 1) n q n 0 1 q 2n2 j 3n ( 1) j 3 q j(j+2)/3 j 0,1 mod 3 (q2 ;q 2 ) (q;q 2 ) n (q;q 2 ) ( 1) n q n2 +2n 0 q q 2n2 j 3n ( 1) j+1 3 q j(j+1)/3 (q 2 ; q 2 ) n ( 1) n q n2 +n j 0,1 mod 3 0 q q 2n2 j+1 j+ j 3n ( 1) 3 q j(j+1)/3 (q2 ;q 2 ) ( q 2 ;q 2 ) n q n2 +n j 0,1 mod 3 ( q 2 ;q 2 ) 0 q 2 q 2n2 j n (1 q2j+1 )(1 q 4j+2 )( 1) j q 3j2 ( q) (q 2 ; q 2 ) (q; q 2 ) n+1 ( 1) n q n2 0 q 2n2 j 2n ( 1)j q j(j+1) (q 2 ; q 2 ) q 2n2 +2n Table 3.3. Conjugate Bailey Pairs for when a 0. a b c γ n δ n 1 ( 1) n q n2 (q 2 ;q 2 ) (q;q 2 ) (q; q 2 ) n ( 1) n q n2 1 q n2 (q 2 ;q 2 ) ( q;q 2 ) ( q; q 2 ) n q n2 q (1 q 2n )( 1) n q n2 n (q 2 ; q 2 ) n ( 1) n q n2 n q (1 + q 2n )q n2 n (q 2 ;q 2 ) ( q 2 ;q 2 ) ( q 2 ; q 2 ) n q n2 n q 2 (1 q 2n 1 )(1 q 2n+1 )( 1) n q n2 2n (q 2 ;q 2 ) (q;q 2 ) (q; q 2 ) n+1 ( 1) n q n2 2n q 2 (1 + q 2n 1 )(1 + q 2n+1 )q n2 2n (q 2 ;q 2 ) ( q;q 2 ) ( q; q 2 ) n+1 q n2 2n q 2n2 (q 2 ; q 2 ) q 2n2 Table 3.4. Conjugate Bailey Pairs for when a, b.

34 25 Chapter 4 A Comprehensive Look into a Conjugate Bailey Pair As mentioned in Chapter 3, the specific pairs that can be obtained from our general result are endless. In order to give some understanding as to what Theorem is capable of producing in conjunction with the Bailey transform, we make some simple assumptions for our parameters. We first consider the mapping of a 1 into Corollary In such a case our theorem reduces to γ n = ( 1) n q n2 j n (bq, cq; q 2 ( ) j (q 3 /b, q 3 /c; q 2 (1 + q 2j+1 ) 1 j q ) j bc) j(j+2) (4.1) where δ n = (q2 /bc, q 2 ; q 2 ) (bq, cq; q 2 ( ) n q 2 ) n (q 3 /b, q 3 /c; q 2 ) (1 q 2n+1. (4.2) ) bc We would like to consider this conjugate Bailey pair with three Bailey pairs and combine them to produce results using the Bailey transform. We first consider the following Bailey pair: α n = ( 1) n d n q n2 β n = (dq; q2 ) n (q/d; q 2 ) n (q 2 ; q 2 ) 2n (4.3) found in [3, p. 49, ex. 1]. Combining our two pairs we get the following:

35 26 Theorem (q 2 /bc, q 2 ; q 2 ) (q 3 /b, q 3 /c; q 2 ) (bq, cq, dq, q/d; q 2 ( ) n (q 2 ; q 2 ) 2n (1 q 2n+1 ) (bq, cq; q 2 ) j (1 d 2j+1 ( ) = (q j=0 3 /b, q 3 /c; q 2 ) j (1 d) (1 + q2j+1 ) 1 ) j q j(j+2). (4.4) bcd q 2 bc ) n Proof. Using the Bailey tranform we get the following: j=0 (bq, cq; q 2 ) j (1 d 2j+1 ( ) (q 3 /b, q 3 /c; q 2 ) j (1 d) (1 + q2j+1 ) 1 ) j q j(j+2) bcd = d n (bq, cq; q 2 ( ) j ) n= (q 3 /b, q 3 /c; q 2 (1 + q 2j+1 ) 1 j q ) j n j bc) j(j+2) (4.5) = α n γ n (4.6) n= = β n δ n (4.7) = (q2 /bc, q 2 ; q 2 ) (bq, cq, dq, q/d; q 2 ( ) n q 2 ) n (q 3 /b, q 3 /c; q 2 ) (q 2 ; q 2 ) 2n (1 q 2n+1. (4.8) ) bc Notice the Bailey pair above was chosen so that when combined with our pair, the term α n γ n which had two sums was able to collapse into one sum. There are other Bailey pairs which offer this simplifiaction into one sum and we consider some of them below. Before we do we present the following simple result which can be directly proven with induction.

36 27 Lemma n ( 1) j q j(j+1)/2 = ( 1) n q n(n+1)/2 (4.9) j= n We can now present the next two identities. Theorem We have the following, (q 2 /bc, q 2 ; q 2 ) (q 3 /b, q 3 /c; q 2 ) (bq, cq; q 2 ) n (q) 2n+1 ( q 2 ) n bc (bq, cq; q 2 ( ) ) j = (q j=0 3 /b, q 3 /c; q 2 (1 + q 2j+1 1 j ) q j(2j+3), (4.10) ) j bc and (q 2 /bc, q 2 ; q 2 ) (q 3 /b, q 3 /c; q 2 ) (bq, cq; q 2 ( ) n (q, q, q 2 ; q 2 ) n (1 q 2n+1 ) (bq, cq; q 2 ( ) j = (q j=0 3 /b, q 3 /c; q 2 (1 + q 2j+1 ) 1 ) j ( 1) 2 j q j(j+2)+2 2 j ( j ) ) j bc q 2 bc ) n (4.11) Proof. To prove (4.10) we use our Conjugate Bailey pair defined with a = 1 in Corollary in the Bailey transform with the Bailey pair α n = q 2n2 +n βn = 1 (q; q) 2n (4.12)

37 28 found in [23, H(3)]. Thus, j=0 (bq, cq; q 2 ( ) ) j (q 3 /b, q 3 /c; q 2 (1 + q 2j+1 1 j ) q j(2j+3) ) j bc (bq, cq; q 2 ( ) j = (q j=0 3 /b, q 3 /c; q 2 (1 + q 2j+1 ) 1 ) j j q j(j+2) ( 1) n q n(n+1) (4.13) ) j bc n= j = ( 1) n q n(n+1) (bq, cq; q 2 ( ) j n= (q 3 /b, q 3 /c; q 2 (1 + q 2j+1 ) 1 j q ) j n j bc) j(j+2) (4.14) = α n γ n. (4.15) n= Using our Bailey transform, = β n δ n (4.16) = (q2 /bc, q 2 ; q 2 ) (bq, cq; q 2 ( ) n q 2 ) n (q 3 /b, q 3 /c; q 2. (4.17) ) (q) 2n+1 bc To prove our second identity we use our Conjugate Bailey pair defined with a = 1 in the Bilateral Symmetric Bailey Transform with the Bailey pair [23, C(1)] α 2n = ( 1) n q 6n2 +2n, α2n+1 = 0 β n = 1 (q 2 ; q 4 ) n (q 2 ; q 2 ) n. (4.18) Allowing for different values of the open parameters in our theorems yields a number of results, some new and some known. Of the known identities, it is interesting to see them arise in the manner in which they occur. For those identities which appear

