Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Size: px
Start display at page:

Download "Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg"

Transcription

1 Methoden moderner Röntgenphysik I Coherence based techniques II Christian Gutt DESY Hamburg christian.gutt@desy.de 8. January 009

2 Outline Introduction to Coherence Structure determination techniques Oversampling Coherent Diffractive Imaging Fourier transform Holography Correlation Spectroscopy

3 Last lecture

4 Longitudinal coherence Nλ = N + 1 λ λ N N + 1 λ = λ λ λ longitudinal coherence depends on bandwidth

5 Transverse coherence transverse coherence depends on distance and source size

6 1 1 τ + + = t r AV t r AV t r V r1 r Re 1 * τ τ r r A A t r V A t r V A t r I Γ = > + =< Γ 1 * 1 τ τ t r V t r V r r Field amplitude Intensity Mutual Coherence Function MCF 1 1 * 1 t r I t r I t r V t r V r r > + < = τ τ µ Complex degree of coherence Mutual Coherence Function = Visibility µ

7 van Cittert Zernike Theorem + + = S q p ik S q p ik i d d e I d d e I e P η ξ η ξ η ξ η ξ µ η ξ η ξ ψ 0 complex degree of coherence Fourier Transform of the source intensity distribution! = ρ ρ ρ ρ ρ ρθ ρ µ ψ d I d k J I e P i R Y X k R Y q R X p + = = = ψ Axial symmetry z r = θ

8 Speckle Pattern Everything interferes with everything ξ T I q d q~ S q ~ R q q~ R q exp q / q ξ L q π / ξ T

9 Scattering from a Crystal William Henry Bragg William Lawrence Bragg Nobelpreis 1915 Bragg's Law: a r mλ = d sin θ a r 1 r N F q = f q e j e i q Rn crystal j j= 1 n= 1 Unit Cell Structure Factor F uc q i r r q M r r r Lattice Sum

10 Elastic Scattering from a Crystal Differential Scattering Cross Section dσ dω dσ = dω Intrinsic Cross Section Coupling Beam Sample 0 crystal r S q r r S q = F q Properties of the Sample without Beam Phase problem

11

12 Solution to the phase problem for periodic objects classical crystallography direct methods using the fact that the density is real and positive anomalous X-ray scattering MAD heavy atoms... + atomic resolution - need for crystals - x-ray damage Structure determination of non-periodic objects a zoo of scanning x-ray techniques scanning transmission x-ray microscope tomography medical imaging... + no need for crystals nm resolution - limited dynamics

13 Coherence based techniques for structure determination Ultrafast femtoseconds imaging techniques for non-periodic objects Coherent diffractive imaging Fourier transform holography Holographic imaging Ptychography and all combinations thereof...

14 Structure Determination from Oversampled Speckle Pattern λ θ iterative algorithm max. resolution λ sin θ J. Miao et al. Nature

15 Phase retrieval and oversampling M ρ x y z L x M x N unknown variables measured quantity F ^ sampled at Bragg peak frequency L Friedel s law L x M x N / independent equations No inversion possible

16 Intensity continuous intensity distribution for non periodic objects Bragg peaks for periodic objects k Idea: sample k finer than Bragg frequency e.g. 3 Number of independent equations = number of unknown variables 3 3 L x M x N / = L x M x N

17 Shannon s theorem in X-ray scattering If a diffraction pattern is sampled at spatial frequencies at least twice that corresponding to the size of the sample the phases can be recovered by means of iterative algorithms. = 1 λd W sampling in reciprocal space W d

18 oversampling parameter σ = speckle size pixel size = λd WP σ = σ =

19 The iterative algorithm due to Gerchberg-Saxton-Fienup

20 The hybrid-input-output HIO algorithm get some a priori knowledge about the support i.e. shape of your object area inside support S x in support x not in support 0 < β HIO < 1 measure of convergence

