Dimensionality Reduction Notes 1

Size: px
Start display at page:

Download "Dimensionality Reduction Notes 1"

Transcription

1 Dmensonalty Reducton Notes 1 Jelan Nelson mnlek@seas.harvard.edu August 10, Prelmnares Here we collect some notaton and basc lemmas used throughout ths note. Throughout, for a random varable X, X p denotes (E X p ) 1/p. It s known that p s a norm for any p 1 (Mnkowsk s nequalty). It s also known X p X q whenever p q. Henceforth, whenever we dscuss p, we wll assume p 1. Lemma 1 (Khntchne nequalty). For any p 1, x R n, and (σ ) ndependent Rademachers, σ x p p x 2 Proof. Wthout loss of generalty we can assume p s an even nteger. Consder (g ) ndependent gaussans of mean zero and varance 1. Expand E( σ x ) p nto a sum of monomals. Any monomal wth odd exponents vanshes, as n the gaussan case. Meanwhle other monomals are nonnegatve wth all Rademacher moments beng 1, whle n the gaussan case the moments are at least 1. Thus the Rademacher case s term-by-term domnated by the gaussan case and σ x p g x p. But g x s a gaussan wth mean zero and varance x 2 2, and hence ts p-norm s x 2 (p!/(2 p/2 (p/2)!)) 1/p. We often use Jensen s nequalty below, especally for F (x) = x p (p 1). Lemma 2 (Jensen s nequalty). For F convex, F (E X) E F (X). 1

2 Before provng a couple concentraton nequaltes, we prove a lemma now whch lets us freely obtan tal bounds from moment bounds and vce versa (often we prove a moment bound and later nvoke a tal bound, or vce versa, wthout even mentonng any justfcaton). Lemma 3. Let Z be a scalar random varable. Consder the followng statements: (1a) There exsts σ > 0 s.t. p 1, Z p C 1 σ p. (1b) There exsts σ > 0 s.t. λ > 0, P( Z > λ) C 2 e C 2 λ2 /σ 2. (2a) There exsts K > 0 s.t. p 1, Z p C 3 Kp. (2b) There exsts K > 0 s.t. λ > 0, P( Z > λ) C 4 e C 4 λ/k. (3a) There exst σ, K > 0 s.t. p 1, Z p C 5 (σ p + Kp). (3b) There exst σ, K > 0 s.t. λ > 0, P( Z > λ) C 6 (e C 6 λ2 /σ 2 + e C 6 λ/k ). Then 1a s equvalent to 1b, 2a s equvalent to 2b, and 3a s equvalent to 3b, where the constants C, C n each case change by at most some absolute constant factor. Proof. We wll show only that 1a s equvalent to 1b; the other cases are argued dentcally. To show that 1a mples 1b, by Markov s nequalty ( ) C P(Z > λ) λ p E Z p 2 1 σ 2 p/2. λ 2 p Statement 1b follows by choosng p = max{1, 2C1λ 2 2 /σ 2 }. To show that 1b mples 1a, by ntegraton by parts we have E Z p = 0 px p 1 P( Z > λ)dλ 2C 2 p 0 px p 1 e C 2 λ2 /σ 2 dλ. The ntegral on the rght hand sde s exactly the pth moment of a gaussan random varable wth mean zero and varance σ 2 = σ 2 /(2C 2). Statement 1a then follows snce such a gaussan has p-norm Θ(σ p). 2

3 Now, the followng s a bread-and-butter trck for boundng pth moments of sums of ndependent random varables. A more general verson of ths lemma can be found as Lemma 6.3 n [LT91]. Lemma 4 (Symmetrzaton / Desymmetrzaton). Let Z 1,..., Z n be ndependent random varables. Let r 1,..., r n be ndependent Rademachers. Then Z E Z p 2 r Z p (symmetrzaton nequalty) and (1/2) r (Z E Z ) p Z p (desymmetrzaton nequalty). Proof. For the frst nequalty, let Y 1,..., Y n be ndependent of the Z but dentcally dstrbuted to them. Then Z E Z p = Z E Y p Y (Z Y ) p (Jensen) = r (Z Y ) p (1) 2 r X p (trangle nequalty) (1) follows snce the X Y are ndependent across and symmetrc. For the second nequalty, let Y be as before. Then r (Z E Z ) p = E r (Z Y ) p Y r (Z Y ) p (Jensen) = (Z Y ) p 2 Z p (trangle nequalty) 3

