Approximate Smallest Enclosing Balls

Size: px
Start display at page:

Download "Approximate Smallest Enclosing Balls"

Transcription

1 Chapter 5 Approxmate Smallest Enclosng Balls 5. Boundng Volumes A boundng volume for a set S R d s a superset of S wth a smple shape, for example a box, a ball, or an ellpsod. Fgure 5.: Boundng boxes Q(P ) of pont sets P R Boundng volumes whch are smallest among the ones of a gven shape (wth respect to volume, dameter, or some other crtera) are very useful, because they approxmate the possbly complcated set S by a smple superset. Then, whenever you want to know somethng about S, you frst try to use the boundng volume to answer the queston (ths s usually cheap), and only f ths fals, you analyze S n more detal. Here, we focus on the stuaton n whch S s a pont cloud (fnte pont set) whch we usually denote by P. Fgure 5.: Smallest enclosng balls B(P ) of pont sets P R What shapes to use depends on the questons you want to ask, of course. If you

2 want to know, for example, how the set P R must be translated and scaled such that a prntout of t flls a sheet of paper, you want to use axes-parallel boundng boxes. Fndng the smallest axes-parallel boundng box (or smply the boundng box) s easy. For every {,..., d}, terate over the -th coordnate of all ponts to fnd the smallest and largest one. Ths results n an algorthm of total runtme O(dn) for P = n. See Fgure 5. for two examples. The resultng box Q(P ) s smallest wth respect to volume and dameter. Alternatvely, you may consder other boundng volumes. A popular one s the smallest enclosng ball, see Fgure 5.. Here, smallest refers to the radus (or equvalently, the volume) of the ball. In the exercses, we ask you to prove that the dameter of the optmal ball B(P ) s never larger than the dameter of the boundng box Q(P ). Ths means, f you consder the dameter as a measure of how well the boundng volume approxmates the pont set, balls are better than boxes. On the other hand, f you consder the volume as the measure of qualty, there s no clear wnner. Supermposng Fgures 5. and 5., you see that the ball has smaller volume than the box n the left stuaton, but larger volume n the rght stuaton. There s another aspect where the ball s the wnner: rotatng P changes the shape and dameter of the boundng box, but the smallest enclosng ball stays the same (up to translaton). Ths s a desrable property n many geometrc applcatons, because t means that the smallest enclosng ball does not have to be recomputed when we apply an sometry (any affne transformaton that preserves lengths of dfference vectors) to P. Other popular boundng volumes are boxes of arbtrary orentaton (mages of some Q d (b, b) under an sometry) and ellpsods, mostly because they approxmate the volume of conv(p ) well. They are more dffcult to compute than (axes-paralell) boxes and balls, though. 5. Fndng an almost optmal ball For P R d, P = n > 0, we let B(P ) denote the ball of smallest radus that contans P. It s well-known that B(P ) exsts and s unque [3], but how do we (effcently) compute t? Recall that the boundng box was easy to fnd n tme O(dn). Can we also compute B(P ) n tme O(dn)? There s no rgorous argument that ths s not possble, but there are good reasons to beleve that one cannot do t. At least, all known algorthms for computng B(P ) are much slower so slow n fact that they wll not be able to solve the problem for n = d =, 000, say. The goal of ths chapter s to prove that tme O(dn) suffces to fnd a ball contanng P whose radus s only % larger than the radus of B(P ). If ths s not good enough, the same algorthm can produce a ball whose radus s only 0.% larger, at the expense of runnng (essentally) ten tmes as long. In fact, any desred percentage can be a mappng x Ax + b, wth A R d d a matrx and b R d a translaton vector