21

22

23

24 The Object Claude Monet Seerosenteich II 1899

25 and its reconstruction

26 an unknown object

27 and it s reconstruction

28 Experiment using 8 kev Photonen microns Resolution 30 nm

29 The beamstop problem ccd camera sample intense direct beam

30 Missing Data

31

32

33 First experimental realization at a synchrotron source

34

35 First experimental realization at an FEL source H. Chapman et al. Nature Physics

36 pulse #1 pulse # H. Chapman et al. Nature Physics

37 Reconstruction H. Chapman et al. Nature Physics

38 Fourier Transform Holography

39 x 1 x y 1 y Fresnel-Kirchhoff Theory Object o a Reference r z 0 o x r x y i = λz o e i π λ z x + y 0 η Oˆ ξ π i i x + y λ z y = e Rˆ ξ η λz0 e 0 iπξ a ξ = η = x λ z y λ z 0 0 O ˆ ξ η = FT[ o x 1 y 1 ] R ˆ ξ η = FT[ r x 1 y 1 ]

40 y x o y x r y x I + = * * y x o y x r y x o y x r y x o y x r y x I = ξ π ξ π η ξ η ξ η ξ η ξ η ξ η ξ a i a i e O R e O R O R y x I ˆ ˆ ˆ ˆ ˆ ˆ * * ] [ ] [ * y a x o y x r FT y a x o y x r FT + + a ˆ ˆ * η ξ η ξ = O O Convolution with the reference objects limits the resolution

41 Small reference hole

42

43

44 Large reference hole

45

46

47 More than one reference hole

48

49

50

51

52 First experimental FTH realization using hard X-rays

53 Experiment with 0.15 nm Photonen

54 1 micron

55 Combination of Holography and Phase Retrieval Resolution 0 nm L.-M. Stadler C. Gutt T. Autenrieth O. Leupold S. Rehbein G. Grübel

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 10 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Location: Hörs AP, Physik, Jungiusstrasse

More information

Diffraction Imaging with Coherent X-rays

Diffraction Imaging with Coherent X-rays Diffraction Imaging with Coherent X-rays John Miao Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center The Phase Problem: A Coherence Effect Detector Coherent X-rays Atoms The

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 4 Location Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 2015 G. Grübel, M. Martins, E. Weckert Lecture hall AP, Physics, Jungiusstraße

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Methoden moderner Röntgenphysik II: Streuung und Abbildung . Methoden moderner Röntgenphysik II: Streuung und Abbildung Lecture 5 Vorlesung zum Haupt/Masterstudiengang Physik SS 2014 G. Grübel, M. Martins, E. Weckert Today: 1 st exercises!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

X-Ray Scattering Studies of Thin Polymer Films

X-Ray Scattering Studies of Thin Polymer Films X-Ray Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad

More information

Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction

Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 13 (2001) 10593 10611 PII: S0953-8984(01)25635-5 Partial coherence effects on the imaging of small crystals

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

research papers 90 # 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved J. Synchrotron Rad. (2002).

research papers 90 # 2002 International Union of Crystallography Printed in Great Britain ± all rights reserved J. Synchrotron Rad. (2002). Reconstruction of magnetization density in two-dimensional samples from soft X-ray speckle patterns using the multiplewavelength anomalous diffraction method T. O. MentesË,* C. Sa nchez-hanke and C. C.

More information

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques

Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques Observation of ferroelectric domains in bismuth ferrite using coherent diffraction techniques James Vale October 25, 2011 Abstract Multiferroic materials have significant potential for both the scientific

More information

Fourier Syntheses, Analyses, and Transforms

Fourier Syntheses, Analyses, and Transforms Fourier Syntheses, Analyses, and Transforms http://homepages.utoledo.edu/clind/ The electron density The electron density in a crystal can be described as a periodic function - same contents in each unit

More information

Coherent X-ray Diffraction on Quantum Dots

Coherent X-ray Diffraction on Quantum Dots Coherent X-ray Diffraction on Quantum Dots Ivan Vartaniants HASYLAB, DESY, Hamburg, Germany Or Coming Back to Crystallography Participants of the Project University of Illinois, Urbana-Champaign, IL, USA

More information

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline Lecture 9: Indirect Imaging 2 Outline 1 Two-Element Interferometer 2 Van Cittert-Zernike Theorem 3 Aperture Synthesis Imaging Cygnus A at 6 cm Image courtesy of NRAO/AUI Very Large Array (VLA), New Mexico,

More information

Spatial coherence measurement

Spatial coherence measurement Spatial coherence measurement David Paterson Argonne National Laboratory A Laboratory Operated by The University of Chicago Motivation Third generation synchrotrons produce very bright, partially coherent