4 Lemma 5 (Decouplng [dlpng99]). Let x 1,..., x n be ndependent and mean zero, and x 1,..., x n dentcally dstrbuted as the x and ndependent of them. Then for any (a,j ) and for all p 1 j a,j x x j p 4,j a,j x x j p Proof. Let η 1,..., η n be ndependent Bernoull random varables each of expectaton 1/2. Then a,j x x j p = 4 E a,j x x j η 1 η j p η j j 4 j a,j x x j η (1 η j ) p (Jensen) (2) Hence there must be some fxed vector η {0, 1} n whch acheves a,j x x j η (1 η j ) p a,j x x j p j S where S = { : η = 1}. Let x S denote the S -dmensonal vector correspondng to the x for S. Then a,j x x j p = a,j x x j p S j / S S j / S = E E a,j x x xs j p ( E x = E x x S j = 0),j,j j / S a,j x x j p (Jensen) The followng proof of the Hanson-Wrght was shared to me by Sjoerd Drksen (personal communcaton). Theorem 1 (Hanson-Wrght nequalty [HW71]). For σ 1,..., σ n ndependent Rademachers and A R n n real and symmetrc, for all p 1 σ T Aσ E σ T Aσ p p A F + p A. 4

5 Proof. Wthout loss of generalty we assume n ths proof that p 2 (so that p/2 1). Then σ T Aσ E σ T Aσ p σ T Aσ p (Lemma 5) (3) p Ax 2 p (Khntchne) (4) = p Ax 2 2 1/2 p/2 (5) p Ax 2 2 1/2 p p ( A 2 F + Ax 2 2 E Ax 2 2 p ) 1/2 (trangle nequalty) p A F + p Ax 2 2 E Ax 2 2 1/2 p p A F + p x T A T Ax 1/2 p (Lemma 5) p A F + p 3/4 A T Ax 2 1/2 p (Khntchne) p A F + p 3/4 A 1/2 Ax 2 p 1/2 (6) Wrtng E = Ax 2 1/2 p and comparng (4) and (6), we see that for some constant C > 0, E 2 Cp 1/4 A 1/2 E C A F 0. Thus E must be smaller than the larger root of the above quadratc equaton, mplyng our desred upper bound on E 2. Remark 1. The square root trck n the proof of the Hanson-Wrght nequalty above s qute handy and can be used to prove several moment nequaltes (for example, you wll see how to prove the Bernsten nequalty wth t n tomorrow s lecture). As far as I am aware, the trck was frst used n a work of Rudelson [Rud99]. Remark 2. We could have upper bounded Eq. (5) by p A F + p Ax 2 2 E Ax 2 2 1/2 p/2 by the trangle nequalty. Now notce we have bounded the pth central moment of a symmetrc quadratc form (3) by the p/2th moment also of a symmetrc quadratc form. Wrtng p = 2 k, ths observaton leads to a proof by nducton on k, whch was the approach used n [DKN10]. 5

6 2 Johnson-Lndenstrauss (JL) lemma Frst we prove the Dstrbutonal JL Lemma (DJL). Lemma 6. DJL Lemma For any nteger n > 1 and ε, δ (0, 1/2), there exsts a dstrbuton D ε,δ over R m n for m ε 2 log(1/δ)) such that for any x R n of unt Eucldean norm, P ( Πx > ε) < δ Π D ε,δ Proof. Wrte Π,j = σ,j / m, where the σ,j are ndependent Rademachers. Also overload σ to mean these Rademachers arranged as a vector of length mn, by concatenatng rows of Π. Note then Πx 2 2 = A x σ 2 2 where Thus A x = 1 m x T x T (7) 0 0 x T P( Πx > ε) = P( A x σ 2 2 E A x σ 2 2 > ε), where we see that the rght-hand sde s readly handled by the Hanson- Wrght nequalty Theorem 1 wth A = A T x A x. Now observe A s a blockdagonal matrx wth each block equalng (1/m)xx T, and thus A = x 2 2/m = 1/m. We also have A 2 F = 1/m. Thus Hanson-Wrght yelds P( Πx > ε) e Cε2m + e Cεm, whch for ε < 1 s at most δ for m ε 2 log(1/δ). The followng s what s usually referred to as the Johnson-Lndenstrauss (JL) lemma [JL84]. In ths note we typcally refer to t as the Metrc JL lemma (or MJL) to dstngush t from DJL above. At some ponts we smply say JL nstead of DJL or MJL, but the verson meant wll be understood from context. 6