38 29 to be new, they seem to be in a number of different forms; generalized Lambert series, weighted identities, infinite products and partition identities, and will be categorized accordingly. 4.1 Known Identities While working through some of the special cases, as one might expect, not all identities that were found were new. In this section we mention four of the many classic identities that turned up in the research. Our first is a weighted series made famous by Jacobi, which can be deduced from the triple product identity [3, p.21, Thm 2.8, z q, q 2 q]: Corollary (Jacobi). (2j + 1)( 1) j q j(j+1)/2 = (q) 3. (4.19) j=0

39 30 Proof. We consider b = 1, c = q and d = 1 in Theorem Thus, (1 + q) (2j + 1)( 1) j q j(j+1) (4.20) j=0 = (q, q2 ; q 2 ) ( q 3, q 2 ; q 2 ) = = (q) ( q 2 ) (1 q) 2φ 1 ( q, q 2, q, q; q 2 ) n (q 2 ; q 2 ) 2n (1 q 2n+1 ) qn (4.21) ( q, q q 3 ; q2 ; q ) (4.22) (q) ( q 2 ) (1 q) (q2, q 2 ; q 2 ) (q, q 3 ; q 2 ) (4.23) Using III.2 [19, p. 359] = (1 + q)(q 2 ; q 2 ) 3. (4.24) Our final result is obtained from dividing both sides by (1+q) and mapping q q 1/2. Our next two identities fall on Slater s list of identities in [24]. While she proves them using the Bailey transform as well, it is curious to see that they appear with the use of different pairs. Corollary ( Slater (27)). ( q, q 5, q 6 ; q 6 ) = (q 2 ; q 2 ) ( q; q 2 ) 2 n q2n(n+1) (q 2 ; q 2 ) 2n (1 q 2n+1 ). (4.25) Proof. We first note that with the triple product identity, ( q, q 5, q 6 ; q 6 ) = = q j(3j+2) (4.26) n= (1 + q 2n+1 )q n(3n+2). (4.27)

40 31 We now consider b, c and d = 1 in Theorem Thus, (1 + q 2n+1 )q n(3n+2) = (q 2 ; q 2 ( q; q 2 ) 2 ) n q2n(n+1) (q 2 ; q 2 ) 2n (1 q 2n+1 ). (4.28) We note that the following corollary can be found on Slater s list [24], but can be proven in alternative way using Euler s formula (2.15) with the following observation, q n (q) 2n+1 = (1 ( 1) n ) 2 q(n 1)/2 (q) n. (4.29) Corollary (Slater (38)). ( q, q 7, q 8 ; q 8 ) = (q) q n (q) 2n+1. (4.30) Proof. As with our previous corollary, we again use the triple product identity to see that ( q, q 7, q 8 ; q 8 ) = = q n(4n+3) (4.31) n= (1 + q 2n+1 )q n(4n+3). (4.32)

41 32 We then consider b, c in Theorem 4.11, (1 + q 2n+1 )q n(4n+3) = (q 2 ; q 2 ) = (q2 ; q 2 ) (1 q) = (q2 ; q 2 ) (1 q) q 2n(n+1) (q) 2n+1 (4.33) lim a 2φ 1 lim a ( ) aq, aq q 3 ; q2 ; q2 a 2 (q; q 2 ( ) ) q 2 /a, q 2 /a (q 2 /a 2 ; q 2 2 ) φ 1 q 3 ; q 2 ; q (4.34) (4.35) using III.3 [19, p. 359], = (q) q n (q) 2n+1. (4.36) 4.2 Generalized Lambert Series and Related Identities We define the following as a generalized Lambert series, n= a n q n(n+1)/2 1 bz n. (4.37) It has been shown that Lambert series can be useful in furthering our understanding of sums of even squares of integers, sums of an even number of triangular numbers [15], Dyson s rank of a partition [11] and many other applications. In [1] Andrews also shows that such series are readily transformable and remarks on their close relationship

42 with theta functions. We present a number of generalized Lambert series which follow 33 from Theorems and Corollary ( 1) j q 2j(j+1) j= (1 q 2j+1 ) = (q) ( q; q 2 ) ( q; q) 2n (q; q) 2n+1 q n. (4.38) Proof. We allow b = 1 and c = q in (4.10). One of the positive aspects of the Bailey pair used to prove Theorem is its ability to create weighted identities when allowing d 1. The following identity is an example of one such identity. Corollary (2j + 1)q j(j+1) j= (1 + q 2j+1 ) = (q) ( q) ( q; q 2 ) 2 n (q) 2n (1 + q 2n+1 ) qn. (4.39) Proof. We first note that (2j + 1)q j(j+1) j= (1 q 2j+1 ) = j=0 (1 + q 2j+1 ) (1 q 2j+1 ) (2j + 1)qj(j+1). (4.40)

43 34 We then consider b = 1, c = q and d = 1 in Theorem (1 q)(1 + q 2n+1 ) (1 q 2n+1 (2n + 1)q n(n+1) ) = ( q, q2 ; q 2 ) (q 3, q 2 ; q 2 ) = ( q; q) ( q 2 ; q) (q, q 2, q, q; q 2 ) n (q 2 ; q 2 ) 2n (1 q 2n+1 ) ( q)n (4.41) (q; q 2 ) 2 n ( q; q) 2n (1 q 2n+1 ) ( q)n. (4.42) We divide each side by (1 q) followed by allowing q q to obtain our result. Corollary (2j + 1)q 2j(j+1) j= (1 q 2j+1 ) = (q2 ; q 2 ) (q; q 2 ) (q; q 2 ) 3 n (q 2 ; q 2 ) 2n (1 q 2n+1 ) ( 1)n q n2 +2n. (4.43) Proof. We first note that (2j + 1)q 2j(j+1) j= (1 q 2j+1 ) = j=0 (1 + q 2j+1 ) (1 q 2j+1 ) (2j + 1)q2j(j+1). (4.44) We then consider b and c = d = 1 in Theorem We also consider series in which our sum is only one-sided. Corollary j=0 q j(j+2) 1 + q 2j+1 = (q4 ; q 4 ) ( q 2 ; q 4 ) (q; q 2 ) 3 n ( q; q2 ) n (q 2 ; q 2 ) 2n (1 + q 2n+1 ) ( 1)n q 2n (4.45)

44 35 and (2j + 1) ( 1)j q j(j+2) 1 + q j=0 2j+1 = ( q 2 ; q 2 ) (q 4 ; q 4 ) ( q; q 2 ) 3 n (q; q2 ) n (q 2 ; q 2 ) 2n (1 + q 2n+1 ) q2n (4.46) = (q) 2 ( q2 ; q 2 ) 2 (q 2 ; q 4 ) 2 n (q 2 ; q 2 ) 2n (1 q 2n+1 ) q2n. (4.47) Proof. To prove (4.45), we consider b = 1, c = 1 and d = 1 in Theorem To prove (4.46) and (4.47) we use b = 1, c = 1 and d = 1 and b = c = 1 and d = 1 in Theorem 4.0.2, respectively. As with previous proofs, a minimal amount of simplification yields our results. Corollary j=0 (1 + q 2j+1 ) (1 q 2j+1 ) qj(j+1) = (q 2 ; q 4 ) n (q; q) 2n+1 q n (4.48) and j=0 (1 + q 2j+1 ) (1 q 2j+1 ) (2j + 1)( 1)j q j(j+1) = (q; q 2 ) 2 n ( q; q) 2n (1 q 2n+1 ) qn. (4.49) Proof. To prove (4.48) and (4.49) we consider b = 1, c = q and d = 1 and b = d = 1 and c = q in Theorem 4.0.2, respectively.