3 acheved n tme O(dn), but wth the constant behnd the bg O dependng on the percentage. The algorthm (actually, a combnaton of two algorthms) s due to Bădou and Clarkson []. 5.. Bascs Here s what we mean by (the center of) an almost optmal ball, wth respect to a gven constant ε 0. Defnton 5.. Let R P be the radus of B(P ), ε 0. A pont c R d s called ( + ε)- approxmaton of B(P ), f max q P q c ( + ε)r P. Note that the center c P of B(P ) s a -approxmaton of B(P ). We wll need the followng statement about c P. The orgn of t s unknown to me, and often t s conceved as a more or less obvous fact. Bădou and Clarkson remark that the statement s proved n a paper by Goel et al. [] whch s not true. But anyway, t s a smple exercse to prove the followng lemma. Lemma 5.. For any c R d, there exsts a pont p P such that () p c P = R P, and () p c c c P + p c P, see Fgure 5.3 (left). If c c P and P > (whch s the case we are nterested n), ths lemma says that we can fnd a pont on the boundary of B(P ) such that the nonzero vectors p c P and c c P span an obtuse angle (an angle of at least 90 o ). Ths nterpretaton of the nequalty n Lemma 5.. () s a consequence of cosne theorem. In more geometrc terms, the nequalty can also be nterpreted as follows: f c c P, the unque hyperplane h = {x R d (x c P ) (c c P ) = 0} through c P wth normal vector c c P must have a boundary pont of B(P ) n the halfspace h c := {x R d (x c P ) (c c P ) 0} not contanng c, see Fgure 5.3 (left). The rght part of the fgure shows on an ntutve level why ths condton s necessary: f no pont p satsfes the crtera of the Lemma, we can shrnk B(P ) and get a stll smaller ball contanng P, whch s a contradcton to B(P ) beng smallest. Usng Lemma 5.., we can easly prove that a ( + ε)-approxmaton cannot be too far away from c P, just lke we would expect t. 3

4 h c B(P ) h h B(P ) frag replacements c P c c P c c P c c P c p p c P Fgure 5.3: Illustraton of Lemma 5.. Lemma 5..3 Let c R d be a ( + ε)-approxmaton of B(P ). Then c c P ε + ε R p. Proof. Choose p accordng to Lemma 5... Because p s on the boundary of B(P ) and c s a ( + ε)-approxmaton, we get c c P p c p c P ( + ε) R P R P = (ε + ε )R P. 5.. Algorthm Here s our frst algorthm for approxmatng B(P ). For gven P and ε > 0, ths algorthm computes a sequence of centers c, =,..., /ε, wth the property that the last one s a ( + ε)-approxmaton of c P. Mnball Approx(P, ε): (* computes ( + ε)-approxmaton of B(P ) *) choose p P arbtrarly and set c := p FOR = TO /ε DO choose q P such that q c s maxmum c := c + (q c ) END RETURN c /ε 4

5 Theorem 5..4 For =,..., /ε, c c P R P. Ths nvarant mmedately mples the approxmaton factor of the algorthm: usng the trangle nequalty, we get that for all s P, s c s c P + c c P R P + R P = ( + ) R P. (5.) It follows that c s a ( + / )-approxmaton; settng = /ε gves the desred ( + ε)-approxmaton. Proof. If P =, we have c = c P n any teraton and the result follows. Otherwse, we proceed by nducton. The statement holds for = because of c P. Now assume that > and that we have already verfed the theorem for. Let us apply Lemma 5.. wth c = c, provdng us wth a pont p. Let q be the pont chosen n teraton. Clam. q c c c P + q c P. (5.) To see ths, we use the way q was chosen, together wth p s propertes () and () from Lemma 5.. to conclude that q c p c () c c P + p c P () c c P + q c P. Note that for c c P, equaton (5.) s equvalent to q h c, see Fgure 5.4 and the dscusson after Lemma 5... The clamed bound for c c P s obvous f c = c P, so we wll assume that c c P. Moreover, P > mples c c (why?), and > mples q c, see the stuaton n Fgure 5.4. We now restrct attenton to the trangle spanned by c P, c and q (ths trangle also contans c ); assume c P c and c c span some angle β, so that c P c and q c span angle 80 o β. Let us ntroduce the followng shortcuts. x := c c P, a := c c P, b := q c P, κ := c c, µ := q c, λ := q c = κ + µ. Because all nvolved vectors are nonzero, these angles are well-defned, even f the trangle spanned by c P, c and q s flat. 5