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Methoden moderner Röntgenphysik: Streuung und Abbildung

Methoden moderner Röntgenphysik: Streuung und Abbildung Methoden moderner Röntgenphysik: Streuung und Abbildung Lecture 8 Location Vorlesung zum Haupt- oder Masterstudiengang Physik, SoSe 018 G. Grübel, A. Philippi-Kobs, O. Seeck, L. Frenzel, F. Lehmkühler,

More information

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources

X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources X-ray Photon Correlation Spectroscopy (XPCS) at Synchrotron and FEL sources Christian Gutt Department of Physics, University ofsiegen, Germany gutt@physik.uni-siegen.de Outline How to measure dynamics

More information

Phase Retrieval with Random Illumination

Phase Retrieval with Random Illumination Phase Retrieval with Random Illumination Albert Fannjiang, UC Davis Collaborator: Wenjing Liao NCTU, July 212 1 Phase retrieval Problem Reconstruct the object f from the Fourier magnitude Φf. Why do we

More information

CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003

CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003 CS273: Algorithms for Structure Handout # 13 and Motion in Biology Stanford University Tuesday, 11 May 2003 Lecture #13: 11 May 2004 Topics: Protein Structure Determination Scribe: Minli Zhu We acknowledge

More information

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory Henry.Chapman@desy.de Isaac Newton Opticks 1704 Newton was the first

More information

Coherence measurements and coherent diffractive imaging at FLASH

Coherence measurements and coherent diffractive imaging at FLASH Coherence measurements and coherent diffractive imaging at FLASH * I A Vartanyants, A P Mancuso, A Singer, O M Yefanov, J Gulden To cite this version: * I A Vartanyants, A P Mancuso, A Singer, O M Yefanov,

More information

Applications of scattering theory! From the structure of the proton! to protein structure!

Applications of scattering theory! From the structure of the proton! to protein structure! Applications of scattering theory From the structure of the proton to protein structure Nicuşor Tîmneanu 2016 Contents and goals What is scattering and why study it? How is the structure of matter determined?

More information

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6 6.1. Summary In this Lecture we cover the theory of x-ray diffraction, which gives direct information about the atomic structure of crystals. In these experiments, the wavelength of the incident beam must

More information

Protein Crystallography

Protein Crystallography Protein Crystallography Part II Tim Grüne Dept. of Structural Chemistry Prof. G. Sheldrick University of Göttingen http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview The Reciprocal Lattice The

More information

Scattering Lecture. February 24, 2014

Scattering Lecture. February 24, 2014 Scattering Lecture February 24, 2014 Structure Determination by Scattering Waves of radiation scattered by different objects interfere to give rise to an observable pattern! The wavelength needs to close

More information

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth

Methoden Moderner Röntgenphysik II - Vorlesung im Haupt-/Masterstudiengang, Universität Hamburg, SoSe 2016, S. Roth > 31.05. : Small-Angle X-ray Scattering (SAXS) > 0.06. : Applications & A short excursion into Polymeric materials > 04.06. : Grazing incidence SAXS (GISAXS) Methoden Moderner Röntgenphysik II - Vorlesung

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

INVERSE PROBLEMS IN X-RAY SCIENCE STEFANO MARCHESINI

INVERSE PROBLEMS IN X-RAY SCIENCE STEFANO MARCHESINI INVERSE PROBLEMS IN X-RAY SCIENCE STEFANO MARCHESINI overview of photon science inverse problems linear (under-determined): tomography non-linear: diffraction methods Inverse problems and the data deluge

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

3.012 Fund of Mat Sci: Structure Lecture 18

3.012 Fund of Mat Sci: Structure Lecture 18 3.012 Fund of Mat Sci: Structure Lecture 18 X-RAYS AT WORK An X-ray diffraction image for the protein myoglobin. Source: Wikipedia. Model of helical domains in myoglobin. Image courtesy of Magnus Manske

More information

Diffraction Geometry

Diffraction Geometry Diffraction Geometry Diffraction from a crystal - Laue equations Reciprocal lattice Ewald construction Data collection strategy Phil Evans LMB May 2013 MRC Laboratory of Molecular Biology Cambridge UK

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Resolution: maximum limit of diffraction (asymmetric)

