arxiv: v2 [math.nt] 9 Apr 2015

Size: px
Start display at page:

Download "arxiv: v2 [math.nt] 9 Apr 2015"

Transcription

1 CONGRUENCES FOR PARTITION PAIRS WITH CONDITIONS arxiv:408506v2 mathnt 9 Apr 205 CHRIS JENNINGS-SHAFFER Abstract We prove congruences for the number of partition pairs π,π 2 such that π is nonempty, sπ sπ 2, and lπ 2 < 2sπ where sπ is the smallest part and lπ is the largest part of a partition The proofs use Bailey s Lemma and a generalized Lambert series identity of Chan We also discuss how a partition pair crank gives combinatorial refinements of these congruences Introduction We recall that a partition of a non-negative integer n is a non-decreasing sequence of positive integers that sum to n For a partition π we denote the sum of parts by π, the number of parts by #π, the smallest part by sπ, and the largest part by lπ We denote the empty partition by and use the convention that the empty partition has smallest part and largest part 0 A partition pair of n is an ordered pair of partitions π,π 2 such that n π π 2 In this paper, we consider the set of partition pairs π,π 2 such that π, sπ sπ 2, and lπ 2 < 2sπ That is, π is non-empty and each part of π 2 is in the interval sπ,2sπ We denote the set of all such partition pairs by PP As we will see from the generating function, the number of such partition pairs of n can also be viewed as the number of occurrences of the smallest parts in the partition pairs π,π 2 of n such that π, sπ < sπ 2, and lπ 2 < 2sπ We let ppn denote the number of partition pairs π,π 2 from PP of n As an example, pp5 5 since the partition pairs are: 5,, 4,, 2 3,, 3,, 2 2,, 2,,,, 3,, 2,,,, 2,,,, 2,3,,, and, These partition pairs actually came from considering smallest parts partition functions We recall that sptn is the number of occurrences of the smallest part in each partition of n An overpartion of n is a partition of n in which the first occurrence of a part may be overlined; the number of smallest parts among the overpartitions of n where the smallest part is not overlined is sptn We use the convention of not including overpartitions when the smallest part is overlined, otherwise if we did include these overpartitions, then we would exactly double sptn Additionally we have spt n and spt 2 n denoting the restriction of sptn to overpartitions where the smallest part is odd and even, respectively In Section 3 of 8, Garvan and the author considered the partition pairs π,π 2 such that π is non-empty, sπ sπ 2, and if a part of π 2 is larger than 2sπ then it must be odd It turns out the number of such partition pairs of n is sptn Additionally restricting sπ to an odd or even number gives spt n or spt 2 n, respectively The partition pairs here are those were we additionally do not allow the parts of π 2 to be larger than 2sπ The smallest parts functions satisfy a wide array of congruences For example, for n 0 we have spt5n4 0 mod 5, 200 Mathematics Subject Classification Primary P83, 05A7, P82 Key words and phrases Andrews spt-function; congruences; partitions; smallest parts function

2 spt7n5 0 mod 7, spt3n6 0 mod 3, spt3n 0 mod 3, spt 3n 0 mod 3, spt 5n 0 mod 5, spt 2 3n 0 mod 3, spt 2 3n 0 mod 3, spt 2 5n3 0 mod 5 The congruences for sptn were first proved by Andrews in 2 and the congruences for sptn, spt n, and spt 2 n were first proved by Bringmann, Lovejoy, and Osburn in 5 The function ppn satisfies similar congruences Theorem For n 0 is pp3n2 0 mod 3, pp5n3 0 mod 5, pp5n4 0 mod 5 To start, by summing according to the smallest part of π we see a generating function for ppn PPq ppnq n q n q n ;q q n ;q n n0 n n q n q 2n ;q q n,q n ;q q By rewriting the summand as n q n 2 q n ;q q n ;q, we see that ppm is also the number of n occurrences of the smallest parts in the partition pairs π,π 2 of m where each part of π 2 is strictly between sπ and 2sπ 2 It is not clear if ppn can easily be phrased in terms of the smallest parts of any sort of restricted partitions or overpartitions, rather than partition pairs Here and throughout, we use the following standard q-hypergeometric notation n z;q n zq k, z;q k0 zq k, k0 z,,z n ;q z ;q z n ;q, z;q z,q/z;q, z,,z n ;q z ;q z n ;q We consider a two-variable generalization of PPq given by q PPz,q n q 2n ;q zq n,z q n ;q n so that PP,q PPq We define Ck,t,n m k mod t 2 nm Cm,n, Cm,nz m q n,

3 and so for any positive t ppn m t Cm,n Ck,t,n We prove Theorem with the following strategy If ζ t is a primitive t th root of unity with t 3 or 5, then t PPζ t,q Cm,nζt m q n q n ζt k Ck,t,n nm As the minimal polynomial for ζ t is t k0 xk, if the coefficient of q N in PPζ t is zero, then C0,t,N C,t,N Ct,t,N Thus, by, ppn t C0,t,N and so ppn 0 mod t Theorem nowfollows from showingthat the coefficient of q 3n2 in PPζ 3,q and the coefficient of q 5n3 and q 5n4 in PPζ 5,q are zero In stating our theorems, we need to first define the series: For integers a,b,c, we will write Σz,w,q n k0 n q 2nn w n zq n Σa,b,c Σq a,q b,q c We will prove the following theorems about PPζ 3,q and PPζ 5,q Theorem 2 k0 PPζ 3,q A 0 q 3 qa q 3 q 2 A 2 q 3, where A 0 q q 9 ;q 9 q 3 ;q 9 q;q 9 2 q4 ;q 9 q 9 ;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9 qσ, 8,9q 5 q 9 ;q 9 q 4 ;q 9 Σ4,,9, Theorem 3 where q 3 ;q 3 A q q;q 3, A 2 q 0 PPζ 5,q B 0 q 5 qb q 5 q 2 B 2 q 5 q 3 B 3 q 5 q 4 B 4 q 5, B 0 q ζ 5 ζ 4 5 q 5 ;q 5 q 5 Σ7,0,5q 25 Σ3,25,5, B q q 3 q 5 ;q 5 Σ0,0,5q 23 Σ0,25,5 B 2 q ζ 5 ζ 4 5 q 5 ;q 5 Σ, 20,5q 4 Σ4, 5,5, B 3 q 0, 3 q 3 ;q 3 3 q;q q 5 ;q 5,

4 B 4 q 0 The partition pairs from Section 3 of 8, were an intermediate step to defining a crank on the smallest parts of overpartitions This crank gave a combinatorial interpretation of the congruences for sptn, spt n, and spt 2 n In 8 we let kπ,π 2 denote the number of parts of π 2 that are between sπ and 2sπ and defined { # of parts of π if kπ crankπ,π 2,π 2 0 # of parts of π sπ kπ,π 2 kπ,π 2 if kπ,π 2 > 0 For the partition pairs in this article, kπ,π 2 is #π 2 and so we define { # of parts of π if #π paircrankπ,π # of parts of π sπ #π 2 #π 2 if #π 2 > 0 This paircrank yields a combinatorial refinement of the congruences for ppn Theorem 4 i The residue of the paircrank mod 3 divides the partition pairs from PP of 3n2 into 3 equal classes ii The residue of the paircrank mod 5 divides the partition pairs from PP of 5n3 into 5 equal classes iii The residue of the paircrank mod 5 divides the partition pairs from PP of 5n4 into 5 equal classes In Section 2, we provide an alternative expression for PPz,q In Sections 3 and 4, we prove Theorems 2 and 3, respectively In Section 5, we prove Theorem 4 by showing that Cm,n is the number of partition pairs from PP of n with paircrank m 2 Preliminaries Before proving Theorems 2 and 3, we require another form for PPz,q We recall a pair of sequences α,β are a Bailey pair relative to a,q if n α k β n q;q n k aq;q nk k0 A limiting case of Bailey s lemma states that if α,β are a Bailey pair for a,q, then n0 n aq ρ,ρ 2 ;q n β n aq/ρ,aq/ρ 2 ;q ρ ρ 2 aq,aq/ρ ρ 2 ;q Proposition 2 The pair α, β where β n n0 ρ,ρ 2 ;q n aq ρ ρ 2 nαn aq/ρ,aq/ρ 2 ;q n, α 3n 0, α 3n± q 6n 2 ±n q 6n2 ±7n2, q;q 2n is a Bailey pair relative to,q Here α 0 β 0 0 Proof The following is 2 of 3, aq 2n b,c,d,e;q n a 2n q n aaq/b,aq/c,aq/d,aq/e;q n b n c n d n e n n q,q/a,qa,aq/bc,aq/,bd,aq/be,aq/cd,aq/de;q q/b,q/c,q/d,q/e,aq/b,aq/c,aq/d,aq/e,a 2 q/bcde;q 4

5 With q q 3, b q N, c q 2 N, d q 3 N, a q 2, and e, this becomes q 6n2 q N ;q 3n n q 3nn 2 n3nn q 3,q,q 5 ;q 3 q 2N ;q q 2 q 2N ;q 3n q N,q N2 ;q n Here the sum is actually finite as we see the summands are eventually zero for large positive and large negative values of n With this in mind, we have for N > 0 N n0 α n q;q Nn q;q N n α q;q N q;q N n n n q 6n2 n q 6n2 7n2 q;q N 3n q;q N3n α 3n q;q N 3n q;q N3n q 6n2 n q 6n2 q N ;q 3n n q 3n 2 3nN q;q N q;q N q N2 ;q 3n α 3n q;q N 3n q;q N3n q 6n2 n q 6n2 q N ;q 3n n q 3nn 2 n3nn q;q N q;q N q N2 ;q n 3n q 2 q 3,q,q 5 ;q 3 q 2N ;q q;q N q;q N q N,q N2 ;q q,q 2N ;q q,q;q q;q 2N Thus, the result follows Corollary 22 PPz,q q;q n Proof By Proposition 2, we have PPz,q q;q z,z ;q n qn z,z ;q q;q n 2n q;q z,z z,z ;q ;q n qn β n n0 z,z ;q n qn α n z z q;q zq,z q;q n0 n q n α n q;q zq n z q n n0 q 6n2 4n q 6n2 zq 3n z q 3n 5