7 Corollary 1 (Metrc JL lemma (MJL)). For any X = {x 1,..., x N } R n and 0 < ε < 1/2, there exsts f : X R m for m = O(ε 2 log N) such that for all 1 < j N, (1 ε) x x j 2 f(x ) f(x j ) 2 (1 + ε) x x j 2. (8) Proof. Let D ε,δ be as n DJL wth δ < 1/ ( ) N 2. Consder a random f, where f(x) = Πx for Π drawn from D ε,δ. By DJL, each vector of the form (x x j )/ x x j 2 has ts norm preserved up to 1 + ε wth probablty strctly larger than 1 1/ ( ) N 2. Thus by a unon bound over all, j, all such vectors are preserved wth postve probablty, showng exstence of the desred f. 2.1 Example applcaton: k-means clusterng In the k-means clusterng problem the nput conssts of x 1,..., x N R n and a postve nteger k, and the goal s to output some partton P of [n] nto k dsjont subsets P 1,..., P k as well as some y = (y 1,..., y k ) (R n ) k (the y need not be equal to any of the x and can be chosen arbtrarly) so as to mnmze the cost functon cost P,y (x 1,..., x N ) = k j=1 P j x y j 2 2. That s, the x are clustered nto k clusters accordng to P, and the cost of a gven clusterng s the sum of squared Eucldean dstances to the cluster centers (the y j s). Unfortunately fndng the optmal clusterng for k-means s NP-hard, however effcent approxmaton algorthms do exst whch fnd a clusterngs that are close to optmal. It s easy to show, e.g. by takng the gradent of the cost functon, that for a fxed partton P of [n], the optmal choce of cluster centers y for that gven P s the one where, for the P j of postve sze, y j = (1/ P j ) P j x. Thus we can restrct our attenton to just optmzng over P. For a set of nput ponts X, we let cost P (X) denote nf y cost P,y (X). Lemma 7. Let the nput ponts to k-means be X = {x 1,..., x n }. Then for any 0 < ε < 1/2, f f : X R m s such that, j (1 ε) x x j 2 2 f(x ) f(x j ) 2 2 (1 + ε) x x j 2 2 7

8 then for ˆP a γ-approxmate optmal clusterng for f(x) and P an optmal clusterng for X, t holds that ( ) 1 + ε cost(x) γ cost ˆP 1 ε (X). P Proof. Fx a partton P of [n] and wrte P = (P 1,..., P k ). Then cost (X) = x 1 x 2 2 P P j j [k] P j P j = 1 x x, x + x 2 2 P j j [k] P j P j P j P j = 1 ( ) x x 2 2 x, x P j 2 j [k] P j P j = 1 x x P j j [k] P j P j Thus f f satsfes the condton of the lemma, then (1 ε) cost(x) cost(f(x)) (1 + ε) cost (X) P P for all parttons P smultaneously. Thus we have (1 ε) cost(x) cost(f(x)) γ cost(f(x)) γ (1 + ε) cost (X). ˆP ˆP P P P The lemma follows by comparng the rght hand sde wth the left. References [DKN10] Ilas Dakonkolas, Danel M. Kane, and Jelan Nelson. Bounded ndependence fools degree-2 threshold functons. In 51th Annual IEEE Symposum on Foundatons of Computer Scence (FOCS), pages 11 20, [dlpng99] Vctor de la Peña and Evarst Gné. Decouplng: From dependence to ndependence. Probablty and ts Applcatons. Sprnger- Verlag, New York,

9 [HW71] [JL84] Davd Lee Hanson and Farroll Tm Wrght. A bound on tal probabltes for quadratc forms n ndependent random varables. Ann. Math. Statst., 42: , Wllam B. Johnson and Joram Lndenstrauss. Extensons of Lpschtz mappngs nto a Hlbert space. Contemporary Mathematcs, 26: , [LT91] Mchel Ledoux and Mchel Talagrand. Probablty n Banach spaces. Sprnger-Verlag, Berln, [Rud99] Mark Rudelson. Random vectors n the sotropc poston. J. Functonal Analyss, 164(1):60 72,

CIS 700: algorithms for Big Data

CIS 700: algorithms for Big Data CIS 700: algorthms for Bg Data Lecture 5: Dmenson Reducton Sldes at htt://grgory.us/bg-data-class.html Grgory Yaroslavtsev htt://grgory.us Today Dmensonalty reducton AMS as dmensonalty reducton Johnson-Lndenstrauss

More information

HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION

HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION MARK RUDELSON AND ROMAN VERSHYNIN Abstract. In ths expostory note, we gve a modern proof of Hanson-Wrght nequalty for quadratc forms n sub-gaussan