6 h c K(P ) PSfrag replacements γ q c P b µ a x β c c κ s p Fgure 5.4: Proof of Theorem 5..4 Recallng that cos(80 o β) = cos(β), the cosne theorem (appled to the two subtrangles nvolvng c c P ) yelds By defnton of c, we have x = a κ + xκ cos β, (5.3) x = b µ xµ cos β. (5.4) κ = λ, µ = λ. Therefore, (5.3) and (5.4) can be rewrtten as follows. ( ) x = a λ + x ( x = b λ cos β, (5.5) ) λ x λ cos β. (5.6) Multplyng (5.5) wth and addng up the two equatons removes the contrbuton of β and x on the rght hand sde, and we get x = ( )a + b λ. (5.7) 6

7 Inequalty (5.) exactly says that λ a + b, so that (5.7) further yelds x ( ( )a + b ) (a + b ) ( ) ( ) = a + b. Inductvely, we know that a = c c P RP /( ), and because b = q c P RP, the desred nequalty x R P follows. For P = n, the runtme of Algorthm Mnball Approx s O(dn) for one teraton (we need to fnd the largest among n scalar products), meanng that the total runtme s ( ) dn O Algorthm ε The denomnator of ε n the runtme of Algorthm Mnball Approx s not very satsfactory. Even a moderate error bound of ε = 0.0 (%) leads to 0, 000 teratons n the algorthm; that way, we cannot compete wth the boundng box. Here s a second algorthm that acheves a denomnator of ε. The prze to pay s that ths algorthm requres as a black box the computaton of the exact smallest enclosng ball of a small pont set (the call to ths black box can be replaced wth a call to Mnball Approx, though). Mnball Approx(P, ε): (* computes ( + ε)-approxmaton of B(P ) *) choose p P arbtrarly and set c := p, S := {p}, j := 0, := FOR = TO /ε DO choose q P such that q c s maxmum IF q c < THEN j := := q c END S := S {q} compute the smallest enclosng ball B(S ) = B d (c, R ) END IF max s P s c /ε < THEN j = /ε END RETURN c j 7

8 In the analyss of the algorthm, we work wth the followng symbols. Observe that for all, R := radus R P of B(P ), R := ( + ε)r, c := center of B(S ), R := radus of B(S ) (note that R = 0), λ := R / R, k := c c. λ R/ R = /( + ε), (5.8) because S P, so B(S ) cannot have larger radus than B(P ). Let us assume that no c s a ( + ε)-approxmaton of B(P ). We wll show that under ths assumpton, λ /ε + exceeds the bound n (5.8), a contradcton. 3 To analyze the development of λ n teraton, we frst apply Lemma 5.. to the set S and the pont c = c to deduce the exstence of p S such that meanng that p c c c + p c = k + R, p c λ R + k. (5.9) Furthermore, for the pont q chosen n teraton, the trangle nequalty yelds q c q c + c c, mplyng q c q c c c = q c k > R k. (5.0) In the last nequalty (and only here), we use the assumpton that c s not a ( + ε)- approxmaton, meanng that q c = max s P s c > ( + ε)r = R. We are now approachng a recursve lower bound for λ. Because both p and q are n S, we get usng (5.9) and (5.0) that ) λ R = R max ( p c, q c ) max ( λ R + k, R k. (5.) The frst term of the maxmum ncreases wth k, whle the second term decreases. It follows that the maxmum s mnmzed when both terms are equal, so when k = λ 3 you may object that λ /ε + does not appear n the algorthm, but for ths argument, we smply consder a hypothetcal last teraton wth = /ε +. 8 R