45 36 Corollary j=0 q j(2j+3) 1 + q 2j+1 = (q) ( q; q 2 ) 2 ( q 2 ; q 2 ) 2 n (q; q) 2n+1 q n (4.50) and ( 1) j q 3j(j+1) 1 q j= 2j+1 = (q 2 ; q 2 q n ) (q; q 2. (4.51) ) n+1 Proof. Both corollaries are consequences of (4.10). We allow b = 1 and c = 1 and b and c = 1, respectively. We will refer to the following identities as Order 2 generalized Lambert series. Corollary q j(2j+3) (1 q j= 2j+1 ) 2 = ( q) (q 2 ; q 2 ) (q 2 ; q 2 ) 2 n qn (q; q) 2n+1, (4.52) j= q j(j+2) (1 q 2j+1 ) 2 = (q 2 ; q 2 ) 2 ( q; q 2 ) 2 (q 2 ; q 4 ) n q 2n (q 4 ; q 4 ) n (1 q 2n+1 ) (4.53) and j= (2j + 1)( 1) j q j(j+2) (1 q 2j+1 ) 2 = (q 2 ; q 2 ) 2 ( q; q 2 ) 2 (q; q 2 ) 4 n q2n (q 2 ; q 2 ) 2n (1 q 2n+1 ). (4.54)

46 Proof. Our first identity is a consequence of (4.10). We allow b = 1 and c = 1. For the last two, we note that 37 j= q j(j+2) (1 q 2j+1 ) 2 = (1 + q 2n+1 ) (1 q 2n+1 ) 2 qn(n+2). (4.55) and j= (2j + 1)( 1) j q j(j+2) (1 q 2j+1 ) 2 = (1 + q 2n+1 ) (1 q 2n+1 ) 2 (2n + 1)( 1)n q n(n+2). (4.56) We then apply Theorem with b = c = 1 and d = 1 and b = c = d = Infinite Products and Ramanujan-like Identities In many cases, our α n γ n can be reduced to an infinite product using Jacobi s triple product. We are not the first to realize this application of the Bailey Transform. Slater s list [24] is made up entirely of such infinite products and are referred to as Ramanujan-like identities because of their similarity to the well known Rogers- Ramanujan Identities, (1.1) and (1.2). In this section we present some infinite product identities which appear to not be on Slater s list. Corollary (q 4, q 8, q 8 ; q 8 ) = (q) ( q 2 ; q 2 ( q; q 2 ) 3 ) n qn2 +2n (q 2 ; q 2 ) 2n (1 q 2n+1 ). (4.57) Proof. We then consider c = d = 1 and b in Theorem

47 38 Corollary ( q 2, q 2, q 4 ; q 4 ) + 2q( q 4, q 4, q 4 ; q 4 ) = (q) ( q 2 ; q 2 ) (1 + q 2n+1 )( q; q 2 ) 3 n (1 q 2n+1 )(q 2 ; q 2 ) 2n q n2. (4.58) Proof. We consider c = q 2, d = 1 and b in Theorem (q 2 ; q 2 ) (1 + q 2n+1 )( q; q 2 ) 3 (1 + q)( q; q 2 n ) (1 q 2n+1 )(q 2 ; q 2 q n2 (4.59) ) 2n = q = q = q (1 + q 2n+1 ) 2 q 2n2 (4.60) (1 + q 2n+1 )q 2n2 (4.61) n= [( q 2, q 2, q 4 ; q 4 ) + 2q( q 4, q 4, q 4 ; q 4 ] ) (4.62) where the last step taken was an application of the Jacobi triple product. Corollary ( q 4, q 8, q 8 ; q 8 ) = (q) ( q) ( q; q) 2n (q; q) 2n+1 q n. (4.63) Proof. We consider b = 1 and c = q in (4.10). Corollary ( q 6, q 12, q 12 ; q 12 ) = (q) ( q 2 ; q 2 ) n ( q; q 2 q n. (4.64) ) (q; q) 2n+1

48 39 Proof. We consider b and c = 1 in (4.10). Corollary ( q 2, q 4, q 6 ; q 6 ) + 2q( q 6, q 6, q 6 ; q 6 ) = (q) ( 1; q 2 ) n ( q 3 ; q 2 q n. (4.65) ) (q; q) 2n+1 Proof. We consider b and c = q 2 in (4.10). Corollary (q 4, q 16, q 20 ; q 20 ) = (q) (q 2 ; q 4 ) q n(n+2) (q) 2n+1. (4.66) Proof. We consider b =, c = 1 in Theorem Corollary (q 4 ; q 4 ) 3 = (q) ( q2 ; q 2 ) (q; q 2 ) 2 n ( q; q2 ) n (q 2 ; q 2 ) 2n (1 q 2n+1 ) qn2 +2n. (4.67) Proof. We consider c = 1, d = 1 and b in Theorem We also present identities which are not infinite products, but are similar to Ramanujan-like identities due to Umbral methods. We note that using Jacobi s triple product, for 0 < i < k we have ( q k+i, q k i, q 2k ; q 2k ) = (1 + q (k+i)(2n+1) )q kn2 in. (4.68)

49 40 This can be interpreted as the generating function for strict partitions of n with parts only congruent to k ± i and 2k modulo 2k in which each partition is counted as ( 1) d where d is the number of parts divisible by 2k. In terms of our notation defined in Chapter 2, we have ( q k+i, q k i, q 2k ; q 2k ) = λ D 2k k+i ( 1) µ2k 2k (λ) q λ. (4.69) In applying the Bailey transform, it is often the case that our result cannot be used in conjunction with Jacobi s triple product because of a nearly harmless negative sign. It is with these identities that we implement the use of Umbral methods. It is with these methods that we have a combinatorial interpretation of (1 q (k+i)(2n+1) )q kn2 in. (4.70) The following identities are examples in which we have used this technique to represent one side of our identity as a generating function for partitions. Corollary ( 1) µ(λ) q λ ( 1) µ(λ) q λ λ D 12,10 = λ D 12,2 = ( 1) n q n (q; q 2. (4.71) ) n+1 Proof. We first allow b = 1 and c = q into (4.11). Our final result can be obtained by applying Theorem

50 41 Corollary ( 1) µ(λ) q λ ( 1) µ(λ) q λ λ D 20,14 = λ D 20,6 +q ( 1) µ(λ) q λ q ( 1) µ(λ) q λ λ D 20,18 = λ D 20,2 (4.72) (4.73) ( 1) n q n(n+1) = (q 2 ; q 4 ) n (1 q 2n+1 ). (4.74) Proof. We first allow b and c = q into (4.11) to get (1 + q 4j+1 + q 8j+3 + q 12j+6 )( 1) j q 2j(5j+2) ( 1) n q n(n+1) = (q j=0 2 ; q 4 ) n (1 q 2n+1 ). (4.75) Our final result can be obtained by applying Theorem Weighted sums As previously stated, Theorem is capable of producing weighted q-series identities. The following section presents more identities of this type. Corollary (2j + 1)(1 + q 2j+1 )q j(2j+1) (q; q 2 ) = n ( q; q) j=0 2n (1 q 2n+1 ) ( 1)n q n2 +n. (4.76) Proof. We consider Theorem with c = q, d = 1 and b.