Resolution: maximum limit of diffraction (asymmetric) Resolution: maximum limit of diffraction (asymmetric) crystal Y X-ray source 2θ X direct beam tan 2θ = Y X d = resolution 2d sinθ = λ detector 1 Unit Cell: two vectors in plane of image c* Observe: b*

More information

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ

Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography The unitcell The resiprocal space and unitcell Braggs law Structure factor F hkl and atomic scattering factor f zθ Introduction to crystallography We divide materials into

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Beam Breakup, Feynman and Complex Zeros

Beam Breakup, Feynman and Complex Zeros Beam Breakup, Feynman and Complex Zeros Ivan Bazarov brown bag seminar, 16 Jan 04 Ivan Bazarov, BBU, feynman and complex zeros, Brown Bag seminar, 16 January 2004 1 Outline BBU: code-writing and simulation

More information

Toward a single mode Free Electron Laser for coherent hard X-ray experiments

Toward a single mode Free Electron Laser for coherent hard X-ray experiments SLAC-PUB-15661 Toward a single mode Free Electron Laser for coherent hard X-ray experiments Sooheyong Lee 1,2,, Zhirong Huang 1, Yuantao Ding 1, Paul Emma 1, Wojciech Roseker 2, Gerhard Grübel 2 and Aymeric

More information

Imaging & Microscopy

Imaging & Microscopy Coherent X-ray X Imaging & Microscopy => Opportunities Using a Diffraction-Limited Energy Recovery Linac (ERL) Synchrotron Source Q. Shen D. Bilderback, K.D. Finkelstein, E. Fontes, & S. Gruner Cornell

More information

Crystals, X-rays and Proteins

Crystals, X-rays and Proteins Crystals, X-rays and Proteins Comprehensive Protein Crystallography Dennis Sherwood MA (Hons), MPhil, PhD Jon Cooper BA (Hons), PhD OXFORD UNIVERSITY PRESS Contents List of symbols xiv PART I FUNDAMENTALS

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Scattering by two Electrons

Scattering by two Electrons Scattering by two Electrons p = -r k in k in p r e 2 q k in /λ θ θ k out /λ S q = r k out p + q = r (k out - k in ) e 1 Phase difference of wave 2 with respect to wave 1: 2π λ (k out - k in ) r= 2π S r

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Hidden Symmetry in Disordered Matter

Hidden Symmetry in Disordered Matter MAX-PLANCK-INSTITUTE FOR METALS RESEARCH Department LDMM Hidden Symmetry in Disordered Matter P. Wochner T. Demmer V. Bugaev A. Díaz Ortiz H. Dosch C. Gutt T. Autenrieth A. Duri G. Grübel DESY F. Zontone

More information

Part 3 - Image Formation

Part 3 - Image Formation Part 3 - Image Formation Three classes of scattering outcomes Types of electron microscopes Example SEM image: fly nose Example TEM image: muscle Skeletal muscle. Cell and Tissue Ultrastructure Mercer

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Lecture notes: On web site NB outline notes! Textbooks: Hecht, Optics Lipson, Lipson and Lipson, Optical Physics Further reading: Brooker, Modern Classical Optics Problems:

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

X-ray Crystallography. Kalyan Das

X-ray Crystallography. Kalyan Das X-ray Crystallography Kalyan Das Electromagnetic Spectrum NMR 10 um - 10 mm 700 to 10 4 nm 400 to 700 nm 10 to 400 nm 10-1 to 10 nm 10-4 to 10-1 nm X-ray radiation was discovered by Roentgen in 1895. X-rays

More information

X-ray crystallography has a record of extraordinary achievement

X-ray crystallography has a record of extraordinary achievement FOCUS REVIEW ARTICLE PUBLISHED ONLINE: 30 NOVEMBER 2010 DOI: 10.1038/NPHOTON.2010.240 Coherent lensless X-ray imaging Henry N. Chapman 1 and Keith A. Nugent 2 * Very high resolution X-ray imaging has been

More information

Ultrafast XPCS. Gerhard Grübel

Ultrafast XPCS. Gerhard Grübel . Ultrafast XPCS Gerhard Grübel W.Roseker, S. Lee, F. Lehmkühler, I. Steinke, H. Schulte-Schrepping, M. Walther, G.B. Stephenson, P. Fuoss, M. Sikorski, and A. Robert DESY Deutsches Elektronen Synchrotron,