9 and consequently λ R + k = R k = + λ Substtutng ths nto (5.) yelds λ + λ,, (5.) wth λ = R / R = 0. Equaton (5.) s equvalently wrtten as R. whch n turn mples λ λ,, λ ( λ )( + λ ) = + λ because λ <. By expandng ths, we get In other words, For = /ε +, ths gves + λ > > + = + λ λ,. λ > λ > + ( )/,. + /ε = + ε, λ +,, a contradcton to (5.8). Therefore, our ntal assumpton was wrong, and there must be some c 0, 0 {,..., /ε }, whch yelds a ( + ε)-approxmaton. By the choce of j, the pont c j returned by the algorthm satsfes max s P s c j max s P s c 0 ( + ε)r, so c j s tself a ( + ε)-approxmaton. The runtme of the algorthm s bounded by ( dn O ε + ) ε f d ( /ε ), wth f d (n) the tme necessary to compute the exact smallest enclosng ball of a set of n ponts n R d. The known bounds for f d (n) are exponental n d, but by usng Mnball Approx nstead, we can replace ths by a bound whch s polynomal n d and /ε (we omt the detals here). 9

10 5..4 Core sets Our analyss of Algorthm Mnball Approx has a very nterestng consequence whch we want to state explctly (choose S = S j to get t). Corollary 5..5 For any fnte pont set P R d and ε > 0, there exsts a subset S P, S /ε, such that the center of B(S) s a ( + ε)-approxmaton of B(P ). Such a set s called a core set, and we wll encounter core sets for other boundng volumes later n the course. Accordng to the exercses, a subset wth the same smallest enclosng ball as P may requre up to d + ponts (and ths s tght). If you are wllng to accept a small error of ε = 0.0, say, you can fnd a subset S of constant sze 00 wth the same smallest enclosng ball as P, n any dmenson. Ths s qute remarkable, and also exceptonal. Whle other boundng volumes for P do have core sets whose szes do not depend on n = P, there s usually an (exponental) dependence on d, on top of the dependence on ε. 5.3 Coresets and balls n other norms Let us reformulate Corollary 5..5 somewhat dfferently: For any fnte pont set P R d and ε > 0, there exsts a subset S P, S /ε, such that all ponts of P are wthn dstance εr S of B(S). Here, B(S) s the smallest enclosng ball of S, and R P s the radus of the smallest enclosng ball B(P ) of P. It turns out that a smlar statement also holds f we generalze our concept of balls. 0

11 Bblography [] M. Bădou and K. L. Clarkson. Optmal core-sets for balls. submtted, 00. [] A. Goel, P. Indyk, and K. R. Varadarajan. Reductons among hgh-dmensonal proxmty problems. In Proc. th ACM-SIAM Symposum on Dscrete Algorthms, pages , 00. [3] E. Welzl. Smallest enclosng dsks (balls and ellpsods). In H. Maurer, edtor, New Results and New Trends n Computer Scence, volume 555 of Lecture Notes n Computer Scence, pages Sprnger-Verlag, 99.

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Spectral Graph Theory and its Applications September 16, Lecture 5

Spectral Graph Theory and its Applications September 16, Lecture 5 Spectral Graph Theory and ts Applcatons September 16, 2004 Lecturer: Danel A. Spelman Lecture 5 5.1 Introducton In ths lecture, we wll prove the followng theorem: Theorem 5.1.1. Let G be a planar graph

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Module 9. Lecture 6. Duality in Assignment Problems

Module 9. Lecture 6. Duality in Assignment Problems Module 9 1 Lecture 6 Dualty n Assgnment Problems In ths lecture we attempt to answer few other mportant questons posed n earler lecture for (AP) and see how some of them can be explaned through the concept

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k.