51 42 Corollary (2j + 1)( 1) j q j(2j+1) j= = (q) ( q; q 2 ) (q; q 2 ) n q n2 +n ( q; q) 2n (1 q 2n+1 ). (4.77) Proof. We note that (2j + 1)( 1) j q j(2j+1) = (2j + 1)( 1) j (1 + q 2j+1 )q j(2j+1). (4.78) j= j=0 We then consider Theorem with c = q, d = 1 and b. Corollary (2j + 1)( 1) j q j(3j+2) = (q 2 ; q 2 (q; q 2 ) 2 ) n q2n(n+1) (q j= 2 ; q 2 ) 2n (1 q 2n+1 ). (4.79) Proof. We note that (2j + 1)( 1) j q j(3j+2) = (2j + 1)( 1) j (1 + q 2j+1 )q j(3j+2). (4.80) j= j=0 We then consider Theorem with d = 1 and b, c.

52 43 Corollary (1 + q 2j+1 )(2j + 1)( 1) j q 2j2 (4.81) j= = (q) ( q 2 ; q 2 ) (1 + q 2n+1 )(q; q 2 ) n (1 q 2n+1 )(q 4 ; q 4 ) n q n2. (4.82) Proof. We note that (1 + q 2j+1 )(2j + 1)( 1) j q 2j2 = (1 + q 2j+1 ) 2 (2j + 1)( 1) j q 2j2. (4.83) j= j= We then consider Theorem with c = q 2, d = 1 and b. 4.5 Partitions As was shown in Chapter 2, q-series can play a key role in partition identities. In this section we take q-series identities and interpret them combinatorially to equate different classes of partitions. Corollary Let a(n) denote the number of ways of choosing a not overlined part, λ i, in any overpartition of n such that no overlined part exceeds 2λ i and no other part exceeds 2λ i + 1. Let b(n) be the number of tripartitions of n in which the first partition has distinct parts, the second partition has no parts divisible by 8 and the last partition has distinct parts with all parts divisible by 4. Then b(n) = a(n).

53 44 Proof. Recall Corollary We then see that ( q; q) 2n (q; q) 2n+1 q n = ( q) (q8 ; q 8 ) (q) ( q 4 ; q 4 ). (4.84) It is left to observe that a(n) and b(n) are the coefficients of q n in (4.84). Corollary Let a(n) denote the number of ways of choosing a not overlined part, λ i, in any overpartition of n with all overlined parts even such that no overlined part exceeds 2λ i and no other part exceeds 2λ i + 1. Let b(n) be the number of overpartitions of n in which the overlined parts are not congruent to ±2, ±4 and 12 modulo 12 and all other parts are not divisible by 24. Then b(n) = a(n). Proof. Recall Corollary We then see that ( q 2 ; q 2 ) n (q; q) 2n+1 q n = ( q) ( q 2, q 4, q 8, q 10, q 12 ; q 12 ) (q24 ; q 24 ) (q). (4.85) It is left to observe that a(n) and b(n) are the coefficients of q n in (4.85). Corollary Let a(n) denote the number of ways of choosing a part, λ i, not overlined in any overpartition of n with overlined parts even (zero allowed) such that no overlined part exceeds 2λ i 2 and no other part exceeds 2λ i + 1. Let b(n) be the number of overpartitions of n in which all parts are not divisible by 6 and the overlined parts are 2. Let c(n) be the number of overpartitions in which the overlined parts are not congruent to ±2 modulo 6, parts not overlined are 2 and the parts not overlined are not divisible by 12. Then a(n) = b(n) + 2c(n 1).

54 45 Proof. Recall Corollary We then see that (q 6 ; q 6 ) ( q 2 ) (q) ( q 6 ; q 6 + 2q (q12 ; q 12 ) ( q 2 ) ) (q) ( q 2, q 4 ; q 6 ) ( 1; q 2 ) = n q n. (4.86) (q; q) 2n+1 It is left to observe that a(n), b(n) + 2c(n 1) are the coefficients of q n. Corollary Let A(q) denote the generating function for partitions of n with parts either even or equal to one in which the largest part does not exceed twice the number of parts and each partition is counted as ( 1) k where k is the number of even parts. Then A(q) = ( 1) µ(λ) q λ ( 1) µ(λ) q λ. (4.87) λ D 6,5 = λ D 6,1 Proof. We first allow b and c = q into (4.10) to get (1 + q 2j+1 )( 1) j q j(3j+2) (4.88) j=0 = (q; q 2 ) (q; q 2 ) n (q; q) 2n+1 q n (4.89) = (q; q 2 q n ) (q ; q 2 (1 + q 2n+1 + q 2(2n+1) + ) ) n (4.90) ( = (q; q 2 1 q q 2 ) ) (q; q 2 + ) (q 3 ; q 2 + ) (q 5 ; q 2 + ) (4.91) = (q; q 2 ) n q n. (4.92)

55 46 Here our last step is merely the application of (2.15). To complete our proof we observe that our last line is the generating function A(q) and that by applying Theorem we see that (1 + q 2j+1 )( 1) j q j(3j+2) = ( 1) µ(λ) q λ ( 1) µ(λ) q λ. (4.93) j=0 λ D 6,5 = λ D 6,1 Remark We note that the above corollary is a new combinatorial interpretation of a known identity found in Ramanujan s Lost Notebook [7, Entry 9.5.2, p. 239], (q; q 2 ) n q n = ( 1) n q 3n2 +2n (1 + q 2n+1 ). (4.94) More will be said about other combinatorial interpretations of the identity in Chapter 7. Corollary Let a(n) denote the number of overpartitions of n with all parts odd, all overlined parts 3, and the size of each part not overlined not exceeding the total number of overlined parts. Let b(n) denote the number of partitions of n with parts either odd or congruent to ±8 modulo 20. Then, b(n) = a(n). Proof. Recall Corollary We can then see that, 1 (q; q 2 ) (q 8, q 12 ; q 20 ) = q n(n+2) (q) 2n+1. (4.95) It is left to observe that a(n) and b(n) are the coefficients of q n.

56 Closing Remarks It should be noted that there are more Bailey pairs which when combined with our conjugate Bailey pair (with a = 1) have similar results and proofs to (4.10) and (4.11). For example, we could have considered theorems with the use of the the following Bailey pairs, α n = ( 1) n q 2n2 +n, βn = 1 ( q; q) 2n (4.96) and α n = q n, β n = q n (q) 2n (4.97) found in [23, H(2) and F(3)].