More information

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space Tobias U. Schülli, X-ray nanoprobe group ESRF OUTLINE 1 Internal structure of

More information

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. The Basic of Transmission Electron Microscope Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. 2009, Springer Background survey http://presemo.aalto.fi/tem1 Microscopy

More information

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers

Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Theory of Nonlinear Harmonic Generation In Free-Electron Lasers with Helical Wigglers Gianluca Geloni, Evgeni Saldin, Evgeni Schneidmiller and Mikhail Yurkov Deutsches Elektronen-Synchrotron DESY, Hamburg

More information

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems 홀로그램저장재료 Holographic materials Material Reusable Processing Type of Exposure Spectral Resol. Max. diff. hologram (J/m2) sensitivity (lim./mm) efficiency Photographic emulsion Dichromated gelatin Photoresists

More information

Molecular Biology Course 2006 Protein Crystallography Part I

Molecular Biology Course 2006 Protein Crystallography Part I Molecular Biology Course 2006 Protein Crystallography Part I Tim Grüne University of Göttingen Dept. of Structural Chemistry November 2006 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview Overview

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

Multilayer Optics, Past and Future. Eberhard Spiller

Multilayer Optics, Past and Future. Eberhard Spiller Multilayer Optics, Past and Future Eberhard Spiller 1 Imaging with light Waves move by λ in 10-15 to 10-19 sec Wave trains are 10-14 to 10-18 sec long Each wavelet contains less than 1 photon Eye responds

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Main Notation Used in This Book

Main Notation Used in This Book Main Notation Used in This Book z Direction normal to the surface x,y Directions in the plane of the surface Used to describe a component parallel to the interface plane xoz Plane of incidence j Label

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5.2 De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle 5.7 Probability,

More information

Surface Sensitive X-ray Scattering

Surface Sensitive X-ray Scattering Surface Sensitive X-ray Scattering Introduction Concepts of surfaces Scattering (Born approximation) Crystal Truncation Rods The basic idea How to calculate Examples Reflectivity In Born approximation

More information

Quantitative phase measurement in coherent diffraction imaging

Quantitative phase measurement in coherent diffraction imaging Quantitative phase measurement in coherent diffraction imaging J. N. Clark 1, G. J. Williams, H. M. Quiney, L. Whitehead, M. D. de Jonge 3, E. Hanssen 4, M. Altissimo 5, K. A. Nugent and A. G. Peele 1*

More information

Methoden moderner Röntgenphysik II Streuung und Abbildung

Methoden moderner Röntgenphysik II Streuung und Abbildung Methoden moderner Röntgenphysik II Streuung und Abbildung Stephan V. Roth DESY 1.5.15 Outline > 1.5. : Small-Angle X-ray Scattering (SAXS) > 19.5. : Applications & A short excursion into Polymeric materials

More information

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source

USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB. ERL as a X-ray Light Source USPAS course on Recirculated and Energy Recovered Linacs Ivan Bazarov, Cornell University Geoff Krafft, JLAB ERL as a X-ray Light Source Contents Introduction Light sources landscape General motivation

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science Mark Sutton McGill University Coherent diffraction (001) Cu 3 Au peak Sutton et al., The Observation of Speckle

More information

Coherent x-rays: overview

Coherent x-rays: overview Coherent x-rays: overview by Malcolm Howells Lecture 1 of the series COHERENT X-RAYS AND THEIR APPLICATIONS A series of tutorial level lectures edited by Malcolm Howells* *ESRF Experiments Division CONTENTS

More information

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices Chapter. X-ray X Diffraction and Reciprocal Lattice Diffraction of waves by crystals Reciprocal Lattice Diffraction of X-rays Powder diffraction Single crystal X-ray diffraction Scattering from Lattices

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

This is a topic I encountered a number of years ago while at LBNL, when I came across the following statement [1]:

This is a topic I encountered a number of years ago while at LBNL, when I came across the following statement [1]: Equivalent signal to noise in diffraction vs. bright-field experiments Charles Sindelar January 2010 SUMMARY This is a topic I encountered a number of years ago while at LBNL, when I came across the following