Case A. P k = Ni ( 2L i k 1 ) + (# big cells) 10d 2 P k. THE CELLULAR METHOD In ths lecture, we ntroduce the cellular method as an approach to ncdence geometry theorems lke the Szemeréd-Trotter theorem. The method was ntroduced n the paper Combnatoral complexty

More information

A 2D Bounded Linear Program (H,c) 2D Linear Programming

A 2D Bounded Linear Program (H,c) 2D Linear Programming A 2D Bounded Lnear Program (H,c) h 3 v h 8 h 5 c h 4 h h 6 h 7 h 2 2D Lnear Programmng C s a polygonal regon, the ntersecton of n halfplanes. (H, c) s nfeasble, as C s empty. Feasble regon C s unbounded

More information

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm

Lecture 2: Gram-Schmidt Vectors and the LLL Algorithm NYU, Fall 2016 Lattces Mn Course Lecture 2: Gram-Schmdt Vectors and the LLL Algorthm Lecturer: Noah Stephens-Davdowtz 2.1 The Shortest Vector Problem In our last lecture, we consdered short solutons to

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

The Second Eigenvalue of Planar Graphs

The Second Eigenvalue of Planar Graphs Spectral Graph Theory Lecture 20 The Second Egenvalue of Planar Graphs Danel A. Spelman November 11, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Finding Primitive Roots Pseudo-Deterministically

Finding Primitive Roots Pseudo-Deterministically Electronc Colloquum on Computatonal Complexty, Report No 207 (205) Fndng Prmtve Roots Pseudo-Determnstcally Ofer Grossman December 22, 205 Abstract Pseudo-determnstc algorthms are randomzed search algorthms

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso

Supplement: Proofs and Technical Details for The Solution Path of the Generalized Lasso Supplement: Proofs and Techncal Detals for The Soluton Path of the Generalzed Lasso Ryan J. Tbshran Jonathan Taylor In ths document we gve supplementary detals to the paper The Soluton Path of the Generalzed

More information

Lecture 4: Constant Time SVD Approximation

Lecture 4: Constant Time SVD Approximation Spectral Algorthms and Representatons eb. 17, Mar. 3 and 8, 005 Lecture 4: Constant Tme SVD Approxmaton Lecturer: Santosh Vempala Scrbe: Jangzhuo Chen Ths topc conssts of three lectures 0/17, 03/03, 03/08),

More information

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem. prnceton u. sp 02 cos 598B: algorthms and complexty Lecture 20: Lft and Project, SDP Dualty Lecturer: Sanjeev Arora Scrbe:Yury Makarychev Today we wll study the Lft and Project method. Then we wll prove

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0 Bézer curves Mchael S. Floater September 1, 215 These notes provde an ntroducton to Bézer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of

More information

Economics 101. Lecture 4 - Equilibrium and Efficiency

Economics 101. Lecture 4 - Equilibrium and Efficiency Economcs 0 Lecture 4 - Equlbrum and Effcency Intro As dscussed n the prevous lecture, we wll now move from an envronment where we looed at consumers mang decsons n solaton to analyzng economes full of

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Notes on Frequency Estimation in Data Streams

Notes on Frequency Estimation in Data Streams Notes on Frequency Estmaton n Data Streams In (one of) the data streamng model(s), the data s a sequence of arrvals a 1, a 2,..., a m of the form a j = (, v) where s the dentty of the tem and belongs to

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0 Bezer curves Mchael S. Floater August 25, 211 These notes provde an ntroducton to Bezer curves. 1 Bernsten polynomals Recall that a real polynomal of a real varable x R, wth degree n, s a functon of the

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

8.6 The Complex Number System

8.6 The Complex Number System 8.6 The Complex Number System Earler n the chapter, we mentoned that we cannot have a negatve under a square root, snce the square of any postve or negatve number s always postve. In ths secton we want

More information

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2].