6 q;q q;q q;q n0 n0 q 3n α 3n zq 3n z q 3n q 3n α 3n zq 3n z q 3n n n q 6n2 4n q 6n2 zq 3n z q 3n q 6n2 4n q 6n2 zq 3n z q 3n n q 6n2 2n q 6n2 zq 3n z q 3n Next we define U l b We use the additional product notation n jz;q z;q q;q q 6n2 bn q l3n n n z n q nn /2 We now provide properties of z;q, jz,q, and Σz,w,q The proofs are routine and thus omitted Proposition 23 z;q q/z;q, 2 z;q zqz;q, 22 z;q z z ;q, 23 Σz,w,q z Σ z,w q 3,q, 24 Σz,w,q z w qσ z q,w q,q, 25 Σ z,z 4 /q 2,q zσ z,z 4 /q,q z Σ z,z 4 /q 3,q z 2 Σ z,z 4,q z jq/z 2 ;q 26 Lemma 3 3 Proof of Theorem 2 q;q 2 b,/b,b 3,b 4 ;q b 4 /b 2,b Σ b,,q 3/b,b 4 /b ;q b 3 b 4 Σ b 3, b3 3,q b /b 3,/b b 3,b 4 /b 3 ;q b 4 Proof We will use the s 4, r 0 case of Theorem 2 in 6: q;q 2 b,b 2,b 3,b 4 ;q Σ b 2 /b,b 3 /b,b 4 /b ;q b, b 3,q b 2 b 3 b 4 6 b b 2,b Σ b, b4 b 3b 4 3b,b 4 b ;q b /b 4,/b b 4,b 3 /b 4 ;q Σ Σ b 2, b /b 2,b 3 /b 2,b 4 /b 2 ;q q 3,q b 4, b3 4 b 3,q b 3 2,q b b 3 b 4

7 Σ b 3, b /b 3,b 2 /b 3,b 4 /b 3 ;q Setting b 2 b we get q;q 2 b 3 3,q b b 2 b 4 Σ b 4, b /b 4,b 2 /b 4,b 3 /b 4 ;q b 3 4,q b b 2 b 3 By 24 b,/b,b 3,b 4 ;q b 4 /b 2,b Σ b,,q 3/b,b 4 /b ;q b 3 b 4 Σ b 3, b3 3,q b /b 3,/b b 3,b 4 /b 3 ;q b 4 and so the result follows b 2,b Σ b 3b,b 4 b ;q, b /b 4,/b b 4,b 3 /b 4 ;q Σ Σ b, b 4 b,q b Σ b, b4 b 3b 4 3b 4 q 3,q, b 4 b,q 3b 4 b 4, b3 4 b 3,q Additionally setting b 4 b 3 gives the following Lemma Lemma 32 q;q 2 b,/b,b 3,/b 3 ;q /b 2,b Σ b,b 4 3/b,/b b 3 ;q,q b b 2,b Σ b, b4 3b,b /b 3 ;q q 3,q b /b 3,/b b 3,/b 2 3 ;q Σ b 3,b 4 3,q b 3 b b 3,b 3 /b,b 2 3 ;q Σ b 3, b4 3 q 3,q We now require the following Propositions Proposition 33 Σ,,9q 5 Σ7,6,9 q 9 ;q 9 2 q 3 ;q 9 q;q 9 q;q 9 q 4 ;q 9 qσ, 8,9q 5 q 4 ;q 9 Σ4,,9, 3 q 6 Σ4,4,9q 3 Σ7,3,9 q 9 ;q 9 2 q 3 ;q 9 q 2 ;q 9 q q 4 ;q 9 2 qσ, 8,9q 5 q 4 ;q 9 Σ4,,9 32 Proof For 3 we move all Σz,w,q terms to one side, divide by q,q 2,q 3 ;q 9, and use that Σ4,,9 q 4 Σ5,8,9 by 25 Equation 3 is then equivalent to q 9 ;q 9 2 q,q,q 2,q 4 ;q 9 q,q 2,q 3 ;q 9 Σ,,9 q 5 q,q 2,q 3 ;q 9 Σ7,6,9 q q 9 q 2,q 3,q 4 ;q 9 Σ, 8,9 q 2,q 3,q 4 ;q 9 Σ5,8,9 33 7

8 In Lemma 3 we use q q 9, b q,b 3 q 7,b 4 q 5 to get q 9 ;q 9 2 q q,q,q 7,q 5 ;q 9 q 2,q 6,q 4 ;q 9 Σ, 8,9 q 2,q 8,q 6 ;q 9 Σ,,9 q 6,q 8,q 2 ;q 9 Σ7,6,9 q 4,q 6,q 2 ;q 9 Σ5,8,9 Simplifying the products with Proposition 23 yields 33 For 32 we move all Σz,w,q terms to one side, divide by q q,q 2,q 3 ;q 9, and use that Σ, 8,9 q 6 Σ8,7,9 by 25 Equation 32 is then equivalent to q 9 ;q 9 2 q 6 q 4 q,q 2,q 4,q 4 ;q 9 q,q 3,q 4 ;q 9 Σ8,7,9 q,q 3,q 4 ;q 9 Σ4,,9 q 5 q 2 q,q 2,q 3 ;q 9 Σ4,4,9 q,q 2,q 3 ;q 9 Σ7,3,9 34 In Lemma 3 we use q q 9, b q 4,b 3 q 8,b 4 q 7 to get q 9 ;q 9 2 q 4 q 4,q 4,q 7,q 8 ;q 9 q 8,q 4,q 3 ;q 9 Σ4,,9 q 8,q 2,q ;q 9 Σ4,4,9 Simplifying the products with Proposition 23 yields 34 Proposition 34 q Σ7,0,9q 8 Σ7,9,9 q 9 ;q 9 2 q 3 ;q 9 q 4 ;q 9 q;q 9 q 2 ;q 9 2 q 3 Σ4, 2,9q 7 Σ4,7,9 q 9 ;q 9 2 q 3 ;q 9 q;q 9 q 4 ;q 9 q 4,q 2,q ;q 9 Σ8,7,9 q 3,q,q;q 9 Σ7,3,9 q 4 ;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9, 35 q;q 9 q 2 ;q 9 Σ, 4,9qΣ, 5,9 36 Proof For 35, we move all Σz,w,q terms to one side and multiply by q 2 ;q 9, so that 35 is equivalent to q 9 ;q 9 2 q 3,q 4 ;q 9 q,q 2 ;q 9 q 2 ;q 9 q Σ7,0,9q 8 Σ7,9,9 q 4 ;q 9 Σ, 4,9qΣ, 5,9 37 However by 26 and the definition of jz;q, we find that the right hand side of 37 is q 2 ;q 9 q 4 Σ7,,9q 25 Σ7,28,9 q 4 j q 5 ;q 9 q 4 ;q 9 q Σ, 23,9q 2 Σ,4,9 q j q 7 ;q 9 q 2 ;q 9 q 4 Σ7,,9q 25 Σ7,28,9 q 4 ;q 9 q Σ, 23,9q 2 Σ,4,9 With the above and dividing 37 by q,q 2,q 3,q 4 ;q 9, we have that 35 is equivalent to q 9 ;q 9 2 q,q,q 2,q 2 ;q 9 q 4 q,q 3,q 4 ;q 9 Σ7,,9 8 q 25 q,q 3,q 4 ;q 9 Σ7,28,9

9 q q 2 q,q 2,q 3 ;q 9 Σ, 23,9 q,q 2,q 3 ;q 9 Σ,4,9 38 Setting q q 9,b q 7,b 3 q in Lemma 32 gives q 9 ;q 9 2 q 7 q,q,q 7,q 7 ;q 9 q 4,q 6,q 8 ;q 9 Σ7,28,9 q 4,q 8,q 6 ;q 9 Σ7,,9 q q 6,q 8,q 2 ;q 9 Σ,4,9 q 8,q 6,q 2 ;q 9 Σ, 23,9 Simplifying the products gives 38 For 36, we move all Σz,w,q terms to one side and multiply by q 2 ;q 9, so that 36 is equivalent to q 9 ;q 9 2 q 2,q 3 ;q 9 q,q 4 ;q 9 q;q 9 Σ, 4,9qΣ, 5,9 q 2 ;q 9 q 3 Σ4, 2,9 q 7 Σ4,7,9 39 However, by 26, the right hand side of 39 is q;q 9 q Σ, 23,9q 2 Σ,4,9 q j q 7 ;q 9 q 2 ;q 9 q Σ4,,9 q Σ4,6,9q j q;q 9 q;q 9 q Σ, 23,9q 2 Σ,4,9 q 2 ;q 9 q Σ4,,9 q Σ4,6,9 With the above and dividing 39 by q,q 2,q 3,q 4 ;q 9, we have that 36 is equivalent to q 9 ;q 9 2 q,q,q 4,q 4 ;q 9 q q 2,q 3,q 4 ;q 9 Σ, 23,9 q 2 q 2,q 3,q 4 ;q 9 Σ,4,9 q q q,q 3,q 4 ;q 9 Σ4,,9 q,q 3,q 4 ;q 9 Σ4,6,9 30 Setting q q 9,b q,b 3 q 4 in Lemma 32 gives q 9 ;q 9 2 q q,q,q 4,q 4 ;q 9 q 2,q 3,q 5 ;q 9 Σ,4,9 q 2,q 5,q 3 ;q 9 Σ, 23,9 Simplifying the products gives 30 Next we make use of q 4 q 3,q 5,q 8 ;q 9 Σ4,6,9 q 5,q 3,q 8 ;q 9 Σ4,,9 q;q q 27 ;q 27 q 2 ;q 27 q q 6 ;q 27 q2 q 3 ;q 27, 3 which follows from Euler s pentagonal number theorem and the Jacobi triple product identity Proposition 35 q 27 ;q 27 2 q 9 ;q 27 q 2 ;q 27 q 27 q 3 ;q 27 q 6 ;q q 2 ;q 27 2 q 9 ;q 27 q 27 q 3 ;q 27 q 2 ;q 27 q 4 ;q 27 2 q 9 ;q 27 q 2 ;q 27 2 q;q q 27 ;q 27 q 9 ;q 27 q 3 ;q 27 2 q q;q q 9 ;q 9 q2 ;q 27 q 3 ;q 9 9