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

Applications of Coherent X-Rays at the LCLS

Applications of Coherent X-Rays at the LCLS Applications of Coherent X-Rays at the LCLS Gerhard Grübel Hasylab@DESY Notke-Strasse 85 22607 Hamburg Germany SLAC, October 17, 2008 1 LCLS and coherence based techniques Imaging techniques (CDI, FTH)

More information

Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods

Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods Materials 286C/UCSB: Class VI Structure factors (continued), the phase problem, Patterson techniques and direct methods Ram Seshadri (seshadri@mrl.ucsb.edu) Structure factors The structure factor for a

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

Overview - Macromolecular Crystallography

Overview - Macromolecular Crystallography Overview - Macromolecular Crystallography 1. Overexpression and crystallization 2. Crystal characterization and data collection 3. The diffraction experiment 4. Phase problem 1. MIR (Multiple Isomorphous

More information

Protein crystallography. Garry Taylor

Protein crystallography. Garry Taylor Protein crystallography Garry Taylor X-ray Crystallography - the Basics Grow crystals Collect X-ray data Determine phases Calculate ρ-map Interpret map Refine coordinates Do the biology. Nitrogen at -180

More information

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG Image definition evaluation functions for X-ray crystallography: A new perspective on the phase problem Hui LI*, Meng HE* and Ze ZHANG Beijing University of Technology, Beijing 100124, People s Republic

More information

X-ray Intensity Fluctuation Spectroscopy. Mark Sutton McGill University

X-ray Intensity Fluctuation Spectroscopy. Mark Sutton McGill University X-ray Intensity Fluctuation Spectroscopy Mark Sutton McGill University McGill University Collaborators J-F. Pelletier K. Laaziri K. Hassani A. Fluerasu E. Dufresne G. Brown M. Grant Yale/MIT S. Mochrie

More information

Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method

Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method Chien-Chun Chen, 1 Jianwei Miao, 2 C. W. Wang, 3 and T. K. Lee 1 1 Institute of Physics,

More information

Magnetic Neutron Reflectometry. Moses Marsh Shpyrko Group 9/14/11

Magnetic Neutron Reflectometry. Moses Marsh Shpyrko Group 9/14/11 Magnetic Neutron Reflectometry Moses Marsh Shpyrko Group 9/14/11 Outline Scattering processes Reflectivity of a slab of material Magnetic scattering Off-specular scattering Source parameters Comparison

More information

High-Resolution Imagers

High-Resolution Imagers 40 Telescopes and Imagers High-Resolution Imagers High-resolution imagers look at very small fields of view with diffraction-limited angular resolution. As the field is small, intrinsic aberrations are

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy Mat. Res. Soc. Symp. Proc. Vol. 690 2002 Materials Research Society Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy P. G. Evans, 1 E.

More information

What use is Reciprocal Space? An Introduction

What use is Reciprocal Space? An Introduction What use is Reciprocal Space? An Introduction a* b* x You are here John Bargar 5th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences June 1-3, 2010

More information

Methoden moderner Röntgenphysik II Streuung und Abbildung

Methoden moderner Röntgenphysik II Streuung und Abbildung Methoden moderner Röntgenphysik II Streuung und Abbildung Stephan V. Roth DESY 5.6.14 Two phase Model single particle approximation > Amplitude: Δ 3 > Intensity: = > Closer look at Iq for dilute systems:

More information

Wigner distribution measurement of the spatial coherence properties of FLASH

Wigner distribution measurement of the spatial coherence properties of FLASH Wigner distribution measurement of the spatial coherence properties of FLASH Tobias Mey Laser-Laboratorium Göttingen e.v. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen EUV wavefront sensor Experimental setup

More information

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods

X-ray analysis. 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods X-ray analysis 1. Basic crystallography 2. Basic diffraction physics 3. Experimental methods Introduction Noble prizes associated with X-ray diffraction 1901 W. C. Roentgen (Physics) for the discovery

More information

3D Image Reconstruction Hamiltonian Method for Phase Recovery 1

3D Image Reconstruction Hamiltonian Method for Phase Recovery 1 SLAC PUB 9646 March 13, 2003 3D Image Reconstruction Hamiltonian Method for Phase Recovery 1 Richard Blankenbecler 2 Theory Group Stanford Linear Accelerator Center P.O. Box 4349, Stanford CA 94309, USA

More information