57 48 Chapter 5 A General Discussion of Various Conjugate Bailey Pairs In the previous chapter we discussed the possible applications of one of our special cases with multiple Bailey pairs. This chapter provides a broad set of results which can be obtained from many different conjugate pairs, not just those limited to the case a = 1. In order to give an alternate presentation and order to things, we present our results in a different manner to the previous chapter. We first use the Bailey transform with some well-known Bailey pairs to prove some general theorems regarding conjugate Bailey pairs. We then use these theorems in conjunction with our new conjugate Bailey pairs to prove a wide assortment of results. 5.1 Bailey Pairs and the Symmetric Bilateral Bailey Transform In this section we present eight known Bailey pairs and their corresponding theorems when used in the Symmetric Bailey Transform. Theorem If γ n = j n δ n (q 2 ; q 2 ) j n (q 2 ; q 2 ) j+n (5.1)

58 49 then we have (q; q 2 ) n (q 2 ; q 2 ) 2n δ n = (q; q 2 ) n (q 2 ; q 2 ) 2n ( 1) n q n2 δ n = δ n ( q; q) 2n = δ n (q 2 ; q 2 ) n (q 2 ; q 4 ) n = q n(n 1) δ n (q 2 ; q 2 ) n (q 2 ; q 4 ) n = ( 1) n q n(n+1) δ n (q 2 ; q 2 ) n = ( 1) n δ n (q 4 ; q 4 ) n = q n δ n (q; q) 2n = ( 1) n q n(3n+1)/2 γ n (5.2) n= ( 1) n q n(n+1)/2 γ n (5.3) n= ( 1) n q n(2n+1) γ n (5.4) n= ( 1) n q 2n(3n+1) γ 2n (5.5) n= ( 1) n q 2n(n+1) γ 2n (5.6) n= ( 1) n q n(n+1) γ n (5.7) n= ( 1) n γ n (5.8) n= q n γ n. (5.9) n= Proof. Equation (5.2) follows from specializing [12, p. 5, Sec. 6, (ii)] with a = 1, b and x replaced by q. Equation (5.3) follows from the same source with a = 1, b 0 and x replaced by q. All other Bailey pairs can be found in Slater [23]. Equation (5.4) follows from F(1) with q q 2 followed by q q. Equations (5.5) and (5.6) follow from C(1) and C(5) with q q 2. Equations (5.7) and (5.8) follow from the fourth and seventh row of the second table on p. 468, respectively, with q q 2. Equation (5.9) follows from F(3) with q q 2.

4-Shadows in q-series and the Kimberling Index

4-Shadows in q-series and the Kimberling Index 4-Shadows in q-series and the Kimberling Index By George E. Andrews May 5, 206 Abstract An elementary method in q-series, the method of 4-shadows, is introduced and applied to several poblems in q-series

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

Singular Overpartitions

Singular Overpartitions Singular Overpartitions George E. Andrews Dedicated to the memory of Paul Bateman and Heini Halberstam. Abstract The object in this paper is to present a general theorem for overpartitions analogous to

More information

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS #A22 INTEGERS 7 (207) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS Shane Chern Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania shanechern@psu.edu Received: 0/6/6,

More information

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS

THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS THE BAILEY TRANSFORM AND FALSE THETA FUNCTIONS GEORGE E ANDREWS 1 AND S OLE WARNAAR 2 Abstract An empirical exploration of five of Ramanujan s intriguing false theta function identities leads to unexpected

More information

The Bhargava-Adiga Summation and Partitions

The Bhargava-Adiga Summation and Partitions The Bhargava-Adiga Summation and Partitions By George E. Andrews September 12, 2016 Abstract The Bhargava-Adiga summation rivals the 1 ψ 1 summation of Ramanujan in elegance. This paper is devoted to two

More information

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 47 2017), 161-168 SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ωq) AND νq) S.N. Fathima and Utpal Pore Received October 1, 2017) Abstract.

More information

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION AE JA YEE 1 Abstract. Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities

More information

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS BRUCE C. BERNDT 1 and AE JA YEE 1. Introduction Recall that the q-gauss summation theorem is given by (a; q) n (b; q) ( n c ) n (c/a; q) (c/b; q) =, (1.1)

More information

Arithmetic properties of overcubic partition pairs

Arithmetic properties of overcubic partition pairs Arithmetic properties of overcubic partition pairs Bernard L.S. Lin School of Sciences Jimei University Xiamen 3101, P.R. China linlsjmu@13.com Submitted: May 5, 014; Accepted: Aug 7, 014; Published: Sep

More information

On an identity of Gessel and Stanton and the new little Göllnitz identities

On an identity of Gessel and Stanton and the new little Göllnitz identities On an identity of Gessel and Stanton and the new little Göllnitz identities Carla D. Savage Dept. of Computer Science N. C. State University, Box 8206 Raleigh, NC 27695, USA savage@csc.ncsu.edu Andrew

More information

STRONG FORMS OF ORTHOGONALITY FOR SETS OF HYPERCUBES

STRONG FORMS OF ORTHOGONALITY FOR SETS OF HYPERCUBES The Pennsylvania State University The Graduate School Department of Mathematics STRONG FORMS OF ORTHOGONALITY FOR SETS OF HYPERCUBES A Dissertation in Mathematics by John T. Ethier c 008 John T. Ethier

More information

Some congruences for Andrews Paule s broken 2-diamond partitions

Some congruences for Andrews Paule s broken 2-diamond partitions Discrete Mathematics 308 (2008) 5735 5741 www.elsevier.com/locate/disc Some congruences for Andrews Paule s broken 2-diamond partitions Song Heng Chan Division of Mathematical Sciences, School of Physical

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE To George Andrews, who has been a great inspiration, on the occasion of his 70th birthday Abstract.

More information

The Truncated Pentagonal Number Theorem

The Truncated Pentagonal Number Theorem The Truncated Pentagonal Number Theorem George E. Andrews Department of Mathematics The Pennsylvania State University University Park, PA 16802 USA Mircea Merca Doctoral School in Applied Mathematics University

More information

Arithmetic Relations for Overpartitions

Arithmetic Relations for Overpartitions Arithmetic Relations for Overpartitions Michael D. Hirschhorn School of Mathematics, UNSW, Sydney 2052, Australia m.hirschhorn@unsw.edu.au James A. Sellers Department of Mathematics The Pennsylvania State

More information

New congruences for overcubic partition pairs

New congruences for overcubic partition pairs New congruences for overcubic partition pairs M. S. Mahadeva Naika C. Shivashankar Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 00, Karnataka, India Department

More information

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions by George E. Andrews Key Words: Partitions, mock theta functions, crank AMS Classification Numbers: P84, P83, P8, 33D5 Abstract

More information

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS SYLVIE CORTEEL JEREMY LOVEJOY AND AE JA YEE Abstract. Generalized Frobenius partitions or F -partitions have recently played

More information

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS GEORGE E. ANDREWS, BRUCE C. BERNDT, SONG HENG CHAN, SUN KIM, AND AMITA MALIK. INTRODUCTION On pages and 7 in his Lost Notebook [3], Ramanujan recorded

More information

arxiv: v2 [math.nt] 9 Apr 2015

arxiv: v2 [math.nt] 9 Apr 2015 CONGRUENCES FOR PARTITION PAIRS WITH CONDITIONS arxiv:408506v2 mathnt 9 Apr 205 CHRIS JENNINGS-SHAFFER Abstract We prove congruences for the number of partition pairs π,π 2 such that π is nonempty, sπ