10 q 3,q 2 ;q 27 Proof Multiplying both sides by q 27 ;q 27 q 9 ;q 27, we find this proposition is equivalent to q 27 ;q 27 q 2 ;q 27 2 q 3 q 6 ;q q 2 q 4 ;q 27 q q 2 ;q 27 q;q q 3 ;q 27 q 3 ;q 27 q 6 ;q By 3 we see 32 reduces to proving q 2 ;q 27 2 q 2 ;q 27 q 3 q 6 ;q 27 2 q 3 ;q 27 q 3 ;q 27 q 6 ;q 27, 33 q 3 q 4 ;q 27 q 6 ;q 27 q 2 ;q 27 q 2 ;q 27 q q 3 ;q 27 q q 6 ;q However 33 follows from multiplying 34 by q q6 ;q 27 q 2 ;q 27 and elementary rearrangements In 34 we replace q by q /3 and clear denominators to see we need only prove that q q,q,q 2 ;q 9 q 2,q 2,q 4 ;q 9 q,q 4,q 4 ;q 9 35 However, this follows from the q q 9,x q,t y z q 2 case of equation 2 from 9, which is an identity of Jacobi: z x y,x,xt/z,zty;q z,t,xty,zy/x;q xt,zy,ty,z/x;q Letting ζ 3 be a primitive third root of unity, we find that q PPζ 6n2 4n q 6n2 q 3n 3,q q;q q 9n3 n qu3 4 q 2 U 3 7 q 3 U 3 0q 4 U3 36 q;q Using this form of PPζ 3,q in terms of the U 3 b, we proceed in a manner similar to how Atkin and Swinnerton-Dyer in 4 determined rank difference formulas for Dyson s rank of a partition This was also used to determine crank difference formulas by Ekin in 7 and various rank difference formulas related to overpartitions by Lovejoy and Osburn in 0,, 2 Here the major difference is that in Σz,w,q we never use z and so we do not have to introduce an extra function to avoid the issue at n 0 To begin we note that U 3 b n 2 k0n 2 k0 q 6n2 bn q 9n3 q 6k2 bk q 63nk2 b3nk q 93nk3 n q 54nn q 36nk3nb 54n q 9k3 q 27n 2 q 6k2 bk Σ9k3,36k3b 54,27 k0 0

11 Thus qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 qσ3, 42,27q Σ2, 6,27q 33 Σ2,30,27 q 2 Σ3, 33,27 q 5 Σ2,3,27 q 40 Σ2,39,27 q 3 Σ3, 24,27 q 9 Σ2,2,27 q 47 Σ2,48,27q 4 Σ3, 5,27 q 54 Σ2,57,27q 23 Σ2,2,27 qσ3, 42,27q 4 Σ3, 5,27 q 3 Σ3, 24,27 q 5 Σ2,3,27 q 33 Σ2,30,27q 54 Σ2,57,27q 23 Σ2,2,27q Σ2, 6,27 q 2 Σ3, 33,27 q 47 Σ2,48,27 q 9 Σ2,2,27 q 40 Σ2,39,27 In the last line we have ordered the terms to apply Propositions 33 and 34 with q q 3 With these identities we have that qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 Σ3, 42,27q 3 Σ3, 5,27 q 3 q q 2 ;q 27 q 2 ;q 27 q 6 ;q 27 q 6 ;q 27 q 3 Σ3, 24,27q 5 Σ2,3,27 q 6 ;q 27 q 3 q q 2 ;q 27 q 2 ;q 27 q 2 ;q 27 q 27 ;q 27 2 q 9,q 2 ;q 27 q 27 q 3,q 6,q 6 ;q 27 2q 2 ;q 27 2 q 9 ;q 27 q 27 q 3,q 2 ;q 27 q 4 ;q 27 2 q 9 ;q 27 q 2,q 2 ;q 27 Next by 3 and Proposition 35 we have that qu 3 4 q 2 U 3 7 q 3 U 3 0q 4 U 3 3 q;q Σ3, 42,27q 3 q 27 ;q 27 q 6 ;q 27 Σ3, 5,27 q;q q 3 q 27 ;q 27 q 2 ;q 27 Σ3, 24,27q 5 Σ2,3,27 q;q q 27 ;q 27 q 9 ;q 27 q 3 ;q 27 2 q q;q q 9 ;q 9 q2 ;q 27 q 3 ;q 9 37 Theorem 2 now follows by equations 36 and 37 4 Proof of Theorem 3 We require the following two Lemmas Both are applications of Theorem 2 of 6, namely we take s 6, r 2, b 4 b, b 5 b 2, b 6 b 3 to obtain Lemma 4 and take s 0, r 6, b 6 b, b 7 b 2, b 8 b 3, b 9 b4, and b 0 b 5 to obtain Lemma 42 Lemma 4 a,a 2 ;q q;q 2 b,b,b 2,b 2,b 3,b 3 ;q a b,a 2b ;q b b 2,b b 3,b b 2,b b 3,b 2 ;q b a b,a 2 b ;q b b 2,b b 3,b b 2,b b 3,b2 ;q Σ Σ b,a a 2 b 4,q b, b 4 a a 2 q 3,q

12 Lemma 42 a b 2,a 2b 2 ;q b b 2,b 2 b 3,b b 2,b 2 b 3,b 2 2 ;q Σ b 2,a a 2 b 4 2,q b 2 a b 2,a 2 b 2 ;q b b 4 2 b 2,b 2 b 3,b b 2,b 2 b 3,b2 2 ;q Σ b 2, a a 2 q 3,q a b 3,a 2b 3 ;q b b 3,b 2b 3,b b 3,b 2 b 3,b 2 b 3 a b 3,a 2 b 3 ;q b b 3,b 2 b 3,b b 3,b 2 b 3,b 2 3 ;q Σ 3 ;q b 3, Σ b 3,a a 2 b 4 3,q b 4 3 a a 2 q 3,q a,a 2,a 3,a 4,a 5,a 6 ;q q;q 2 b,b,b 2,b 2,b 3,b 3,b 4,b 4,b 5,b5 ;q a b,a 2b,a 3b,a 4b,a 5b,a 6b ;q b b 2,b b 3,b b 4,b b 5,b b 2,b b 3,b b 4,b b b a b,a 2 b,a 3 b,a 4 b,a 5 b,a 6 b ;q b b 2,b b 3,b b 4,b b 5,b b 2,b b 3,b b 4,b b 5,b2 ;q 5,b 2 a b 2,a 2b 2,a 3b 2,a 4b 2,a 5b 2,a 6b 2 ;q b b 2,b 2 b 3,b 2 b 4,b2 b 5,b b 2,b 2 b 3,b 2 b 4,b b 2 a b 2,a 2 b 2,a 3 b 2,a 4 b 2,a 5 b 2,a 6 b 2 ;q b b 2,b 2 b 3,b 2 b 4,b 2 b 5,b b 2,b 2 b 3,b 2b 4,b 2b 5,b2 2 ;q a b 3,a 2b 3,a 3b 3,a 4b 3,a 5b 3,a 6b 3 ;q b b 3,b 2b 3,b 3 b 4,b3 b 5,b b 3,b 2 b 3,b 3 b 4,b b 3 a b 3,a 2 b 3,a 3 b 3,a 4 b 3,a 5 b 3,a 6 b 3 ;q b b 3,b 2 b 3,b 3 b 4,b 3 b 5,b b 3,b 2 b 3,b 3 b 4,b 3b 5,b2 3 ;q a b 4,a 2b 4,a 3b 4,a 4b 4,a 5b 4,a 6b 4 ;q b b 4,b 2b 4,b 3b 4,b 4 b 5,b b 4,b 2 b 4,b 3 b 4,b b 4 a b 4,a 2 b 4,a 3 b 4,a 4 b 4,a 5 b 4,a 6 b 4 ;q b b 4,b 2 b 4,b 3 b 4,b 4 b 5,b b 4,b 2 b 4,b 3 b 4,b 4 b 5,b2 4 ;q a b 5,a 2b 5,a 3b 5,a 4b 5,a 5b 5,a 6b 5 ;q b b 5,b 2b 5,b 3b 5,b 4b5,b b 5,b 2 b 5,b 3 b 5,b b 5 a b 5,a 2 b 5,a 3 b 5,a 4 b 5,a 5 b 5,a 6 b 5 ;q b b 5,b 2 b 5,b 3 b 5,b 4 b 5,b b 5,b 2 b 5,b 3 b 5,b 4 b 5,b 2 5 ;q Σ ;q b, 2 b 5,b 2 Σ b 2, 3 b 5,b 2 Σ b 3, 4 b 5,b 2 Σ b 4, 4 b 5,b 2 Σ b 5, Σ b,a a 2 a 3 a 4 a 5 a 6 b 4,q b 4 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 2,a a 2 a 3 a 4 a 5 a 6 b 4 3,q 2 ;q b 4 2 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 3,a a 2 a 3 a 4 a 5 a 6 b 4 3,q 3 ;q b 4 3 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 4,a a 2 a 3 a 4 a 5 a 6 b 4 4,q 4 ;q b 4 4 a a 2 a 3 a 4 a 5 a 6 q 3,q Σ b 5,a a 2 a 3 a 4 a 5 a 6 b 4 5,q 5 ;q b 4 5 a a 2 a 3 a 4 a 5 a 6 q 3,q In the following Propositions we will repeatedly use that q,q 4,q 6 ;q 5 q;q 5 and q 2,q 3,q 7 ;q 5 q 2 ;q 5 in reducing the products The proofs of these Propositions are similar to the proofs of Propositions 33 and 34 By moving the Σz,w,q terms all to one side and multiplying by the appropriate product, we find the identities are equivalent to a specialization of Lemma 4 or 42 Proposition 43 Σ7, 2,5q 7 Σ7,3,5q 6 Σ3,22,5q 29 Σ3,37,5 2