More information

Dimensionality Reduction Notes 2

Dimensionality Reduction Notes 2 Dmensonalty Reducton Notes 2 Jelan Nelson mnlek@seas.harvard.edu August 11, 2015 1 Optmalty theorems for JL Yesterday we saw for MJL that we could acheve target dmenson m = O(ε 2 log N), and for DJL we

More information

P exp(tx) = 1 + t 2k M 2k. k N

P exp(tx) = 1 + t 2k M 2k. k N 1. Subgaussan tals Defnton. Say that a random varable X has a subgaussan dstrbuton wth scale factor σ< f P exp(tx) exp(σ 2 t 2 /2) for all real t. For example, f X s dstrbuted N(,σ 2 ) then t s subgaussan.

More information

HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION

HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION HANSON-WRIGHT INEQUALITY AND SUB-GAUSSIAN CONCENTRATION MARK RUDELSON AND ROMAN VERSHYNIN Abstract. In ths expostory note, we gve a modern proof of Hanson-Wrght nequalty for quadratc forms n sub-gaussan

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

An introduction to chaining, and applications to sublinear algorithms

An introduction to chaining, and applications to sublinear algorithms An ntroducton to channg, and applcatons to sublnear algorthms Jelan Nelson Harvard August 28, 2015 What s ths talk about? What s ths talk about? Gven a collecton of random varables X 1, X 2,...,, we would

More information

Eigenvalues of Random Graphs

Eigenvalues of Random Graphs Spectral Graph Theory Lecture 2 Egenvalues of Random Graphs Danel A. Spelman November 4, 202 2. Introducton In ths lecture, we consder a random graph on n vertces n whch each edge s chosen to be n the

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Lecture 4: September 12

Lecture 4: September 12 36-755: Advanced Statstcal Theory Fall 016 Lecture 4: September 1 Lecturer: Alessandro Rnaldo Scrbe: Xao Hu Ta Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer: These notes have not been

More information

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD

Matrix Approximation via Sampling, Subspace Embedding. 1 Solving Linear Systems Using SVD Matrx Approxmaton va Samplng, Subspace Embeddng Lecturer: Anup Rao Scrbe: Rashth Sharma, Peng Zhang 0/01/016 1 Solvng Lnear Systems Usng SVD Two applcatons of SVD have been covered so far. Today we loo

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory Vapnk-Chervonenks theory Rs Kondor June 13, 2008 For the purposes of ths lecture, we restrct ourselves to the bnary supervsed batch learnng settng. We assume that we have an nput space X, and an unknown

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Hanson-Wright inequality and sub-gaussian concentration

Hanson-Wright inequality and sub-gaussian concentration Electron. Commun. Probab. 18 (013, no. 8, 1 9. DOI: 10.114/ECP.v18-865 ISSN: 1083-589X ELECTRONIC COMMUNICATIONS n PROBABILITY Hanson-Wrght nequalty and sub-gaussan concentraton Mark Rudelson Roman Vershynn

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES SVANTE JANSON Abstract. We gve explct bounds for the tal probabltes for sums of ndependent geometrc or exponental varables, possbly wth dfferent

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2) 1/16 MATH 829: Introducton to Data Mnng and Analyss The EM algorthm (part 2) Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 20, 2016 Recall 2/16 We are gven ndependent observatons

More information

Approximate Smallest Enclosing Balls

Approximate Smallest Enclosing Balls Chapter 5 Approxmate Smallest Enclosng Balls 5. Boundng Volumes A boundng volume for a set S R d s a superset of S wth a smple shape, for example a box, a ball, or an ellpsod. Fgure 5.: Boundng boxes Q(P

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

General viscosity iterative method for a sequence of quasi-nonexpansive mappings Avalable onlne at www.tjnsa.com J. Nonlnear Sc. Appl. 9 (2016), 5672 5682 Research Artcle General vscosty teratve method for a sequence of quas-nonexpansve mappngs Cuje Zhang, Ynan Wang College of Scence,

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities Supplementary materal: Margn based PU Learnng We gve the complete proofs of Theorem and n Secton We frst ntroduce the well-known concentraton nequalty, so the covarance estmator can be bounded Then we

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectaton-Maxmaton Algorthm Charles Elan elan@cs.ucsd.edu November 16, 2007 Ths chapter explans the EM algorthm at multple levels of generalty. Secton 1 gves the standard hgh-level verson of the algorthm.

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem.