More information

Elementary proofs of congruences for the cubic and overcubic partition functions

Elementary proofs of congruences for the cubic and overcubic partition functions AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 602) 204), Pages 9 97 Elementary proofs of congruences for the cubic and overcubic partition functions James A. Sellers Department of Mathematics Penn State

More information

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS #A7 INTEGERS 14 (2014) CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida

More information

Congruence Properties of Partition Function

Congruence Properties of Partition Function CHAPTER H Congruence Properties of Partition Function Congruence properties of p(n), the number of partitions of n, were first discovered by Ramanujan on examining the table of the first 200 values of

More information

Arithmetic Properties for Ramanujan s φ function

Arithmetic Properties for Ramanujan s φ function Arithmetic Properties for Ramanujan s φ function Ernest X.W. Xia Jiangsu University ernestxwxia@163.com Nankai University Ernest X.W. Xia (Jiangsu University) Arithmetic Properties for Ramanujan s φ function

More information

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing

Thesis submitted in partial fulfillment of the requirement for The award of the degree of. Masters of Science in Mathematics and Computing SOME n-color COMPOSITION Thesis submitted in partial fulfillment of the requirement for The award of the degree of Masters of Science in Mathematics and Computing Submitted by Shelja Ratta Roll no- 301203014

More information

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 S. OLE WARNAAR Dedicated to George Andrews on the occasion of his 65th birthday Abstract. We prove generalizations of some partition

More information

New Congruences for Broken k-diamond Partitions

New Congruences for Broken k-diamond Partitions 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.5.8 New Congruences for Broken k-diamond Partitions Dazhao Tang College of Mathematics and Statistics Huxi Campus Chongqing University

More information

ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY

ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY ON PARTITION FUNCTIONS OF ANDREWS AND STANLEY AE JA YEE Abstract. G. E. Andrews has established a refinement of the generating function for partitions π according to the numbers O(π) and O(π ) of odd parts

More information

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM q-hypergeometric PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM S OLE WARNAAR Abstract We present alternative, q-hypergeometric

More information

PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS

PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 12, December 1997, Pages 5001 5019 S 0002-9947(97)01831-X PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS KRISHNASWAMI ALLADI Abstract.

More information

The Kth M-ary Partition Function

The Kth M-ary Partition Function Indiana University of Pennsylvania Knowledge Repository @ IUP Theses and Dissertations (All) Fall 12-2016 The Kth M-ary Partition Function Laura E. Rucci Follow this and additional works at: http://knowledge.library.iup.edu/etd

More information

PARITY CONSIDERATIONS IN ANDREWS-GORDON IDENTITIES, AND THE k-marked DURFEE SYMBOLS

PARITY CONSIDERATIONS IN ANDREWS-GORDON IDENTITIES, AND THE k-marked DURFEE SYMBOLS The Pennsylvania State University The Graduate School Department of Mathematics PARITY CONSIDERATIONS IN ANDREWS-GORDON IDENTITIES, AND THE k-marked DURFEE SYMBOLS A Dissertation in Mathematics by Kagan

More information

m=1 . ( bzq; q2 ) k (zq 2 ; q 2 ) k . (1 + bzq4k 1 ) (1 + bzq 2k 1 ). Here and in what follows, we have made use of the standard notation (a) n = j=0

m=1 . ( bzq; q2 ) k (zq 2 ; q 2 ) k . (1 + bzq4k 1 ) (1 + bzq 2k 1 ). Here and in what follows, we have made use of the standard notation (a) n = j=0 PARTITIONS WITH NON-REPEATING ODD PARTS AND COMBINATORIAL IDENTITIES Krishnaswami Alladi* Abstract: Continuing our earlier work on partitions with non-repeating odd parts and q-hypergeometric identities,

More information

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS George E. Andrews and Ken Ono February 7, 2000.. Introduction and Statement of Results Dedekind s eta function ηz, defined by the infinite product ηz

More information

The part-frequency matrices of a partition

The part-frequency matrices of a partition The part-frequency matrices of a partition William J. Keith, Michigan Tech Michigan Technological University Kliakhandler Conference 2015 August 28, 2015 A partition of an integer n is a sequence λ = (λ

More information

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MARIA MONKS AND KEN ONO Abstract Let R(w; q) be Dyson s generating function for partition ranks For roots of unity ζ it is known that R(ζ; q) and R(ζ; /q)

More information

COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS

COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS AE JA YEE 1 Abstract In his memoir in 1984 George E Andrews introduces many general classes of Frobenius partitions (simply F-partitions)

More information

Congruences of Restricted Partition Functions

Congruences of Restricted Partition Functions Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 6-2002 Congruences of Restricted Partition Functions Matthew Culek Amanda Knecht Advisors:

More information

PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS

PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS PARTITION IDENTITIES AND RAMANUJAN S MODULAR EQUATIONS NAYANDEEP DEKA BARUAH 1 and BRUCE C. BERNDT 2 Abstract. We show that certain modular equations and theta function identities of Ramanujan imply elegant

More information

NON-CONJUGATE, ROOK EQUIVALENT t-cores

NON-CONJUGATE, ROOK EQUIVALENT t-cores NON-CONJUGATE, ROOK EQUIVALENT t-cores ALEX MONTOYE AND NATALIE RICH ADVISOR: HOLLY SWISHER OREGON STATE UNIVERSITY ABSTRACT. Consider a partition of a natural number n. The partition is called a t-core

More information

Generalizing Clatworthy Group Divisible Designs. Julie Rogers

Generalizing Clatworthy Group Divisible Designs. Julie Rogers Generalizing Clatworthy Group Divisible Designs by Julie Rogers A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor

More information

arxiv: v2 [math.nt] 20 Nov 2018

arxiv: v2 [math.nt] 20 Nov 2018 REPRESENTATIONS OF MOCK THETA FUNCTIONS arxiv:1811.07686v2 [math.nt] 20 Nov 2018 DANDAN CHEN AND LIUQUAN WANG Abstract. Motivated by the works of Liu, we provide a unified approach to find Appell-Lerch

More information

arxiv: v1 [math.co] 8 Sep 2017

arxiv: v1 [math.co] 8 Sep 2017 NEW CONGRUENCES FOR BROKEN k-diamond PARTITIONS DAZHAO TANG arxiv:170902584v1 [mathco] 8 Sep 2017 Abstract The notion of broken k-diamond partitions was introduced by Andrews and Paule Let k (n) denote

More information

Counting k-marked Durfee Symbols

Counting k-marked Durfee Symbols Counting k-marked Durfee Symbols Kağan Kurşungöz Department of Mathematics The Pennsylvania State University University Park PA 602 kursun@math.psu.edu Submitted: May 7 200; Accepted: Feb 5 20; Published:

More information

New modular relations for the Rogers Ramanujan type functions of order fifteen

New modular relations for the Rogers Ramanujan type functions of order fifteen Notes on Number Theory and Discrete Mathematics ISSN 532 Vol. 20, 204, No., 36 48 New modular relations for the Rogers Ramanujan type functions of order fifteen Chandrashekar Adiga and A. Vanitha Department

More information

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS GEORGE ANDREWS, SONG HENG CHAN, BYUNGCHAN KIM, AND ROBERT OSBURN Abstract. In 2003, Atkin Garvan initiated the study of rank crank moments for