13 q;q 5 q 7 q 2 ;q 5 Σ0,0,5q 7 Σ0,25,5 q 3 q 6 ;q 3 3 q 5 ;q 5 q 2 ;q 5 2, 4 Σ, 26,5qΣ,,5q 2 Σ4, 4,5q 6 Σ4,,5 q 2 ;q 5 q 3 q;q 5 Σ0,0,5q 23 Σ0,25,5 q 3 ;q 3 3 q 5 ;q 5 q;q Proof In Lemma 4 we use q q 5, a q 9, a 2 q 2, b q 7, b 2 q 0, b 3 q 3 to get q 9,q 2 ;q 5 q 5 ;q 5 2 q 7,q 0,q 3,q 7,q 0,q 3 ;q 5 q 6,q 28 ;q 5 q 2 q 3,q 6,q 4,q 7,q 20 ;q 5 Σ7, 2,5 q 7,q 4 ;q 5 q 4,q 7,q 20,q 3,q 6 ;q 5 Σ7,3,5 q 9,q 3 ;q 5 q q 3,q 3,q 7,q 20,q 23 ;q 5 Σ0,0,5 q 0 ;q 5 q 7,q 20,q 23,q 3,q 3 ;q 5 Σ0,25,5 q 22,q 34 ;q 5 q 4 q 6,q 3,q 20,q 23,q 26 ;q 5 Σ3,22,5 q 3,q 8 ;q 5 q 20,q 23,q 26,q 6,q 3 ;q 5 Σ3,37,5 Simplifying the products yields q 6 q 6,q 6 ;q 5 q 5 ;q 5 2 q 2,q 2,q 5,q 5,q 7,q 7 ;q 5 q 3,q 5,q 6 ;q 5 Σ7, 2,5 q 7 q 3,q 5,q 6 ;q 5 Σ7,3,5 q,q 4 q 7 ;q 5 q,q 4 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ0,0,5q 7 ;q 5 q 2,q 3,q 3,q 7 ;q 5 Σ0,25,5 q 6 q 3,q 5,q 6 ;q 5 Σ3,22,5 q 29 q 3,q 5,q 6 ;q 5 Σ3,37,5 43 We see that multiplying both sides of 43 by q 3,q 5,q 6 ;q 5 implies 4 upon noting that q 3,q 6,q 6,q 6 ;q 5 q 5 ;q 5 2 q q 2,q 2,q 5,q 7,q 7 ;q 5 3 ;q 3 3 q 5 ;q 5 q 2 ;q 5 2 In Lemma 4 we use q q 5, a q 2, a 2 q 8, b q, b 2 q 4, b 3 q 0 to get q 2,q 8 ;q 5 q 5 ;q 5 2 q,q 4,q 0,q,q 4,q 0 ;q 5 q 3,q 9 ;q 5 q,q 7 ;q 5 q 3,q 9,q 2,q 5,q ;q 5 Σ, 26,5 q q 2,q 5,q,q 3,q 9 ;q 5 Σ,,5 q 6,q 22 ;q 5 q 8 q 3,q 6,q 5,q 8,q 4 ;q 5 Σ4, 4,5 q 4,q 4 ;q 5 q 5,q 8,q 4,q 3,q 6 ;q 5 Σ4,,5 q 22,q 28 ;q 5 q 2 q 9,q 6,q,q 4,q 20 ;q 5 Σ0,0,5 q 0,q 8 ;q 5 q,q 4,q 20,q 9,q 6 ;q 5 Σ0,25,5 3

14 Simplifying the products yields q 3 q 8,q 3 ;q 5 q 5 ;q 5 2 q,q,q 4,q 4,q 5,q 5 ;q 5 q 8 q 3,q 5,q 6 ;q 5 Σ, 26,5q 7 q 3,q 5,q 6 ;q 5 Σ,,5 q 6 q 3,q 5,q 6 ;q 5 Σ4, 4,5q 2 q 3,q 5,q 6 ;q 5 Σ4,,5 q 2 q 5,q 7 ;q 5 q 2 q,q 4,q 5,q 6,q 6 ;q 5 Σ0,0,5q 5,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ0,25,5 44 We see that multiplying both sides of 44 by q 8 q 3,q 5,q 6 ;q 5 implies 4 upon noting that q 3,q 3,q 3,q 6 ;q 5 q 5 ;q 5 2 q,q,q 4,q 4,q 5 ;q 5 Proposition 44 q 3 ;q 3 3 q 5 ;q 5 q;q 5 2 Σ, 7,5q 3 Σ4, 8,5q 0 Σ7,7,5q 27 Σ3,28,5 q;q 5 Σ, 20,5q 4 q 2 ;q 5 Σ4, 5,5, 45 Σ7,4,5q 8 Σ0,6,5q 0 Σ0,9,5q 2 Σ3,3,5 q 2 ;q 5 q 9 q;q 5 Σ, 20,5q 5 Σ4, 5,5 q 3 q 9 ;q q;q Proof In Lemma 42 we use q q 5, a q 5, a 2 q 3, a 3 q 0, a 4 q 8, a 5 q 0, a 6 q 2, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note both the product on the left and four terms on the right in Lemma 42 are immediately zero, yielding q 6,q 4,q,q 9,q 9,q ;q 5 0 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 20,5 q 4,q 2,q 9,q 7,q,q 3 ;q 5 q q 2,q 5,q 8,q,q 4,q 3,q 6,q 9,q 2 ;q 5 Σ, 7,5 q 9,q 7,q 4,q 2,q 6,q 8 ;q 5 q 3,q 3,q 6,q 9,q 5,q 8,q,q 4,q 7 ;q 5 Σ4, 8,5 q q 4,q 9,q 6,q 4,q 4,q 6 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 5,5 q 8 q 7,q 6,q 3,q,q 7,q 9 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,7,5 q 28,q 26,q 23,q 2,q 3,q ;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,28,5 Simplifying the products yields q,q 4 0 q ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ, 20,5 q q 3,q 5,q 6 ;q 5 Σ, 7,5 q 8 q,q 4 q 3,q 5,q 6 ;q 5 Σ4, 8,5q 7 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ4, 5,5 4

15 q q 3,q 5,q 6 ;q 5 Σ7,7,5 q 6 q 3,q 5,q 6 ;q 5 Σ3,28,5 47 We see multiplying both sides of 47 by q q 3,q 5,q 6 ;q 5 implies 45 In Lemma 42 we use q q 5, a q 2, a 2 q, a 3 q 7, a 4 q 6, a 5 q 2, a 6 q 4, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note four terms on the right in Lemma 42 are immediately zero, yielding q 2,q,q 7,q 6,q 2,q 4 ;q 5 q 5 ;q 5 q,q 4,q 7,q 0,q 3,q,q 4,q 7,q 0,q 3 ;q 5 q 3,q 2,q 8,q 7,q 3,q 3 ;q 5 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 20,5 q 8 q 4,q 7,q 3,q 2,q 2,q 8 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 5,5 q 9,q 8,q 4,q 3,q 9,q 7 ;q 5 q 6,q 3,q 3,q 6,q 8,q,q 4,q 7,q 20 ;q 5 Σ7,4,5 q 22,q 2,q 7,q 6,q 2,q 4 ;q 5 q 9,q 6,q 3,q 3,q,q 4,q 7,q 20,q 23 ;q 5 Σ0,6,5 q 2 q 0,q,q 3,q 4,q 8,q 24 ;q 5 q,q 4,q 7,q 20,q 23,q 9,q 6,q 3,q 3 ;q 5 Σ0,9,5 q,q 2 q 3,q 6,q 7,q,q 27 ;q 5 q 4,q 7,q 20,q 23,q 26,q 2,q 9,q 6,q 3 ;q 5 Σ3,3,5 Simplifying the products yields q 3 q 3,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 5,q 7 ;q 5 q 2 q 3,q 7 ;q 5 q 2,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ, 20,5q q,q 4,q 5,q 6,q 6 ;q 5 Σ4, 5,5 q 6 q 3,q 5,q 6 ;q 5 Σ7,4,5q 4 q 3,q 5,q 6 ;q 5 Σ0,6,5 q 6 q 3,q 5,q 6 ;q 5 Σ0,9,5q 27 q 3,q 5,q 6 ;q 5 Σ3,3,5 48 We see multiplying 48 by q 6 q 3,q 5,q 6 ;q 5 q 3,q 3,q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 7 ;q 5 q3 ;q 3 3 q;q implies 46, upon noting that Proposition 45 Σ, 4,5q 2 Σ4,,5q 7 Σ7,,5q 32 Σ3,34,5 q 2 ;q 5 q;q 5 q Σ7,0,5q 24 Σ3,25,5, 49 Σ, 23,5q 5 Σ4, 2,5q 5 Σ0,3,5q 2 Σ0,22,5 5

16 q;q 5 q 2 ;q 5 q 2 Σ7,0,5q 25 Σ3,25,5 q 3 ;q 3 3 q;q 40 Proof In Lemma 42 we use q q 5, a q 5, a 2 q 4, a 3 q 0, a 4 q 9, a 5 q 0, a 6 q, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note both the product on the left and four terms on the right in Lemma 42 are immediately zero, yielding q 4,q 3,q 9,q 8,q,q 2 ;q 5 0 q q 2,q 5,q 8,q,q 4,q 3,q 6,q 9,q 2 ;q 5 Σ, 4,5 q 9,q 8,q 4,q 3,q 6,q 7 ;q 5 q 3,q 3,q 6,q 9,q 5,q 8,q,q 4,q 7 ;q 5 Σ4,,5 q 22,q 2,q 7,q 6,q 3,q 4 ;q 5 q 6,q 3,q 3,q 6,q 8,q,q 4,q 7,q 20 ;q 5 Σ7,,5 q 8 q 7,q 7,q 3,q 2,q 7,q 8 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,0,5 q 28,q 27,q 23,q 22,q 3,q 2 ;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,25,5 q 2 q 3,q,q 3,q 4,q 23,q 24 ;q 5 q 4,q 7,q 20,q 23,q 26,q 2,q 9,q 6,q 3 ;q 5 Σ3,34,5 Simplifying the products yields 0 q 3 q 3,q 5,q 6 ;q 5 Σ, 4,5 q q 3,q 5,q 6 ;q 5 Σ4,,5 q 6 q 2 q 3,q 5,q 6 ;q 5 Σ7,,5 q 2,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ7,0,5 q 2 q,q 7 ;q 5 q,q 4,q 5,q 6,q 6 ;q 5 Σ3,25,5 q 9 q 3,q 5,q 6 ;q 5 Σ3,34,5 4 We see multiplying 4 by q 3 q 3,q 5,q 6 ;q 5 implies 49 In Lemma 42 we use q q 5, a q 3, a 2 q, a 3 q 8, a 4 q 6, a 5 q 3, a 6 q 4, b q, b 2 q 4, b 3 q 7, b 4 q 0, b 5 q 3 and note four terms on the right in Lemma 42 are immediately zero, yielding q 3,q,q 8,q 6,q 3,q 4 ;q 5 q 5 ;q 5 q,q 4,q 7,q 0,q 3,q,q 4,q 7,q 0,q 3 ;q 5 q 4,q 2,q 9,q 7,q 4,q 3 ;q 5 q 3,q 6,q 9,q 2,q 2,q 5,q 8,q,q 4 ;q 5 Σ, 23,5 q 9 q 4,q 7,q 4,q 2,q,q 8 ;q 5 q 5,q 8,q,q 4,q 7,q 3,q 3,q 6,q 9 ;q 5 Σ4, 2,5 q 6 q 7,q 4,q,q,q 4,q 2 ;q 5 q 8,q,q 4,q 7,q 20,q 6,q 3,q 3,q 6 ;q 5 Σ7,0,5 q 23,q 2,q 8,q 6,q 3,q 4 ;q 5 q 9,q 6,q 3,q 3,q,q 4,q 7,q 20,q 23 ;q 5 Σ0,3,5 6