Volume 18 Figure 1. Notation 1. Notation 2. Observation 1. Remark 1. Remark 2. Remark 3. Remark 4. Remark 5. Remark 6. Theorem A [2]. Theorem B [2]. Bulletn of Mathematcal Scences and Applcatons Submtted: 016-04-07 ISSN: 78-9634, Vol. 18, pp 1-10 Revsed: 016-09-08 do:10.1805/www.scpress.com/bmsa.18.1 Accepted: 016-10-13 017 ScPress Ltd., Swtzerland

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

Dimensionality Reduction Notes 1

Dimensionality Reduction Notes 1 Dmensonalty Reducton Notes 1 Jelan Nelson mnlek@seas.harvard.edu August 10, 2015 1 Prelmnares Here we collect some notaton and basc lemmas used throughout ths note. Throughout, for a random varable X,

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

DIFFERENTIAL FORMS BRIAN OSSERMAN

DIFFERENTIAL FORMS BRIAN OSSERMAN DIFFERENTIAL FORMS BRIAN OSSERMAN Dfferentals are an mportant topc n algebrac geometry, allowng the use of some classcal geometrc arguments n the context of varetes over any feld. We wll use them to defne

More information

arxiv: v1 [quant-ph] 6 Sep 2007

arxiv: v1 [quant-ph] 6 Sep 2007 An Explct Constructon of Quantum Expanders Avraham Ben-Aroya Oded Schwartz Amnon Ta-Shma arxv:0709.0911v1 [quant-ph] 6 Sep 2007 Abstract Quantum expanders are a natural generalzaton of classcal expanders.

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Introductory Cardinality Theory Alan Kaylor Cline

Introductory Cardinality Theory Alan Kaylor Cline Introductory Cardnalty Theory lan Kaylor Clne lthough by name the theory of set cardnalty may seem to be an offshoot of combnatorcs, the central nterest s actually nfnte sets. Combnatorcs deals wth fnte

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

REAL ANALYSIS I HOMEWORK 1

REAL ANALYSIS I HOMEWORK 1 REAL ANALYSIS I HOMEWORK CİHAN BAHRAN The questons are from Tao s text. Exercse 0.0.. If (x α ) α A s a collecton of numbers x α [0, + ] such that x α

More information

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS These are nformal notes whch cover some of the materal whch s not n the course book. The man purpose s to gve a number of nontrval examples

More information

Min Cut, Fast Cut, Polynomial Identities

Min Cut, Fast Cut, Polynomial Identities Randomzed Algorthms, Summer 016 Mn Cut, Fast Cut, Polynomal Identtes Instructor: Thomas Kesselhem and Kurt Mehlhorn 1 Mn Cuts n Graphs Lecture (5 pages) Throughout ths secton, G = (V, E) s a mult-graph.

More information

Exercise Solutions to Real Analysis

Exercise Solutions to Real Analysis xercse Solutons to Real Analyss Note: References refer to H. L. Royden, Real Analyss xersze 1. Gven any set A any ɛ > 0, there s an open set O such that A O m O m A + ɛ. Soluton 1. If m A =, then there

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

and problem sheet 2

and problem sheet 2 -8 and 5-5 problem sheet Solutons to the followng seven exercses and optonal bonus problem are to be submtted through gradescope by :0PM on Wednesday th September 08. There are also some practce problems,

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1].

REDUCTION MODULO p. We will prove the reduction modulo p theorem in the general form as given by exercise 4.12, p. 143, of [1]. REDUCTION MODULO p. IAN KIMING We wll prove the reducton modulo p theorem n the general form as gven by exercse 4.12, p. 143, of [1]. We consder an ellptc curve E defned over Q and gven by a Weerstraß

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

a b a In case b 0, a being divisible by b is the same as to say that

a b a In case b 0, a being divisible by b is the same as to say that Secton 6.2 Dvsblty among the ntegers An nteger a ε s dvsble by b ε f there s an nteger c ε such that a = bc. Note that s dvsble by any nteger b, snce = b. On the other hand, a s dvsble by only f a = :

More information

2 More examples with details

2 More examples with details Physcs 129b Lecture 3 Caltech, 01/15/19 2 More examples wth detals 2.3 The permutaton group n = 4 S 4 contans 4! = 24 elements. One s the dentty e. Sx of them are exchange of two objects (, j) ( to j and

More information

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS

8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 493 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces you have studed thus far n the text are real vector spaces because the scalars