More information

On the Ordinary and Signed Göllnitz-Gordon Partitions

On the Ordinary and Signed Göllnitz-Gordon Partitions On the Ordinary and Signed Göllnitz-Gordon Partitions Andrew V. Sills Department of Mathematical Sciences Georgia Southern University Statesboro, Georgia, USA asills@georgiasouthern.edu Version of October

More information

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS Bull. Aust. Math. Soc. 9 2016, 400 409 doi:10.1017/s000497271500167 CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS M. S. MAHADEVA NAIKA, B. HEMANTHKUMAR H. S. SUMANTH BHARADWAJ Received 9 August

More information

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS MIN-JOO JANG AND JEREMY LOVEJOY Abstract. We prove several combinatorial identities involving overpartitions whose smallest parts are even. These

More information

Modular Monochromatic Colorings, Spectra and Frames in Graphs

Modular Monochromatic Colorings, Spectra and Frames in Graphs Western Michigan University ScholarWorks at WMU Dissertations Graduate College 12-2014 Modular Monochromatic Colorings, Spectra and Frames in Graphs Chira Lumduanhom Western Michigan University, chira@swu.ac.th

More information

1 Introduction to Ramanujan theta functions

1 Introduction to Ramanujan theta functions A Multisection of q-series Michael Somos 30 Jan 2017 ms639@georgetown.edu (draft version 34) 1 Introduction to Ramanujan theta functions Ramanujan used an approach to q-series which is general and is suggestive

More information

Jacobi s Two-Square Theorem and Related Identities

Jacobi s Two-Square Theorem and Related Identities THE RAMANUJAN JOURNAL 3, 153 158 (1999 c 1999 Kluwer Academic Publishers. Manufactured in The Netherlands. Jacobi s Two-Square Theorem and Related Identities MICHAEL D. HIRSCHHORN School of Mathematics,

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE Abstract. Combinatorial proofs

More information

Partition identities and Ramanujan s modular equations

Partition identities and Ramanujan s modular equations Journal of Combinatorial Theory, Series A 114 2007 1024 1045 www.elsevier.com/locate/jcta Partition identities and Ramanujan s modular equations Nayandeep Deka Baruah 1, Bruce C. Berndt 2 Department of

More information

Partition Congruences in the Spirit of Ramanujan

Partition Congruences in the Spirit of Ramanujan Partition Congruences in the Spirit of Ramanujan Yezhou Wang School of Mathematical Sciences University of Electronic Science and Technology of China yzwang@uestc.edu.cn Monash Discrete Mathematics Research

More information

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES

A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A LATTICE POINT ENUMERATION APPROACH TO PARTITION IDENTITIES A thesis presented to the faculty of San Francisco State University In partial fulfilment of The Requirements for The Degree Master of Arts

More information

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From q-series Michael Gri th History and q-integers The idea of q-series has existed since at least Euler. In constructing the generating function for the partition function, he developed the basic idea of

More information

arxiv: v2 [math.co] 3 May 2016

arxiv: v2 [math.co] 3 May 2016 VARIATION ON A THEME OF NATHAN FINE NEW WEIGHTED PARTITION IDENTITIES arxiv:16050091v [mathco] 3 May 016 ALEXANDER BERKOVICH AND ALI KEMAL UNCU Dedicated to our friend Krishna Alladi on his 60th birthday

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE 2 Abstract. Combinatorial proofs

More information

Two truncated identities of Gauss

Two truncated identities of Gauss Two truncated identities of Gauss Victor J W Guo 1 and Jiang Zeng 2 1 Department of Mathematics, East China Normal University, Shanghai 200062, People s Republic of China jwguo@mathecnueducn, http://mathecnueducn/~jwguo

More information

arxiv: v4 [math.co] 7 Nov 2016

arxiv: v4 [math.co] 7 Nov 2016 VARIATION ON A THEME OF NATHAN FINE. NEW WEIGHTED PARTITION IDENTITIES arxiv:605.009v4 [math.co] 7 Nov 06 ALEXANDER BERKOVICH AND ALI KEMAL UNCU Dedicated to our friend, Krishna Alladi, on his 60th birthday.

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

RAMANUJAN S MOST BEAUTIFUL IDENTITY

RAMANUJAN S MOST BEAUTIFUL IDENTITY RAMANUJAN S MOST BEAUTIFUL IDENTITY MICHAEL D. HIRSCHHORN Abstract We give a simple proof of the identity which for Hardy represented the best of Ramanujan. On the way, we give a new proof of an important

More information

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24

Ramanujan-Slater Type Identities Related to the Moduli 18 and 24 Ramanujan-Slater Type Identities Related to the Moduli 18 and 24 James McLaughlin Department of Mathematics, West Chester University, West Chester, PA; telephone 610-738-0585; fax 610-738-0578 Andrew V.

More information

A Fine Dream. George E. Andrews (1) January 16, 2006

A Fine Dream. George E. Andrews (1) January 16, 2006 A Fine Dream George E. Andrews () January 6, 2006 Abstract We shall develop further N. J. Fine s theory of three parameter non-homogeneous first order q-difference equations. The obect of our work is to

More information

= (q) M+N (q) M (q) N

= (q) M+N (q) M (q) N A OVERPARTITIO AALOGUE OF THE -BIOMIAL COEFFICIETS JEHAE DOUSSE AD BYUGCHA KIM Abstract We define an overpartition analogue of Gaussian polynomials (also known as -binomial coefficients) as a generating

More information

Sequences and the Binomial Theorem

Sequences and the Binomial Theorem Chapter 9 Sequences and the Binomial Theorem 9. Sequences When we first introduced a function as a special type of relation in Section.3, we did not put any restrictions on the domain of the function.

More information

16. . Proceeding similarly, we get a 2 = 52 1 = , a 3 = 53 1 = and a 4 = 54 1 = 125

16. . Proceeding similarly, we get a 2 = 52 1 = , a 3 = 53 1 = and a 4 = 54 1 = 125 . Sequences When we first introduced a function as a special type of relation in Section.3, we did not put any restrictions on the domain of the function. All we said was that the set of x-coordinates

More information

EXACT ENUMERATION OF GARDEN OF EDEN PARTITIONS. Brian Hopkins Department of Mathematics and Physics, Saint Peter s College, Jersey City, NJ 07306, USA

EXACT ENUMERATION OF GARDEN OF EDEN PARTITIONS. Brian Hopkins Department of Mathematics and Physics, Saint Peter s College, Jersey City, NJ 07306, USA EXACT ENUMERATION OF GARDEN OF EDEN PARTITIONS Brian Hopkins Department of Mathematics and Physics, Saint Peter s College, Jersey City, NJ 07306, USA bhopkins@spc.edu James A. Sellers Department of Mathematics,

More information

On q-series Identities Arising from Lecture Hall Partitions

On q-series Identities Arising from Lecture Hall Partitions On q-series Identities Arising from Lecture Hall Partitions George E. Andrews 1 Mathematics Department, The Pennsylvania State University, University Par, PA 16802, USA andrews@math.psu.edu Sylvie Corteel

More information

ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS

ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS Bull Aust Math Soc 81 (2010), 58 63 doi:101017/s0004972709000525 ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS MICHAEL D HIRSCHHORN and JAMES A SELLERS (Received 11 February 2009) Abstract

More information

Combinatorial Analysis of the Geometric Series

Combinatorial Analysis of the Geometric Series Combinatorial Analysis of the Geometric Series David P. Little April 7, 205 www.math.psu.edu/dlittle Analytic Convergence of a Series The series converges analytically if and only if the sequence of partial

More information

(1.1) C(n; k) = D(n; k),

(1.1) C(n; k) = D(n; k), THE DUAL OF GÖLLNITZ S (BIG) PARTITION THEOREM* Krishnaswami Alladi University of Florida, Gainesville, FL 32611, USA George E Andrews The Pennsylvania State University, University Park, PA 16802, USA

More information

An Algebraic Identity of F.H. Jackson and its Implications for Partitions.