17 q 3 q 0,q,q 2,q 4,q 7,q 24 ;q 5 q,q 4,q 7,q 20,q 23,q 9,q 6,q 3,q 3 ;q 5 Σ0,22,5 q 26,q 24,q 2,q 9,q 6,q;q 5 q 2,q 9,q 6,q 3,q 4,q 7,q 20,q 23,q 26 ;q 5 Σ3,25,5 Simplifying the products yields q 3 q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 5,q 7 ;q 5 q 6 q 3,q 5,q 6 ;q 5 Σ, 23,5q q 3,q 5,q 6 ;q 5 Σ4, 2,5 q,q 4 q 6 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ7,0,5q 9 q 3,q 5,q 6 ;q 5 Σ0,3,5 q 5 q,q 4 q 3,q 5,q 6 ;q 5 Σ0,22,5 q 9 ;q 5 q 2,q 3,q 3,q 5,q 7 ;q 5 Σ3,25,5 42 We see multiplying 42 by q 6 q 3,q 5,q 6 ;q 5 implies 40, again noting that q 3,q 3,q 6,q 6 ;q 5 q 5 ;q 5 2 q,q 2,q 4,q 5,q 7 ;q 5 q3 ;q 3 3 q;q Similar to the proof of Theorem 2, we begin with expressing PPζ 5,q in terms of U 5 b With ζ 5 a primitive fifth root of unity, we have q PPζ 6n2 4n q 6n2 q 3n ζ 5,q 5q 2 3n ζ5q 3 3n q;q q 5n5 n qu5 4ζ 5 ζ5 4 q;q q2 U 5 7 ζ 5 ζ5 4 q3 U 5 0 ζ 5 ζ5 4 q4 U 5 3 Thus We find that U 5 b ζ 5 ζ 4 5 q5 U 5 6q 6 U n 4 k0 4 k0 q 6n2 bn q 5n5 q 6k2 bk q 6k2 bk qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 n n q 50nn q 60nk5bn 50n q 5k5 q 75n Σ5k5,60k5b 50,75 qσ5, 30,75q Σ20, 70,75q 33 Σ35, 0,75q 67 Σ50,50,75q 3 Σ65,0,75 q 3 Σ5, 00,75 q 9 Σ20, 40,75 q 47 Σ35,20,75 q 87 Σ50,80,75 q 39 Σ65,40,75 q 4 Σ5, 85,75 q 23 Σ20, 25,75 q 54 Σ35,35,75 q 97 Σ50,95,75 q 52 Σ65,55,75 q 6 Σ5, 55,75q 3 Σ20,5,75q 68 Σ35,65,75q 7 Σ50,25,75q 78 Σ65,85,75, 7

18 and q 2 U 5 7 q 3 U 5 0 q 4 U 5 3q 5 U 5 6 q 2 Σ5, 5,75q 5 Σ20, 55,75q 40 Σ35,5,75q 77 Σ50,65,75q 26 Σ65,25,75 q 3 Σ5, 00,75 q 9 Σ20, 40,75 q 47 Σ35,20,75 q 87 Σ50,80,75 q 39 Σ65,40,75 q 4 Σ5, 85,75 q 23 Σ20, 25,75 q 54 Σ35,35,75 q 97 Σ50,95,75 q 52 Σ65,55,75 q 5 Σ5, 70,75q 27 Σ20, 0,75q 6 Σ35,50,75q 07 Σ50,0,75q 65 Σ65,70,75 Next we reorder the Σz,w,q terms and apply Propositions 43 and 44 with q q 5 to get that qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 q 67 Σ50,50,75q 7 Σ50,25,75 q 3 Σ5, 00,75 q 23 Σ20, 25,75 q 33 Σ35, 0,75q 35 Σ35,65,75q 80 Σ65,0,75q 45 Σ65,85,75 q Σ5, 30,75q 5 Σ5, 55,75q 0 Σ20, 70,75q 30 Σ20,5,75 q 4 Σ5, 85,75q 5 Σ20, 40,75q 50 Σ35,35,75q 35 Σ65,40,75 q 47 Σ35,20,75q 40 Σ50,80,75q 50 Σ50,95,75q 05 Σ65,55,75 q 66 Σ50,50,75q 6 Σ50,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 q 3 ;q 5 3 q 5 ;q 5 3 q 5 q 25 ;q 25 q 0 ;q 25 2 q q 25 ;q 25 q 5 ;q 25 2 q 2 ;q 5 3 q 5 ;q 5 q 66 Σ50,50,75q 6 Σ50,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 ;q 5 3 q 0 ;q 5 q 5 q q 5 ;q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 44 However, by Euler s pentagonal number theorem and the Jacobi triple product identity, we have that q;q q 25 ;q 25 q 0 ;q 25 q 5 q 5 ;q 25 q q 2 ;q 25 q 0 ;q 25 Thus, qu 5 4 q 3 U 5 0 q 4 U 5 3q 6 U 5 9 q;q q 2 q 25 ;q 25 Σ5, 00,75q 22 Σ20, 25,75 q 66 Σ50,50,75 q 6 Σ50,25,75 q q;q q 5 ;q 5 3 q 5 ;q 5 q 25 ;q

19 Similarly we reorder the Σz,w,q terms and apply Propositions 44 and 45 with q q 5 to get that q 2 U 5 7 q 3 U 5 0 q 4 U 5 3q 5 U 5 6 q 6 Σ35,50,75q 26 Σ65,25,75 q 3 Σ5, 00,75 q 23 Σ20, 25,75 q 2 Σ5, 5,75q 25 Σ20, 0,75q 75 Σ50,65,75q 05 Σ50,0,75 q 5 Σ5, 70,75q 0 Σ20, 55,75q 35 Σ35,5,75q 60 Σ65,70,75 q 4 Σ5, 85,75q 5 Σ20, 40,75q 50 Σ35,35,75q 35 Σ65,40,75 q 47 Σ35,20,75q 40 Σ50,80,75q 50 Σ50,95,75q 05 Σ65,55,75 q 60 Σ35,50,75q 25 Σ65,25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 0 ;q 5 q 5 q 5 ;q 5 q q 2 ;q 5 q 0 ;q 5 q 5 q 2 ;q 5 3 q 5 q 5 ;q 5 q 2 ;q 5 3 q 5 ;q 5 q;q q 25 ;q 25 q 2 Σ5, 00,75q 22 Σ20, 25,75 q 60 Σ35,50,75 q 25 Σ65,25,75 Theorem 3 follows by equations 43, 45, and 46 n 5 Proof of Theorem 4 46 Proof Using Theorem 2 of we find that q PPz,q n zq;q k z k q nk zq n ;q n q;q k0 k z k q nkn zq nk ;q nk0 q;q k q n z k q nkn zq n ;q n zq nk ;q nk q;q k q n q n zq n ;q q n ;q k zq nk z k q kn q;q nk 5 ;q q;q n q;q k nk The first term in 5 is the generating function for non-empty partitions with the power of q giving the number being partitioned and the power of z giving one less than the number of parts of the partition This is the generating function for partition pairs from PP where π 2 is empty, the power of q gives the number being partitioned and the power of z gives the paircrank q n q n ;q k zq nk ;q In the second term in 5, we interpret the summands as follows We have that is the generating function for non-empty partitions π where n is the smallest part, the power of q counts the number being partitioned, and the power of z counts the number of parts that are at least nk We have that z k q kn q;q nk q;q n q;q is the generating function for partitions π 2 with exactly k parts k with each part between n and 2n, where the power of q counts the number being partitioned 9

20 and the power of z counts the negative of the number of parts Thus the second term in 5 is the generating function for partition pairs from PP, with both π and π 2 non-empty, with the power of q giving the number being partitioned and the power of z giving the paircrank This proves that Cm,n is the number of partition pairs from PP of n with paircrank m These rearrangements and interpretations are essentially what was done in 8 as an intermediate step in getting an spt-crank defined on marked overpartitions Also this is quite similar to the steps in 3 where Andrews and Garvan gave the ordinary partition crank after the vector partition crank Acknowledgments The author would like to thank Frank Garvan for suggesting this problem and for his help and encouragement References G E Andrews The theory of partitions Addison-Wesley Publishing Co, Reading, Mass-London-Amsterdam, 976 Encyclopedia of Mathematics and its Applications, Vol 2 2 G E Andrews The number of smallest parts in the partitions of n J Reine Angew Math, 624:33 42, G E Andrews and F G Garvan Dyson s crank of a partition Bull Amer Math Soc NS, 82:67 7, A O L Atkin and P Swinnerton-Dyer Some properties of partitions Proc London Math Soc 3, 4:84 06, K Bringmann, J Lovejoy, and R Osburn Rank and crank moments for overpartitions J Number Theory, 297: , S H Chan Generalized Lambert series identities Proc London Math Soc 3, 93: , A B Ekin Some properties of partitions in terms of crank Trans Amer Math Soc, 3525: , F G Garvan and C Jennings-Shaffer The spt-crank for overpartitions Acta Arith, 662:4 88, F G Garvan and H Yesilyurt Shifted and shiftless partition identities II Int J Number Theory, 3:43 84, J Lovejoy and R Osburn Rank differences for overpartitions Q J Math, 592: , 2008 J Lovejoy and R Osburn M 2 -rank differences for partitions without repeated odd parts J Théor Nombres Bordeaux, 22:33 334, J Lovejoy and R Osburn M 2 -rank differences for overpartitions Acta Arith, 442:93 22, L J Slater A new proof of Rogers s transformations of infinite series Proc London Math Soc 2, 53: , 95 Department of Mathematics, University of Florida, Gainesville, Florida 326, USA cjenningsshaffer@ufledu 20

arxiv: v1 [math.co] 25 Nov 2018

arxiv: v1 [math.co] 25 Nov 2018 The Unimodality of the Crank on Overpartitions Wenston J.T. Zang and Helen W.J. Zhang 2 arxiv:8.003v [math.co] 25 Nov 208 Institute of Advanced Study of Mathematics Harbin Institute of Technology, Heilongjiang