Lecture 14 (03/27/18). Channels. Decoding. Preview of the Capacity Theorem. Lecture 14 (03/27/18). Channels. Decodng. Prevew of the Capacty Theorem. A. Barg The concept of a communcaton channel n nformaton theory s an abstracton for transmttng dgtal (and analog) nformaton from

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Communication Complexity 16:198: February Lecture 4. x ij y ij

Communication Complexity 16:198: February Lecture 4. x ij y ij Communcaton Complexty 16:198:671 09 February 2010 Lecture 4 Lecturer: Troy Lee Scrbe: Rajat Mttal 1 Homework problem : Trbes We wll solve the thrd queston n the homework. The goal s to show that the nondetermnstc

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1 MATH 5707 HOMEWORK 4 SOLUTIONS CİHAN BAHRAN 1. Let v 1,..., v n R m, all lengths v are not larger than 1. Let p 1,..., p n [0, 1] be arbtrary and set w = p 1 v 1 + + p n v n. Then there exst ε 1,..., ε

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C

Some basic inequalities. Definition. Let V be a vector space over the complex numbers. An inner product is given by a function, V V C Some basc nequaltes Defnton. Let V be a vector space over the complex numbers. An nner product s gven by a functon, V V C (x, y) x, y satsfyng the followng propertes (for all x V, y V and c C) (1) x +

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

Supplement to Clustering with Statistical Error Control

Supplement to Clustering with Statistical Error Control Supplement to Clusterng wth Statstcal Error Control Mchael Vogt Unversty of Bonn Matthas Schmd Unversty of Bonn In ths supplement, we provde the proofs that are omtted n the paper. In partcular, we derve

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION

THE WEIGHTED WEAK TYPE INEQUALITY FOR THE STRONG MAXIMAL FUNCTION THE WEIGHTED WEAK TYPE INEQUALITY FO THE STONG MAXIMAL FUNCTION THEMIS MITSIS Abstract. We prove the natural Fefferman-Sten weak type nequalty for the strong maxmal functon n the plane, under the assumpton

More information

Math 217 Fall 2013 Homework 2 Solutions

Math 217 Fall 2013 Homework 2 Solutions Math 17 Fall 013 Homework Solutons Due Thursday Sept. 6, 013 5pm Ths homework conssts of 6 problems of 5 ponts each. The total s 30. You need to fully justfy your answer prove that your functon ndeed has

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

e - c o m p a n i o n

e - c o m p a n i o n OPERATIONS RESEARCH http://dxdoorg/0287/opre007ec e - c o m p a n o n ONLY AVAILABLE IN ELECTRONIC FORM 202 INFORMS Electronc Companon Generalzed Quantty Competton for Multple Products and Loss of Effcency

More information

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS

A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS Journal of Mathematcal Scences: Advances and Applcatons Volume 25, 2014, Pages 1-12 A CHARACTERIZATION OF ADDITIVE DERIVATIONS ON VON NEUMANN ALGEBRAS JIA JI, WEN ZHANG and XIAOFEI QI Department of Mathematcs

More information

Projective change between two Special (α, β)- Finsler Metrics

Projective change between two Special (α, β)- Finsler Metrics Internatonal Journal of Trend n Research and Development, Volume 2(6), ISSN 2394-9333 www.jtrd.com Projectve change between two Specal (, β)- Fnsler Metrcs Gayathr.K 1 and Narasmhamurthy.S.K 2 1 Assstant

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

STEINHAUS PROPERTY IN BANACH LATTICES

STEINHAUS PROPERTY IN BANACH LATTICES DEPARTMENT OF MATHEMATICS TECHNICAL REPORT STEINHAUS PROPERTY IN BANACH LATTICES DAMIAN KUBIAK AND DAVID TIDWELL SPRING 2015 No. 2015-1 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookevlle, TN 38505 STEINHAUS

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 7, July 1997, Pages 2119{2125 S (97) THE STRONG OPEN SET CONDITION PROCDINGS OF TH AMRICAN MATHMATICAL SOCITY Volume 125, Number 7, July 1997, Pages 2119{2125 S 0002-9939(97)03816-1 TH STRONG OPN ST CONDITION IN TH RANDOM CAS NORBRT PATZSCHK (Communcated by Palle. T.

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

CS286r Assign One. Answer Key

CS286r Assign One. Answer Key CS286r Assgn One Answer Key 1 Game theory 1.1 1.1.1 Let off-equlbrum strateges also be that people contnue to play n Nash equlbrum. Devatng from any Nash equlbrum s a weakly domnated strategy. That s,

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information