More information

Clustering Affine Subspaces: Algorithms and Hardness

Clustering Affine Subspaces: Algorithms and Hardness Clusterng Affne Subspaces: Algorthms and Hardness Thess by Euwoong Lee In Partal Fulfllment of the Requrements for the Degree of Master of Scence Calforna Insttute of Technology Pasadena, Calforna 01 (Submtted

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Lecture 3. Ax x i a i. i i

Lecture 3. Ax x i a i. i i 18.409 The Behavor of Algorthms n Practce 2/14/2 Lecturer: Dan Spelman Lecture 3 Scrbe: Arvnd Sankar 1 Largest sngular value In order to bound the condton number, we need an upper bound on the largest

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Lecture 5 September 17, 2015

Lecture 5 September 17, 2015 CS 229r: Algorthms for Bg Data Fall 205 Prof. Jelan Nelson Lecture 5 September 7, 205 Scrbe: Yakr Reshef Recap and overvew Last tme we dscussed the problem of norm estmaton for p-norms wth p > 2. We had

More information

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN

FINITELY-GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN FINITELY-GENERTED MODULES OVER PRINCIPL IDEL DOMIN EMMNUEL KOWLSKI Throughout ths note, s a prncpal deal doman. We recall the classfcaton theorem: Theorem 1. Let M be a fntely-generated -module. (1) There

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

MATH Sensitivity of Eigenvalue Problems

MATH Sensitivity of Eigenvalue Problems MATH 537- Senstvty of Egenvalue Problems Prelmnares Let A be an n n matrx, and let λ be an egenvalue of A, correspondngly there are vectors x and y such that Ax = λx and y H A = λy H Then x s called A

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Week 2. This week, we covered operations on sets and cardinality.

Week 2. This week, we covered operations on sets and cardinality. Week 2 Ths week, we covered operatons on sets and cardnalty. Defnton 0.1 (Correspondence). A correspondence between two sets A and B s a set S contaned n A B = {(a, b) a A, b B}. A correspondence from

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Deriving the X-Z Identity from Auxiliary Space Method

Deriving the X-Z Identity from Auxiliary Space Method Dervng the X-Z Identty from Auxlary Space Method Long Chen Department of Mathematcs, Unversty of Calforna at Irvne, Irvne, CA 92697 chenlong@math.uc.edu 1 Iteratve Methods In ths paper we dscuss teratve

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 3: Large deviations bounds and applications Lecturer: Sanjeev Arora prnceton unv. F 13 cos 521: Advanced Algorthm Desgn Lecture 3: Large devatons bounds and applcatons Lecturer: Sanjeev Arora Scrbe: Today s topc s devaton bounds: what s the probablty that a random varable

More information

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis Fsher Lnear Dscrmnant Analyss Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan Fsher lnear

More information

CSCE 790S Background Results

CSCE 790S Background Results CSCE 790S Background Results Stephen A. Fenner September 8, 011 Abstract These results are background to the course CSCE 790S/CSCE 790B, Quantum Computaton and Informaton (Sprng 007 and Fall 011). Each

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

European Journal of Combinatorics

European Journal of Combinatorics European Journal of Combnatorcs 0 (009) 480 489 Contents lsts avalable at ScenceDrect European Journal of Combnatorcs journal homepage: www.elsever.com/locate/ejc Tlngs n Lee metrc P. Horak 1 Unversty

More information

MAT 578 Functional Analysis

MAT 578 Functional Analysis MAT 578 Functonal Analyss John Qugg Fall 2008 Locally convex spaces revsed September 6, 2008 Ths secton establshes the fundamental propertes of locally convex spaces. Acknowledgment: although I wrote these

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

5 The Rational Canonical Form

5 The Rational Canonical Form 5 The Ratonal Canoncal Form Here p s a monc rreducble factor of the mnmum polynomal m T and s not necessarly of degree one Let F p denote the feld constructed earler n the course, consstng of all matrces

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information