More information

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS

THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS THE FIRST POSITIVE RANK AND CRANK MOMENTS FOR OVERPARTITIONS GEORGE ANDREWS, SONG HENG CHAN, BYUNGCHAN KIM, AND ROBERT OSBURN Abstract. In 2003, Atkin Garvan initiated the study of rank crank moments for

More information

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS

FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS GEORGE E. ANDREWS, BRUCE C. BERNDT, SONG HENG CHAN, SUN KIM, AND AMITA MALIK. INTRODUCTION On pages and 7 in his Lost Notebook [3], Ramanujan recorded

More information

4-Shadows in q-series and the Kimberling Index

4-Shadows in q-series and the Kimberling Index 4-Shadows in q-series and the Kimberling Index By George E. Andrews May 5, 206 Abstract An elementary method in q-series, the method of 4-shadows, is introduced and applied to several poblems in q-series

More information

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION

SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION SELF-CONJUGATE VECTOR PARTITIONS AND THE PARITY OF THE SPT-FUNCTION GEORGE E ANDREWS FRANK G GARVAN AND JIE LIANG Abstract Let sptn denote the total number of appearances of the smallest parts in all the

More information

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS

IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS MIN-JOO JANG AND JEREMY LOVEJOY Abstract. We prove several combinatorial identities involving overpartitions whose smallest parts are even. These

More information

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions

Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions Integer Partitions With Even Parts Below Odd Parts and the Mock Theta Functions by George E. Andrews Key Words: Partitions, mock theta functions, crank AMS Classification Numbers: P84, P83, P8, 33D5 Abstract

More information

The spt-crank for Ordinary Partitions

The spt-crank for Ordinary Partitions The spt-crank for Ordinary Partitions William Y.C. Chen a,b, Kathy Q. Ji a and Wenston J.T. Zang a a Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China b Center for Applied

More information

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE

NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE NEW IDENTITIES INVOLVING SUMS OF THE TAILS RELATED TO REAL QUADRATIC FIELDS KATHRIN BRINGMANN AND BEN KANE To George Andrews, who has been a great inspiration, on the occasion of his 70th birthday Abstract.

More information

Alexander Berkovich and Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida

Alexander Berkovich and Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida Journal of Combinatorics and Number Theory JCNT 2009, Volume 1, Issue # 3, pp. 49-64 ISSN 1942-5600 c 2009 Nova Science Publishers, Inc. THE GBG-RANK AND t-cores I. COUNTING AND 4-CORES Alexander Berkovich

More information

arxiv: v2 [math.co] 16 Jan 2018

arxiv: v2 [math.co] 16 Jan 2018 GENERALIZED LAMBERT SERIES IDENTITIES AND APPLICATIONS IN RANK DIFFERENCES arxiv:18010443v2 [mathco] 1 Jan 2018 BIN WEI AND HELEN WJ ZHANG Abstract In this article, we prove two identities of generalized

More information

On an identity of Gessel and Stanton and the new little Göllnitz identities

On an identity of Gessel and Stanton and the new little Göllnitz identities On an identity of Gessel and Stanton and the new little Göllnitz identities Carla D. Savage Dept. of Computer Science N. C. State University, Box 8206 Raleigh, NC 27695, USA savage@csc.ncsu.edu Andrew

More information

RANK DIFFERENCES FOR OVERPARTITIONS

RANK DIFFERENCES FOR OVERPARTITIONS RANK DIFFERENCES FOR OVERPARTITIONS JEREMY LOVEJOY AND ROBERT OSBURN Abstract In 1954 Atkin Swinnerton-Dyer proved Dyson s conjectures on the rank of a partition by establishing formulas for the generating

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES. James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 19383, USA COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS

OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS OVERPARTITIONS AND GENERATING FUNCTIONS FOR GENERALIZED FROBENIUS PARTITIONS SYLVIE CORTEEL JEREMY LOVEJOY AND AE JA YEE Abstract. Generalized Frobenius partitions or F -partitions have recently played

More information

= (q) M+N (q) M (q) N

= (q) M+N (q) M (q) N A OVERPARTITIO AALOGUE OF THE -BIOMIAL COEFFICIETS JEHAE DOUSSE AD BYUGCHA KIM Abstract We define an overpartition analogue of Gaussian polynomials (also known as -binomial coefficients) as a generating

More information

arxiv: v1 [math.co] 25 Dec 2018

arxiv: v1 [math.co] 25 Dec 2018 ANDREWS-GORDON TYPE SERIES FOR SCHUR S PARTITION IDENTITY KAĞAN KURŞUNGÖZ arxiv:1812.10039v1 [math.co] 25 Dec 2018 Abstract. We construct an evidently positive multiple series as a generating function

More information

On a certain vector crank modulo 7

On a certain vector crank modulo 7 On a certain vector crank modulo 7 Michael D Hirschhorn School of Mathematics and Statistics University of New South Wales Sydney, NSW, 2052, Australia mhirschhorn@unsweduau Pee Choon Toh Mathematics &

More information

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES

COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES COMBINATORICS OF RAMANUJAN-SLATER TYPE IDENTITIES James McLaughlin Department of Mathematics, West Chester University, West Chester, PA 9383, USA jmclaughl@wcupa.edu Andrew V. Sills Department of Mathematical

More information

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION

COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION COMBINATORIAL PROOFS OF RAMANUJAN S 1 ψ 1 SUMMATION AND THE q-gauss SUMMATION AE JA YEE 1 Abstract. Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities

More information

arxiv: v2 [math.co] 3 May 2016

arxiv: v2 [math.co] 3 May 2016 VARIATION ON A THEME OF NATHAN FINE NEW WEIGHTED PARTITION IDENTITIES arxiv:16050091v [mathco] 3 May 016 ALEXANDER BERKOVICH AND ALI KEMAL UNCU Dedicated to our friend Krishna Alladi on his 60th birthday

More information

Singular Overpartitions

Singular Overpartitions Singular Overpartitions George E. Andrews Dedicated to the memory of Paul Bateman and Heini Halberstam. Abstract The object in this paper is to present a general theorem for overpartitions analogous to

More information

The Bhargava-Adiga Summation and Partitions

The Bhargava-Adiga Summation and Partitions The Bhargava-Adiga Summation and Partitions By George E. Andrews September 12, 2016 Abstract The Bhargava-Adiga summation rivals the 1 ψ 1 summation of Ramanujan in elegance. This paper is devoted to two

More information

Cranks in Ramanujan s Lost Notebook

Cranks in Ramanujan s Lost Notebook Cranks in Ramanujan s Lost Notebook Manjil P. Saikia Department of Mathematical Sciences, Tezpur University, Napaam Dist. - Sonitpur, Pin - 784028 India manjil@gonitsora.com January 22, 2014 Abstract We

More information

arxiv: v1 [math.nt] 22 Jan 2019

arxiv: v1 [math.nt] 22 Jan 2019 Factors of some truncated basic hypergeometric series Victor J W Guo School of Mathematical Sciences, Huaiyin Normal University, Huai an 223300, Jiangsu People s Republic of China jwguo@hytceducn arxiv:190107908v1

More information

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava

MOCK THETA FUNCTIONS AND THETA FUNCTIONS. Bhaskar Srivastava NEW ZEALAND JOURNAL OF MATHEMATICS Volume 36 (2007), 287 294 MOCK THETA FUNCTIONS AND THETA FUNCTIONS Bhaskar Srivastava (Received August 2004). Introduction In his last letter to Hardy, Ramanujan gave

More information

Combinatorial Analysis of the Geometric Series

Combinatorial Analysis of the Geometric Series Combinatorial Analysis of the Geometric Series David P. Little April 7, 205 www.math.psu.edu/dlittle Analytic Convergence of a Series The series converges analytically if and only if the sequence of partial

More information

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS

CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS #A7 INTEGERS 14 (2014) CONGRUENCES FOR GENERALIZED FROBENIUS PARTITIONS WITH AN ARBITRARILY LARGE NUMBER OF COLORS Frank G. Garvan Department of Mathematics, University of Florida, Gainesville, Florida

More information

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM

ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM q-hypergeometric PROOFS OF POLYNOMIAL ANALOGUES OF THE TRIPLE PRODUCT IDENTITY, LEBESGUE S IDENTITY AND EULER S PENTAGONAL NUMBER THEOREM S OLE WARNAAR Abstract We present alternative, q-hypergeometric

More information

REFINEMENTS OF SOME PARTITION INEQUALITIES

REFINEMENTS OF SOME PARTITION INEQUALITIES REFINEMENTS OF SOME PARTITION INEQUALITIES James Mc Laughlin Department of Mathematics, 25 University Avenue, West Chester University, West Chester, PA 9383 jmclaughlin2@wcupa.edu Received:, Revised:,

More information

DYSON'S CRANK OF A PARTITION

DYSON'S CRANK OF A PARTITION BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number, April 988 DYSON'S CRANK OF A PARTITION GEORGE E. ANDREWS AND F. G. GARVAN. Introduction. In [], F. J. Dyson defined the rank

More information

PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS

PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 12, December 1997, Pages 5001 5019 S 0002-9947(97)01831-X PARTITION IDENTITIES INVOLVING GAPS AND WEIGHTS KRISHNASWAMI ALLADI Abstract.

More information

CONGRUENCES IN ORDERED PAIRS OF PARTITIONS

CONGRUENCES IN ORDERED PAIRS OF PARTITIONS IJMMS 2004:47, 2509 252 PII. S0672043439 http://ijmms.hindawi.com Hindawi Publishing Corp. CONGRUENCES IN ORDERED PAIRS OF PARTITIONS PAUL HAMMOND and RICHARD LEWIS Received 28 November 2003 and in revised

More information

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS

#A22 INTEGERS 17 (2017) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS #A22 INTEGERS 7 (207) NEW CONGRUENCES FOR `-REGULAR OVERPARTITIONS Shane Chern Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania shanechern@psu.edu Received: 0/6/6,

More information

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222

ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany, New York, 12222 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (007), #A16 ON CONGRUENCE PROPERTIES OF CONSECUTIVE VALUES OF P(N, M) Brandt Kronholm Department of Mathematics, University at Albany, Albany,

More information

Arithmetic properties of overcubic partition pairs

Arithmetic properties of overcubic partition pairs Arithmetic properties of overcubic partition pairs Bernard L.S. Lin School of Sciences Jimei University Xiamen 3101, P.R. China linlsjmu@13.com Submitted: May 5, 014; Accepted: Aug 7, 014; Published: Sep

More information

arxiv: v4 [math.co] 7 Nov 2016

arxiv: v4 [math.co] 7 Nov 2016 VARIATION ON A THEME OF NATHAN FINE. NEW WEIGHTED PARTITION IDENTITIES arxiv:605.009v4 [math.co] 7 Nov 06 ALEXANDER BERKOVICH AND ALI KEMAL UNCU Dedicated to our friend, Krishna Alladi, on his 60th birthday.