An Algebraic Identity of F.H. Jackson and its Implications for Partitions. An Algebraic Identity of F.H. Jackson and its Implications for Partitions. George E. Andrews ( and Richard Lewis (2 ( Department of Mathematics, 28 McAllister Building, Pennsylvania State University, Pennsylvania

More information

The Sum n. Introduction. Proof I: By Induction. Caleb McWhorter

The Sum n. Introduction. Proof I: By Induction. Caleb McWhorter The Sum 1 + + + n Caleb McWhorter Introduction Mathematicians study patterns, logic, and the relationships between objects. Though this definition is so vague it could be describing any field not just

More information

RANK DIFFERENCES FOR OVERPARTITIONS

RANK DIFFERENCES FOR OVERPARTITIONS RANK DIFFERENCES FOR OVERPARTITIONS JEREMY LOVEJOY AND ROBERT OSBURN Abstract In 1954 Atkin Swinnerton-Dyer proved Dyson s conjectures on the rank of a partition by establishing formulas for the generating

More information

Cranks in Ramanujan s Lost Notebook

Cranks in Ramanujan s Lost Notebook Cranks in Ramanujan s Lost Notebook Manjil P. Saikia Department of Mathematical Sciences, Tezpur University, Napaam Dist. - Sonitpur, Pin - 784028 India manjil@gonitsora.com January 22, 2014 Abstract We

More information

THE METHOD OF WEIGHTED WORDS REVISITED

THE METHOD OF WEIGHTED WORDS REVISITED THE METHOD OF WEIGHTED WORDS REVISITED JEHANNE DOUSSE Abstract. Alladi and Gordon introduced the method of weighted words in 1993 to prove a refinement and generalisation of Schur s partition identity.

More information

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT Abstract. We prove, for the first time, a series of four related identities from Ramanujan s lost

More information

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS. Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Special Functions GEORGE E. ANDREWS RICHARD ASKEY RANJAN ROY CAMBRIDGE UNIVERSITY PRESS Preface page xiii 1 The Gamma and Beta Functions 1 1.1 The Gamma

More information

INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS

INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS December 1, 2009 INFINITE FAMILIES OF STRANGE PARTITION CONGRUENCES FOR BROKEN 2-DIAMONDS PETER PAULE AND SILVIU RADU Dedicated to our friend George E. Andrews on the occasion of his 70th birthday Abstract.

More information

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES MATTHEW S. MIZUHARA, JAMES A. SELLERS, AND HOLLY SWISHER Abstract. Ramanujan s celebrated congruences of the partition function p(n have inspired a vast

More information

arxiv: v1 [math.co] 21 Sep 2015

arxiv: v1 [math.co] 21 Sep 2015 Chocolate Numbers arxiv:1509.06093v1 [math.co] 21 Sep 2015 Caleb Ji, Tanya Khovanova, Robin Park, Angela Song September 22, 2015 Abstract In this paper, we consider a game played on a rectangular m n gridded

More information

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION GEORGE E ANDREWS FRANK G GARVAN AND JIE LIANG Abstract Let sptn denote the total number of appearances of the smallest parts in all the

More information

q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS Appearing in the Duke Mathematical Journal.

q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS Appearing in the Duke Mathematical Journal. q-series IDENTITIES AND VALUES OF CERTAIN L-FUNCTIONS George E. Andrews, Jorge Jiménez-Urroz and Ken Ono Appearing in the Duke Mathematical Journal.. Introduction and Statement of Results. As usual, define

More information

Partition Identities

Partition Identities Partition Identities Alexander D. Healy ahealy@fas.harvard.edu May 00 Introduction A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ = (λ, λ,..., λ k ) of

More information

arxiv:math/ v2 [math.co] 19 Sep 2005

arxiv:math/ v2 [math.co] 19 Sep 2005 A COMBINATORIAL PROOF OF THE ROGERS-RAMANUJAN AND SCHUR IDENTITIES arxiv:math/04072v2 [math.co] 9 Sep 2005 CILANNE BOULET AND IGOR PAK Abstract. We give a combinatorial proof of the first Rogers-Ramanujan

More information

A Prelude to Euler's Pentagonal Number Theorem

A Prelude to Euler's Pentagonal Number Theorem A Prelude to Euler's Pentagonal Number Theorem August 15, 2007 Preliminaries: Partitions In this paper we intend to explore the elementaries of partition theory, taken from a mostly graphic perspective,

More information

On a certain vector crank modulo 7

On a certain vector crank modulo 7 On a certain vector crank modulo 7 Michael D Hirschhorn School of Mathematics and Statistics University of New South Wales Sydney, NSW, 2052, Australia mhirschhorn@unsweduau Pee Choon Toh Mathematics &

More information

FURTHER RESULTS FOR PARTITIONS INTO FOUR SQUARES OF EQUAL PARITY. Michael D. Hirschhorn and James A. Sellers

FURTHER RESULTS FOR PARTITIONS INTO FOUR SQUARES OF EQUAL PARITY. Michael D. Hirschhorn and James A. Sellers FURTHER RESULTS FOR PARTITIONS INTO FOUR SQUARES OF EQUAL PARITY Michael D. Hirschhorn James A. Sellers School of Mathematics UNSW Sydney 2052 Australia Department of Mathematics Penn State University

More information

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2 A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g KATHRIN BRINGMANN, JEREMY LOVEJOY, AND KARL MAHLBURG Abstract. We prove analytic and combinatorial identities reminiscent of Schur s classical

More information

RECURRENCE RELATION FOR COMPUTING A BIPARTITION FUNCTION

RECURRENCE RELATION FOR COMPUTING A BIPARTITION FUNCTION ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 48, Number, 08 RECURRENCE RELATION FOR COMPUTING A BIPARTITION FUNCTION D.S. GIREESH AND M.S. MAHADEVA NAIKA ABSTRACT. Recently, Merca [4] found the recurrence

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

PRIMES Math Problem Set

PRIMES Math Problem Set PRIMES Math Problem Set PRIMES 017 Due December 1, 01 Dear PRIMES applicant: This is the PRIMES 017 Math Problem Set. Please send us your solutions as part of your PRIMES application by December 1, 01.

More information

Partitions With Parts Separated By Parity

Partitions With Parts Separated By Parity Partitions With Parts Separated By Parity by George E. Andrews Key Words: partitions, parity of parts, Ramanujan AMS Classification Numbers: P84, P83, P8 Abstract There have been a number of papers on

More information

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China Ramanujan-type congruences for overpartitions modulo 16 William Y.C. Chen 1,2, Qing-Hu Hou 2, Lisa H. Sun 1,2 and Li Zhang 1 1 Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.

More information