More information

m=1 . ( bzq; q2 ) k (zq 2 ; q 2 ) k . (1 + bzq4k 1 ) (1 + bzq 2k 1 ). Here and in what follows, we have made use of the standard notation (a) n = j=0

m=1 . ( bzq; q2 ) k (zq 2 ; q 2 ) k . (1 + bzq4k 1 ) (1 + bzq 2k 1 ). Here and in what follows, we have made use of the standard notation (a) n = j=0 PARTITIONS WITH NON-REPEATING ODD PARTS AND COMBINATORIAL IDENTITIES Krishnaswami Alladi* Abstract: Continuing our earlier work on partitions with non-repeating odd parts and q-hypergeometric identities,

More information

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017)

SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ω(q) AND ν(q) S.N. Fathima and Utpal Pore (Received October 13, 2017) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 47 2017), 161-168 SOME CONGRUENCES FOR PARTITION FUNCTIONS RELATED TO MOCK THETA FUNCTIONS ωq) AND νq) S.N. Fathima and Utpal Pore Received October 1, 2017) Abstract.

More information

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT

FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT FOUR IDENTITIES RELATED TO THIRD ORDER MOCK THETA FUNCTIONS IN RAMANUJAN S LOST NOTEBOOK HAMZA YESILYURT Abstract. We prove, for the first time, a series of four related identities from Ramanujan s lost

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit, and Yee introduced partition

More information

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS

THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS The Pennsylvania State University The Graduate School Department of Mathematics THE BAILEY TRANSFORM AND CONJUGATE BAILEY PAIRS A Thesis in Mathematics by Michael J. Rowell c 2007 Michael J. Rowell Submitted

More information

Nearly Equal Distributions of the Rank and the Crank of Partitions

Nearly Equal Distributions of the Rank and the Crank of Partitions Nearly Equal Distributions of the Rank and the Crank of Partitions William Y.C. Chen, Kathy Q. Ji and Wenston J.T. Zang Dedicated to Professor Krishna Alladi on the occasion of his sixtieth birthday Abstract

More information

RANK AND CONGRUENCES FOR OVERPARTITION PAIRS

RANK AND CONGRUENCES FOR OVERPARTITION PAIRS RANK AND CONGRUENCES FOR OVERPARTITION PAIRS KATHRIN BRINGMANN AND JEREMY LOVEJOY Abstract. The rank of an overpartition pair is a generalization of Dyson s rank of a partition. The purpose of this paper

More information

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS

CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS Bull. Aust. Math. Soc. 9 2016, 400 409 doi:10.1017/s000497271500167 CONGRUENCES MODULO 2 FOR CERTAIN PARTITION FUNCTIONS M. S. MAHADEVA NAIKA, B. HEMANTHKUMAR H. S. SUMANTH BHARADWAJ Received 9 August

More information

ASYMPTOTICS FOR RANK AND CRANK MOMENTS

ASYMPTOTICS FOR RANK AND CRANK MOMENTS ASYMPTOTICS FOR RANK AND CRANK MOMENTS KATHRIN BRINGMANN, KARL MAHLBURG, AND ROBERT C. RHOADES Abstract. Moments of the partition rank and crank statistics have been studied for their connections to combinatorial

More information

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK

MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MODULAR FORMS ARISING FROM Q(n) AND DYSON S RANK MARIA MONKS AND KEN ONO Abstract Let R(w; q) be Dyson s generating function for partition ranks For roots of unity ζ it is known that R(ζ; q) and R(ζ; /q)

More information

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q)

CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ωq) AND νq) GEORGE E. ANDREWS, DONNY PASSARY, JAMES A. SELLERS, AND AE JA YEE Abstract. Recently, Andrews, Dixit and Yee introduced partition

More information

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS BRUCE C. BERNDT 1 and AE JA YEE 1. Introduction Recall that the q-gauss summation theorem is given by (a; q) n (b; q) ( n c ) n (c/a; q) (c/b; q) =, (1.1)

More information

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2

A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g 2 A PARTITION IDENTITY AND THE UNIVERSAL MOCK THETA FUNCTION g KATHRIN BRINGMANN, JEREMY LOVEJOY, AND KARL MAHLBURG Abstract. We prove analytic and combinatorial identities reminiscent of Schur s classical

More information

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier)

PARITY OF THE PARTITION FUNCTION. (Communicated by Don Zagier) ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Issue 1, 1995 PARITY OF THE PARTITION FUNCTION KEN ONO (Communicated by Don Zagier) Abstract. Let p(n) denote the number

More information

THE METHOD OF WEIGHTED WORDS REVISITED

THE METHOD OF WEIGHTED WORDS REVISITED THE METHOD OF WEIGHTED WORDS REVISITED JEHANNE DOUSSE Abstract. Alladi and Gordon introduced the method of weighted words in 1993 to prove a refinement and generalisation of Schur s partition identity.

More information

ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES

ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES Bull. Aust. Math. Soc. 79 (2009, 507 512 doi:10.1017/s0004972709000136 ELEMENTARY PROOFS OF VARIOUS FACTS ABOUT 3-CORES MICHAEL D. HIRSCHHORN and JAMES A. SELLERS (Received 18 September 2008 Abstract Using

More information

= i 0. a i q i. (1 aq i ).

= i 0. a i q i. (1 aq i ). SIEVED PARTITIO FUCTIOS AD Q-BIOMIAL COEFFICIETS Fran Garvan* and Dennis Stanton** Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved

More information

The part-frequency matrices of a partition

The part-frequency matrices of a partition The part-frequency matrices of a partition William J. Keith, Michigan Tech Michigan Technological University Kliakhandler Conference 2015 August 28, 2015 A partition of an integer n is a sequence λ = (λ

More information

Counting k-marked Durfee Symbols

Counting k-marked Durfee Symbols Counting k-marked Durfee Symbols Kağan Kurşungöz Department of Mathematics The Pennsylvania State University University Park PA 602 kursun@math.psu.edu Submitted: May 7 200; Accepted: Feb 5 20; Published:

More information

Two truncated identities of Gauss

Two truncated identities of Gauss Two truncated identities of Gauss Victor J W Guo 1 and Jiang Zeng 2 1 Department of Mathematics, East China Normal University, Shanghai 200062, People s Republic of China jwguo@mathecnueducn, http://mathecnueducn/~jwguo

More information

COMBINATORIAL INTERPRETATIONS OF RAMANUJAN S TAU FUNCTION

COMBINATORIAL INTERPRETATIONS OF RAMANUJAN S TAU FUNCTION COMBINATORIAL INTERPRETATIONS OF RAMANUJAN S TAU FUNCTION FRANK GARVAN AND MICHAEL J. SCHLOSSER Abstract. We use a q-series identity by Ramanujan to give a combinatorial interpretation of Ramanujan s tau

More information

11-Dissection and Modulo 11 Congruences Properties for Partition Generating Function

11-Dissection and Modulo 11 Congruences Properties for Partition Generating Function Int. J. Contemp. Math. Sciences, Vol. 9, 2014, no. 1, 1-10 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.310116 11-Dissection and Modulo 11 Congruences Properties for Partition Generating

More information

Generating Functions of Partitions

Generating Functions of Partitions CHAPTER B Generating Functions of Partitions For a complex sequence {α n n 0,, 2, }, its generating function with a complex variable q is defined by A(q) : α n q n α n [q n ] A(q). When the sequence has

More information

On m-ary Overpartitions

On m-ary Overpartitions On m-ary Overpartitions Øystein J. Rødseth Department of Mathematics, University of Bergen, Johs. Brunsgt. 1, N 5008 Bergen, Norway E-mail: rodseth@mi.uib.no James A. Sellers Department of Mathematics,

More information

Polynomial analogues of Ramanujan congruences for Han s hooklength formula

Polynomial analogues of Ramanujan congruences for Han s hooklength formula Polynomial analogues of Ramanujan congruences for Han s hooklength formula William J. Keith CELC, University of Lisbon Email: william.keith@gmail.com Detailed arxiv preprint: 1109.1236 Context Partition

More information

A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms

A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms Jennings-Shaffer C. & Swisher H. (014). A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic

More information

An Involution for the Gauss Identity

An Involution for the Gauss Identity An Involution for the Gauss Identity William Y. C. Chen Center for Combinatorics Nankai University, Tianjin 300071, P. R. China Email: chenstation@yahoo.com Qing-Hu Hou Center for Combinatorics Nankai

More information

SP T -FUNCTION AND ITS PROPERTIES

SP T -FUNCTION AND ITS PROPERTIES SP T -FUNCTION AND ITS PROPERTIES a thesis submitted to the department of mathematics and the graduate school of engineering and science of bilkent university in partial fulfillment of the requirements

More information

arxiv: v1 [math.co] 18 Sep 2014

arxiv: v1 [math.co] 18 Sep 2014 BRESSOUD STYLE IDENTITIES FOR REGULAR PARTITIONS AND OVERPARTITIONS KAĞAN KURŞUNGÖZ arxiv:1409.5221v1 [math.co] 18 Sep 2014 Abstract. We construct a family of partition identities which contain the following

More information

arxiv: v1 [math.nt] 28 Dec 2018

arxiv: v1 [math.nt] 28 Dec 2018 THE CONVERGENCE AND DIVERGENCE OF q-continued FRACTIONS OUTSIDE THE UNIT CIRCLE arxiv:82.29v [math.nt] 28 Dec 208 DOUGLAS BOWMAN AND JAMES MC LAUGHLIN Abstract. We consider two classes of q-continued fraction

More information

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES

A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES A PERIODIC APPROACH TO PLANE PARTITION CONGRUENCES MATTHEW S. MIZUHARA, JAMES A. SELLERS, AND HOLLY SWISHER Abstract. Ramanujan s celebrated congruences of the partition function p(n have inspired a vast

More information

Part II. The power of q. Michael D. Hirschhorn. A course of lectures presented at Wits, July 2014.

Part II. The power of q. Michael D. Hirschhorn. A course of lectures presented at Wits, July 2014. m.hirschhorn@unsw.edu.au most n 1(1 q n ) 3 = ( 1) n (2n+1)q (n2 +n)/2. Note that the power on q, (n 2 +n)/2 0, 1 or 3 mod 5. And when (n 2 +n)/2 3 (mod 5), n 2 (mod 5), and then the coefficient, (2n+1)

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE Abstract. Combinatorial proofs

More information

Elementary proofs of congruences for the cubic and overcubic partition functions

Elementary proofs of congruences for the cubic and overcubic partition functions AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 602) 204), Pages 9 97 Elementary proofs of congruences for the cubic and overcubic partition functions James A. Sellers Department of Mathematics Penn State

More information

Some congruences for Andrews Paule s broken 2-diamond partitions

Some congruences for Andrews Paule s broken 2-diamond partitions Discrete Mathematics 308 (2008) 5735 5741 www.elsevier.com/locate/disc Some congruences for Andrews Paule s broken 2-diamond partitions Song Heng Chan Division of Mathematical Sciences, School of Physical

More information

Eulerian series in q-series and modular forms. Youn Seo Choi

Eulerian series in q-series and modular forms. Youn Seo Choi Eulerian series in q-series and modular forms Youn Seo Choi abstrat Eulerian series is very interesting power series even though we do not know any single method to handle the general Eulerian series However,

More information

Mock Theta Function Identities Deriving from Bilateral Basic Hypergeometric Series

Mock Theta Function Identities Deriving from Bilateral Basic Hypergeometric Series Moc Theta Function Identities Deriving from Bilateral Basic Hypergeometric Series James Mc Laughlin Abstract The bilateral series corresponding to many of the third- fifth- sixth- and eighth order moc

More information

COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS

COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS COMBINATORIAL PROOFS OF GENERATING FUNCTION IDENTITIES FOR F-PARTITIONS AE JA YEE 1 Abstract In his memoir in 1984 George E Andrews introduces many general classes of Frobenius partitions (simply F-partitions)

More information

Some theorems on the explicit evaluations of singular moduli 1

Some theorems on the explicit evaluations of singular moduli 1 General Mathematics Vol 17 No 1 009) 71 87 Some theorems on the explicit evaluations of singular moduli 1 K Sushan Bairy Abstract At scattered places in his notebooks Ramanujan recorded some theorems for

More information

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS

RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS RAMANUJAN S LOST NOTEBOOK: COMBINATORIAL PROOFS OF IDENTITIES ASSOCIATED WITH HEINE S TRANSFORMATION OR PARTIAL THETA FUNCTIONS BRUCE C. BERNDT, BYUNGCHAN KIM, AND AE JA YEE 2 Abstract. Combinatorial proofs

More information

A Fine Dream. George E. Andrews (1) January 16, 2006

A Fine Dream. George E. Andrews (1) January 16, 2006 A Fine Dream George E. Andrews () January 6, 2006 Abstract We shall develop further N. J. Fine s theory of three parameter non-homogeneous first order q-difference equations. The obect of our work is to

More information

A generalisation of the quintuple product identity. Abstract

A generalisation of the quintuple product identity. Abstract A generalisation of the quintuple product identity Abstract The quintuple identity has appeared many times in the literature. Indeed, no fewer than 12 proofs have been given. We establish a more general

More information

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7

A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 A GENERALIZATION OF THE FARKAS AND KRA PARTITION THEOREM FOR MODULUS 7 S. OLE WARNAAR Dedicated to George Andrews on the occasion of his 65th birthday Abstract. We prove generalizations of some partition

More information

SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY

SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY Math J Okayama Univ 51 (2009, 121 131 SOME IDENTITIES RELATING MOCK THETA FUNCTIONS WHICH ARE DERIVED FROM DENOMINATOR IDENTITY Yukari SANADA Abstract We show that there exists a new connection between

More information

Arithmetic Relations for Overpartitions

Arithmetic Relations for Overpartitions Arithmetic Relations for Overpartitions Michael D. Hirschhorn School of Mathematics, UNSW, Sydney 2052, Australia m.hirschhorn@unsw.edu.au James A. Sellers Department of Mathematics The Pennsylvania State

More information

New congruences for overcubic partition pairs

New congruences for overcubic partition pairs New congruences for overcubic partition pairs M. S. Mahadeva Naika C. Shivashankar Department of Mathematics, Bangalore University, Central College Campus, Bangalore-560 00, Karnataka, India Department

More information

Generating Function for M(m, n)

Generating Function for M(m, n) MPRA Munich Personal RePEc Archive Generating Function for M(m, n) Haradhan Mohajan Assistant Professor, Premer University, Chittagong, Bangladesh. 4 April 4 Online at https://mpra.ub.uni-muenchen.de/8594/

More information

arxiv: v1 [math.nt] 23 Jan 2019

arxiv: v1 [math.nt] 23 Jan 2019 SOME NEW q-congruences FOR TRUNCATED BASIC HYPERGEOMETRIC SERIES arxiv:1901.07962v1 [math.nt] 23 Jan 2019 VICTOR J. W. GUO AND MICHAEL J. SCHLOSSER Abstract. We provide several new q-congruences for truncated

More information

Congruences in ordered pairs of partitions

Congruences in ordered pairs of partitions Congruences in ordered pairs of partitions Article Unspecified) Hammond, Paul and Lewis, Richard 2004) Congruences in ordered pairs of partitions. International Journal of Mathematics and Mathematical

More information

RAMANUJAN-TYPE CONGRUENCES MODULO POWERS OF 5 AND 7. D. Ranganatha

RAMANUJAN-TYPE CONGRUENCES MODULO POWERS OF 5 AND 7. D. Ranganatha Indian J. Pure Appl. Math., 83: 9-65, September 07 c Indian National Science Academy DOI: 0.007/s36-07-037- RAMANUJAN-TYPE CONGRUENCES MODULO POWERS OF 5 AND 7 D. Ranganatha Department of Studies in Mathematics,

More information

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER

HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER THE q-binomial THEOREM HENG HUAT CHAN, SONG HENG CHAN AND SHAUN COOPER Abstract We prove the infinite q-binomial theorem as a consequence of the finite q-binomial theorem 1 The Finite q-binomial Theorem

More information

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS JEREMY LOVEJOY Abstract. We study the generating function for (n), the number of partitions of a natural number n into distinct parts. Using

More information

On q-series Identities Arising from Lecture Hall Partitions

On q-series Identities Arising from Lecture Hall Partitions On q-series Identities Arising from Lecture Hall Partitions George E. Andrews 1 Mathematics Department, The Pennsylvania State University, University Par, PA 16802, USA andrews@math.psu.edu Sylvie Corteel

More information

CHIRANJIT RAY AND RUPAM BARMAN

CHIRANJIT RAY AND RUPAM BARMAN ON ANDREWS INTEGER PARTITIONS WITH EVEN PARTS BELOW ODD PARTS arxiv:1812.08702v1 [math.nt] 20 Dec 2018 CHIRANJIT RAY AND RUPAM BARMAN Abstract. Recently, Andrews defined a partition function EOn) which

More information

arxiv:math/ v2 [math.co] 19 Sep 2005

arxiv:math/ v2 [math.co] 19 Sep 2005 A COMBINATORIAL PROOF OF THE ROGERS-RAMANUJAN AND SCHUR IDENTITIES arxiv:math/04072v2 [math.co] 9 Sep 2005 CILANNE BOULET AND IGOR PAK Abstract. We give a combinatorial proof of the first Rogers-Ramanujan

More information

New modular relations for the Rogers Ramanujan type functions of order fifteen

New modular relations for the Rogers Ramanujan type functions of order fifteen Notes on Number Theory and Discrete Mathematics ISSN 532 Vol. 20, 204, No., 36 48 New modular relations for the Rogers Ramanujan type functions of order fifteen Chandrashekar Adiga and A. Vanitha Department

More information

What is the crank of a partition? Daniel Glasscock, July 2014

What is the crank of a partition? Daniel Glasscock, July 2014 What is the crank of a partition? Daniel Glasscock, July 2014 These notes complement a talk given for the What is...? seminar at the Ohio State University. Introduction The crank of an integer partition

More information

Congruence Properties of Partition Function

Congruence Properties of Partition Function CHAPTER H Congruence Properties of Partition Function Congruence properties of p(n), the number of partitions of n, were first discovered by Ramanujan on examining the table of the first 200 values of

More information

RAMANUJAN S MOST BEAUTIFUL IDENTITY

RAMANUJAN S MOST BEAUTIFUL IDENTITY RAMANUJAN S MOST BEAUTIFUL IDENTITY MICHAEL D. HIRSCHHORN Abstract We give a simple proof of the identity which for Hardy represented the best of Ramanujan. On the way, we give a new proof of an important

More information

arxiv: v1 [math.co] 8 Sep 2017

arxiv: v1 [math.co] 8 Sep 2017 NEW CONGRUENCES FOR BROKEN k-diamond PARTITIONS DAZHAO TANG arxiv:170902584v1 [mathco] 8 Sep 2017 Abstract The notion of broken k-diamond partitions was introduced by Andrews and Paule Let k (n) denote

More information

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS.

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. MATTHEW BOYLAN AND KENNY BROWN Abstract. Recent works of Garvan [2] and Y. Yang [7], [8] concern a certain family of half-integral

More information

New Multiple Harmonic Sum Identities

New Multiple Harmonic Sum Identities New Multiple Harmonic Sum Identities Helmut Prodinger Department of Mathematics University of Stellenbosch 760 Stellenbosch, South Africa hproding@sun.ac.za Roberto Tauraso Dipartimento di Matematica Università

More information

An Algebraic Identity of F.H. Jackson and its Implications for Partitions.

An Algebraic Identity of F.H. Jackson and its Implications for Partitions. An Algebraic Identity of F.H. Jackson and its Implications for Partitions. George E. Andrews ( and Richard Lewis (2 ( Department of Mathematics, 28 McAllister Building, Pennsylvania State University, Pennsylvania

More information